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Idempotents in complex group rings:

theorems of Zalesskii and Bass revisited
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Abstract. Let Γ be a group, and let CΓ be the group ring of Γ over C .
We first give a simplified and self-contained proof of Zalesskii’s theorem [23]
that the canonical trace on CΓ takes rational values on idempotents. Next,
we contribute to the conjecture of idempotents by proving the following
result: for a group Γ , denote by PΓ the set of primes p such that Γ embeds
in a finite extension of a pro-p-group; if Γ is torsion-free and PΓ is infinite,
then the only idempotents in CΓ are 0 and 1. This implies Bass’ theorem [2]
asserting that the conjecture of idempotents holds for torsion-free subgroups
of GLn(C) .

1. Introduction

For a group Γ and a field F , we denote by FΓ the group ring over F ; evaluation
at the identity 1 ∈ Γ defines the canonical trace on FΓ:

τΓ : FΓ→ F : a 7→ a(1)

(a ∈ FΓ; most often we shall write τ for τΓ ). In this paper we shall deal mainly,
but not exclusively, with the case F = C, the field of complex numbers. In that
case, we shall also consider the reduced C*-algebra C∗rΓ of Γ, i.e. the norm closure
of CΓ acting by left convolution on the Hilbert space `2(Γ). The canonical trace
on CΓ extends to C∗rΓ by the formula

τ(T ) = 〈T (δ1)|δ1〉 (1)

(T ∈ C∗rΓ; here δ1 denotes the characteristic function of {1}). For a unital algebra
A over a field F , denote by K0(A) the Grothendieck group of projective, finite
type modules over A; if A is endowed with a trace Tr : A → F , then Tr defines
a homomorphism Tr∗ : K0(A) → F . The starting point of this paper was the
following conjecture, due to Baum and Connes [3].
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Conjecture 1.1. For any group Γ, the range of τ∗ : K0(C∗rΓ) → C is the
subgroup of Q generated by the 1

|H| ’s, where H runs over finite subgroups of Γ.

Since τ∗(K0(CΓ)) clearly contains this subgroup of Q, we see that conjec-
turally τ∗(K0(CΓ)) should coincide with this subgroup. The main evidence for
this conjecture is:

Corollary 1.2. τ∗(K0(CΓ)) is a subgroup of Q, for any group Γ.

This is an easy consequence of the following nice result of Zalesskii [23]
(see also [17], Theorem 3.5 in Chapter 2), for which we present a simplified and
self-contained proof in section 3.

Theorem 1.3. If e ∈ CΓ is an idempotent, then τ(e) is a rational number.

Note that conjecture 1.1 implies the following conjecture of Farkas ([6],
# 17): if e ∈ CΓ is an idempotent, and if some prime number p divides the
denominator of τ(e) but not its numerator, then Γ should contain an element of
order p.

Assume now that Γ is a torsion-free group. Then Conjecture 1.1 says that
τ∗(K0(C∗rΓ)) = Z. By a standard argument involving positivity and faithfulness
of τ on C∗rΓ, which for completeness we recall in section 2, this implies the
Kaplansky-Kadison conjecture on idempotents (see [21] for a survey):

Conjecture 1.4. If Γ is a torsion-free group, then C∗rΓ has no idempotent
except 0 and 1.

In particular, there should not be any nontrivial idempotent in CΓ when
Γ is torsion-free. Denote by BΓ the classifying space of Γ, and by RK0(BΓ) its
even K-homology with compact support. In [3], Baum and Connes define an index
map (or analytical assembly map)

µΓ
0 : RK0(BΓ)→ K0(C∗rΓ)

which they conjecture to be an isomorphism when Γ is torsion-free. In this case,
Conjectures 1 and 2 are known to follow from the surjectivity (1) of µΓ

0 . At this
juncture, we mention that this conjecture of Baum and Connes was recently proved
by Higson and Kasparov ([10]; see also [20]) for torsion-free amenable groups; in
particular, for such an amenable torsion-free group Γ, the group ring CΓ has no
non-trivial idempotent: there is no algebraic proof of this result.

Our contribution to the conjecture of idempotents is the following:

Theorem 1.5. For a group Γ, denote by PΓ the set of prime numbers p such
that Γ embeds in a finite extension of a pro-p-group. If Γ is torsion-free and PΓ

is infinite, then there is no non-trivial idempotent in CΓ.

We shall see that Theorem 1.5 implies the following result of Bass ([2],
Corollary 9.3 and Theorem 9.6):

1On the other hand, the injectivity of µΓ
0 implies deep results in topology, e.g. the Novikov

conjecture on homotopy invariance of higher signatures for manifolds with fundamental group
Γ.
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Corollary 1.6. If Γ is torsion-free and linear in characteristic 0, then CΓ has
no non-trivial idempotent.

Actually Bass proves this for torsion-free linear groups in any characteristic,
but our proof only works in characteristic 0.

2. Kaplansky’s theorem

Kaplansky’s theorem (see [12]) is the ancestor of all results on values of the trace
on idempotents in group algebras. Existing proofs involve embedding CΓ in a
suitable completion (see e.g. [16]). For completeness, we shall give a proof, by
embedding CΓ in the von Neumann algebra vN(Γ), i.e. the commutant of the
right regular representation of Γ on `2(Γ) (2).

Theorem 2.1. 1. Let e be an idempotent in vN(Γ). Then 0 ≤ τ(e) ≤ 1,
with equality if and only if e is a trivial idempotent.

2. If e is an idempotent in CΓ, then τ(e) belongs to the field Q of algebraic
numbers.

Proof. 1. The trace τ on vN(Γ) enjoys the following properties:

• positivity: τ(T ∗T ) ≥ 0 for T ∈ C∗rΓ;

• faithfulness: τ(T ∗T ) = 0 if and only if T = 0.

Fix an idempotent e ∈ vN(Γ). Then the element z = 1 + (e∗ − e)∗(e∗ − e)
is self-adjoint and invertible in vN(Γ). Set f = ee∗z−1 . Using the fact
that z commutes with e, one sees that f = f ∗ . From ee∗z = (ee∗)2 , one
deduces f = f 2 ; from ez = ee∗e, one deduces fe = e; clearly ef = f . So
f is a self-adjoint idempotent and τ(f) = τ(e). Since τ(f) = τ(f ∗f) and
τ(1 − f) = τ((1 − f)∗(1 − f)), it follows from 1 = τ(f) + τ(1 − f) and
positivity of τ that 0 ≤ τ(e) ≤ 1. If τ(e) = 0, then by faithfulness f = 0,
hence e = 0; replacing e by 1− e, one gets the other case of equality.

2. The group of all automorphisms of C acts on CΓ. If e = e2 ∈ CΓ, then
τ(σ(e)) = σ(τ(e)) for every σ ∈ AutC, so that 0 ≤ σ(τ(e)) ≤ 1 by the
first part of the theorem. Since AutC acts transitively on transcendental
numbers, this implies τ(e) ∈ Q .

Remark 2.2. In the beginning of the proof of Theorem 2.1, the argument
(taken from [7], 3.2.1) really shows that, in a unital C*-algebra A, any idempotent
is equivalent to a self-adjoint idempotent. What is needed is the fact that every
element of A of the form 1 + x∗x is invertible in A.

2The double commutant theorem shows that vN(Γ) is the weak closure of CΓ acting in the
left regular representation; the canonical trace extends to vN(Γ) by formula (1).
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Remark 2.3. The theorems of Kaplansky and Zalesskii are trivial for finite
groups. Indeed, if Γ is a finite group of order n, denote by Tr the standard trace
on Mn(C), and by λ : CΓ→Mn(C) the left regular representation. Then

τ(a) =
Tr λ(a)

n
(a ∈ CΓ).

In particular, if e is an idempotent in CΓ, we get

τ(e) =
Rankλ(e)

n
,

a rational number between 0 and 1. A similar argument appears in lemma 1.2 of
Chapter 2 of [17].

Remark 2.4. Say that a group is locally residually finite if every finitely gener-
ated subgroup is residually finite. For example, abelian groups are locally residu-
ally finite, and so are linear groups (in any characteristic!), by a theorem of Mal’cev
[14] (see [1] for a recent proof). We observe that the theorems of Kaplansky and
Zalesskii are basically obvious for a locally residually finite group Γ. Indeed, let
e ∈ CΓ be a non-zero idempotent, and denote by H the subgroup generated by
supp e. Since H is residually finite, we can find in H a normal subgroup N of
finite index, such that N ∩ (supp e) = 1. Let π : CH → C(H/N) be the homo-
morphism induced by the quotient map H → H/N . Denote by τH/N the canonical
trace on C(H/N), so that

τH/N (π(a)) =
∑

n∈N
a(n) (a ∈ CH).

Because of the assumption on N , we have

τ(e) = τH/N (π(e));

by the case of finite groups, we deduce that τ(e) is a rational number in [0, 1].

3. Zalesskii’s theorem

We follow Zalesskii’s original strategy, i.e. we first prove a result in positive
characteristic, and then lift it to characteristic 0. Thus we shall prove the following
extension of Theorem 1.3:

Theorem 3.1. Let F be a field. Let e ∈ FΓ be an idempotent. Then τ(e)
belongs to the prime field of F .

Proof. char F = p. This part of the proof is basically Zalesskii’s beautiful
argument. Start with the remark that, if A is an algebra over F endowed with
a trace Tr : A → F , then one enjoys “Frobenius under the trace”: for every
x, y ∈ A:

Tr((x + y)p) = Tr(xp) + Tr(yp). (2)
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To see it, expand (x+y)p in 2p monomials, and let the cyclic group of order p act
by cyclic permutations on this set of monomials. The trace Tr is constant along
orbits, so the traces along orbits with p elements sum up to 0; therefore only the
two monomials xp and yp contribute to Tr((x+ y)p).

Write now |γ| for the order of an element γ in Γ. Define a family of traces
on FΓ by

Trk(a) =
∑

|γ|=pk
a(γ) (k ∈ N; a ∈ FΓ);

notice that Tr0 = τ . Write e =
∑
γ∈Γ e(γ).γ ; since e = ep , formula (2) yields

Trk(e) =
∑

|γ|=pk
e(γ)p Trk(γ

p). (3)

But, for k ≥ 1:

Trk(γ
p) =

{
1 if |γ| = pk+1

0 otherwise;

while, for k = 0:

τ(γp) =

{
1 if either γ = 1 or |γ| = p
0 otherwise.

For k ≥ 1, we get from (3):

Trk(e) =
∑

|γ|=pk+1

e(γ)p = (Trk+1(e))p.

Since e has finite support, we clearly have Trk(e) = 0 for k large enough. Going
backwards, we get:

Tr1(e) = Tr2(e) = . . . = 0.

For k = 0, we get from (3):

τ(e) = e(1)p +
∑

|γ|=p
e(γ)p = (τ(e))p + (Tr1(e))p = (τ(e))p,

so that τ(e) lies in the prime field of F .

This concludes the proof of Theorem 3.1 in positive characteristic.

We now want to lift this proof to characteristic 0.

Lemma 3.2. If e is an idempotent in CΓ, there exists an idempotent f in QΓ
such that supp e ⊃ supp f and τ(e) = τ(f).

Proof. Set S = {st : s, t ∈ supp e} and consider the affine algebraic variety in
CS defined by the following set of equations:

xγ =
∑

s,t∈supp e : st=γ

xsxt, γ ∈ S (4)

xγ = 0, γ ∈ S − supp e (5)

x1 = τ(e). (6)
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This variety has to be understood as follows: suppose that x ∈ CΓ is defined
by this set of equations inside S , and by 0 outside S . Then (4) says that x
is an idempotent, (5) prescribes the support, and (6) prescribes the trace. By
Kaplansky’s theorem, this variety is defined over Q , and it has a point over C
(namely e); by the Nullstellensatz, it has points over Q .

We shall need a particular case of the Frobenius density theorem [9]; see
[19] for interesting historical comments on this not so well-known result.

Lemma 3.3. Let f ∈ Z[X] be an irreducible, monic polynomial; denote by
Gal(f/Q) the Galois group of f over Q. The set of prime numbers p such that
f is a product of linear factors over Fp , has an analytical density of 1

|Gal(f/Q)| .

Proof. Let K be the splitting field of f over Q, denote by

ζK(s) =
∏

℘

(1− 1

N(℘)s
)−1 (s > 1)

the Dedekind ζ -function of K , where the product is over prime ideals ℘ in the
ring of integers < of K . We shall use the fact that

lim
s→1+

ln ζK(s)

ln 1
s−1

= 1,

which follows easily from the fact that ζK(s) has a simple pole at s = 1 (see 1(2)
and 1(4) in Chapter V of [4]; note that we do not need the exact value of the
residue at s = 1). But

ln ζK(s) =
∑

℘

∞∑

k=1

N(℘)−ks

k
=
∑

℘

N(℘)−s + ψ(s),

where ψ is a continuous function on [1,∞[. For an ordinary prime p, denote by
℘1, . . . , ℘gp the prime ideals in < lying above p, so that

p< = (℘1 . . . ℘gp)
ep,

all ℘i ’s have the same norm N(℘i) = pfp (1 ≤ i ≤ gp), and

epfpgp = [K : Q] = |Gal(f/Q)|

(see [18], Proposition 1 in Chapter VI). Then

∑

℘

N(℘)−s =
∑

p

gp.p
−fps

= |Gal(f/Q)|
∑

p:fp=1,ep=1

p−s +
∑

p:fp=1,ep>1

gp.p
−s +

∑

p:fp>1

gp.p
−fps.

The first sum is exactly over primes p such that f is a product of linear factors
over Fp ; the second sum is over some primes which are ramified in K , so that it
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is a finite sum (see [4], 5(4) of Chapter III); the third sum converges at s = 1.
Finally, recalling that

lim
s→1+

∑
p

1
ps

ln 1
s−1

= 1,

we get

1 = lim
s→1+

∑
℘N(℘)−s
∑
p p
−s = |Gal(f/Q)| lim

s→1+

∑
p:fp=1,ep=1 p

−s
∑
p p
−s ;

this concludes the proof.

Note that this proof shows that the primes p for which f is a product of
linear factors over Fp , are responsible for the pole of ζK at s = 1.

Proof of Theorem 3.1: char F = 0. Clearly we may assume that F is a
subfield of C. By lemma 3.2, we may assume that F is a finite algebraic extension
of Q. Enlarging F if necessary, we may assume this extension to be Galois. Let <
be the ring of integers of F . For a prime ideal ℘ of < not dividing denominators
of coefficients of e, we may reduce modulo ℘ and get an idempotent e ∈ (</℘)Γ.
By the first part of the proof, τ(e) is an element of the prime field of </℘; the
same holds with e replaced by σ(e), for every σ ∈ Gal(F/Q). Write τ(e) = α

d
,

where α ∈ < and d ∈ N, and let f ∈ Z[X] be the minimal polynomial of α over
Q. The preceding argument shows that, for all primes p but a finite number, the
polynomial f splits completely into linear factors over Fp . By lemma 3.3, this
means that f has degree 1, so that α ∈ Z, and τ(e) ∈ Q.

Remark 3.4. Compared with the original proof of Zalesskii [23], the main
simplification in the above proof lies in lemma 3.2, which allows us to assume
immediately, when the characteristic of F is 0, that F is a number field (a similar
argument also based on the Nullstellensatz appears in [2], Corollary 8.3). In this
way one bypasses the results in commutative algebra saying that the Jacobson
radical of finitely generated, commutative domain is zero, and that the quotient
of such a domain by a maximal ideal is a finite field. Also, lemma 3.3 makes
clear that only a very modest part of the Frobenius density theorem is needed
in the lifting argument from characteristic p to characteristic 0 (for cyclotomic
extensions, lemma 3.3 was probably known to Dirichlet).

Proof of Corollary 1.2: Let e be an idempotent in CΓ ⊗ Mn(C); we have
to show that (τΓ ⊗ Trn)(e) is rational. Let H be a finite group which has an
irreducible representation of degree n; we view CΓ ⊗Mn(C) as a subalgebra of

C(Γ×H). Then (τΓ ⊗ Trn)(e) = |H|
n
.τΓ×H(e) is a rational number, since τΓ×H(e)

is.

4. On the conjecture of idempotents

For a group Γ, we define a set NΓ of positive integers as follows:

NΓ = {n ∈ N− {0, 1} : there exists x ∈ Γ− {1} which is conjugate to xn}.

The method of proof of the next lemma is due to Formanek [8].
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Lemma 4.1. Let F be a field of positive characteristic p. Assume that Γ has
no p-torsion and, for every k ≥ 1 : pk /∈ NΓ . Let e be an idempotent in FΓ.
Then τ(e) = 0 or 1.

Proof. For x ∈ Γ− {1}, denote by Cx the conjugacy class of x, and define a
trace Trx on FΓ by

Trx(a) =
∑

γ∈Cx
a(γ) (a ∈ FΓ).

Write e =
∑
γ∈Γ e(γ).γ ; since augmentation FΓ → F is a character, we have∑

γ∈Γ e(γ) ∈ {0, 1}. Now

∑

γ∈Γ

e(γ) = τ(e) +
∑

[x]

Trx(e),

where the last sum is over a set of representatives for non-trivial conjugacy classes.
So it is enough to show

Trx(e) = 0.

By formula (2), we have for all k ≥ 1:

Trx(e) = Trx(e
pk) =

∑

γ∈Γ

e(γ)p
k

Trx(γ
pk) =

∑

γ∈supp e;γpk∈Cx

e(γ)p
k

.

We notice that, for a fixed γ ∈ Γ, there is at most one k ≥ 1 such that γp
k ∈ Cx .

Indeed, suppose by contradiction that γp
j

and γp
k

belong to Cx , for j < k . Then
γp

j
is conjugate to (γp

j
)p
k−j

, and since pk−j /∈ NΓ this implies γp
j

= 1; since Γ
has no p-torsion this means that γ = 1, which contradicts x 6= 1.

This remark shows, by taking k large enough, that Trx(e) = 0, which
concludes the proof of the lemma.

At this point we re-obtain a result of Formanek ([8], Theorem 9; see also
[17], Theorem 3.9 in Chapter 2).

Proposition 4.2. Suppose that, for infinitely many primes p, one has pk /∈ NΓ

for every k ≥ 1. Then CΓ has no non-trivial idempotent.

Proof. We first notice that the assumption implies that Γ is torsion-free.
Indeed, if Γ admits an element x of order N ≥ 2, then for every prime p not
dividing N and every integer k ≥ 1 such that pk ≡ 1 (mod N), we have pk ∈ NΓ

since xp
k

= x.

Let now e be an idempotent in CΓ; in view of Kaplansky’s theorem, it is
enough to show that τ(e) = 0 or 1. By lemma 3.2, we may assume that e ∈ FΓ,
where F is a finite algebraic extension of Q. Denote by < the ring of integers of F .
Let p be a prime as in the assumption, not dividing denominators of coefficients
of e, and let ℘ be a maximal ideal of < lying above p; reducing modulo ℘, we
obtain an idempotent e ∈ (</℘)Γ to which lemma 4.1 applies. So, for infinitely
many ℘’s, we have τ(e) ≡ 0 or 1 (mod ℘); hence the result.
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Remark 4.3. Let Γ be a torsion-free group which is hyperbolic in the sense
of Gromov; it is then known that NΓ is empty, so that CΓ has no non-trivial
idempotent. Note that more is true in this case; indeed, Ji [11] showed that the
Banach algebra `1(Γ) has no non-trivial idempotent; and Delzant [5] proved that
CΓ has no zero divisor for many torsion-free hyperbolic groups.

Recall that, for an arbitrary group Γ, we defined a set PΓ of primes by

PΓ = {p : Γ embeds in a finite extension of a pro-p-group}.

Lemma 4.4. Let Γ be a non-trivial torsion-free group. If p ∈ PΓ and n ∈ NΓ ,
then p does not divide n.

Proof. Since p ∈ PΓ , there exists a decreasing sequence (Γ(k))k≥0 of finite index
normal subgroups of Γ, with Γ(0) = Γ,

⋂∞
k=0 Γ(k) = {1} and Γ(1)/Γ(k) a finite p-

group. Set ap = [Γ : Γ(1)] and pbk = [Γ(1) : Γ(k)]. Let x ∈ Γ − {1} be conjugate
to xn ; denote by |x|k the order of the image of x in the quotient-group Γ/Γ(k) .
Since Γ is torsion-free, one has

lim
k→+∞

|x|k = +∞.

On the other hand, |x|k divides ap.p
bk , meaning that, for k large enough, p divides

|x|k . Now |x|k = |xn|k , so that n and |x|k are relatively prime; in particular p
does not divide n.

Proof of Theorem 1.5: Lemma 4.4 ensures that, if p ∈ PΓ and k ≥ 1, then
pk /∈ NΓ . The desired result then follows from Proposition 4.2.

Proof of Corollary 1.6: If Γ is a finitely generated subgroup of GLn(C), then
all but a finite number of primes belong to PΓ , by a result of Merzljakov [15]; see
also [22], Theorem 4.7; [13], lemma 3.
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