Idempotents in complex group rings: theorems of Zalesskii and Bass revisited

Marc Burger and Alain Valette
Communicated by K. H. Hofmann

Abstract

Let Γ be a group, and let $\mathbb{C} \Gamma$ be the group ring of Γ over \mathbb{C}. We first give a simplified and self-contained proof of Zalesskii's theorem [23] that the canonical trace on $\mathbb{C} \Gamma$ takes rational values on idempotents. Next, we contribute to the conjecture of idempotents by proving the following result: for a group Γ, denote by P_{Γ} the set of primes p such that Γ embeds in a finite extension of a pro- p-group; if Γ is torsion-free and P_{Γ} is infinite, then the only idempotents in $\mathbb{C} \Gamma$ are 0 and 1 . This implies Bass' theorem [2] asserting that the conjecture of idempotents holds for torsion-free subgroups of $\mathrm{GL}_{n}(\mathbb{C})$.

1. Introduction

For a group Γ and a field F, we denote by $F \Gamma$ the group ring over F; evaluation at the identity $1 \in \Gamma$ defines the canonical trace on $F \Gamma$:

$$
\tau_{\Gamma}: F \Gamma \rightarrow F: a \mapsto a(1)
$$

($a \in F \Gamma$; most often we shall write τ for τ_{Γ}). In this paper we shall deal mainly, but not exclusively, with the case $F=\mathbb{C}$, the field of complex numbers. In that case, we shall also consider the reduced C^{*}-algebra $C_{r}^{*} \Gamma$ of Γ, i.e. the norm closure of $\mathbb{C} \Gamma$ acting by left convolution on the Hilbert space $\ell^{2}(\Gamma)$. The canonical trace on $\mathbb{C} \Gamma$ extends to $C_{r}^{*} \Gamma$ by the formula

$$
\begin{equation*}
\tau(T)=\left\langle T\left(\delta_{1}\right) \mid \delta_{1}\right\rangle \tag{1}
\end{equation*}
$$

($T \in C_{r}^{*} \Gamma$; here δ_{1} denotes the characteristic function of $\{1\}$). For a unital algebra A over a field F, denote by $K_{0}(A)$ the Grothendieck group of projective, finite type modules over A; if A is endowed with a trace $\operatorname{Tr}: A \rightarrow F$, then Tr defines a homomorphism $\operatorname{Tr}_{*}: K_{0}(A) \rightarrow F$. The starting point of this paper was the following conjecture, due to Baum and Connes [3].

Conjecture 1.1. For any group Γ, the range of $\tau_{*}: K_{0}\left(C_{r}^{*} \Gamma\right) \rightarrow \mathbb{C}$ is the subgroup of \mathbb{Q} generated by the $\frac{1}{|H|}$'s, where H runs over finite subgroups of Γ.

Since $\tau_{*}\left(K_{0}(\mathbb{C} \Gamma)\right)$ clearly contains this subgroup of \mathbb{Q}, we see that conjecturally $\tau_{*}\left(K_{0}(\mathbf{C} \Gamma)\right)$ should coincide with this subgroup. The main evidence for this conjecture is:

Corollary 1.2. $\quad \tau_{*}\left(K_{0}(\mathbb{C} \Gamma)\right)$ is a subgroup of \mathbb{Q}, for any group Γ.
This is an easy consequence of the following nice result of Zalesskii [23] (see also [17], Theorem 3.5 in Chapter 2), for which we present a simplified and self-contained proof in section 3.

Theorem 1.3. If $e \in \mathbb{C} \Gamma$ is an idempotent, then $\tau(e)$ is a rational number.
Note that conjecture 1.1 implies the following conjecture of Farkas ([6], $\# 17)$: if $e \in \mathbb{C} \Gamma$ is an idempotent, and if some prime number p divides the denominator of $\tau(e)$ but not its numerator, then Γ should contain an element of order p.

Assume now that Γ is a torsion-free group. Then Conjecture 1.1 says that $\tau_{*}\left(K_{0}\left(C_{r}^{*} \Gamma\right)\right)=\mathbb{Z}$. By a standard argument involving positivity and faithfulness of τ on $C_{r}^{*} \Gamma$, which for completeness we recall in section 2 , this implies the Kaplansky-Kadison conjecture on idempotents (see [21] for a survey):

Conjecture 1.4. If Γ is a torsion-free group, then $C_{r}^{*} \Gamma$ has no idempotent except 0 and 1 .

In particular, there should not be any nontrivial idempotent in $\mathbb{C} \Gamma$ when Γ is torsion-free. Denote by $B \Gamma$ the classifying space of Γ, and by $R K_{0}(B \Gamma)$ its even K-homology with compact support. In [3], Baum and Connes define an index map (or analytical assembly map)

$$
\mu_{0}^{\Gamma}: R K_{0}(B \Gamma) \rightarrow K_{0}\left(C_{r}^{*} \Gamma\right)
$$

which they conjecture to be an isomorphism when Γ is torsion-free. In this case, Conjectures 1 and 2 are known to follow from the surjectivity $\left({ }^{1}\right)$ of μ_{0}^{Γ}. At this juncture, we mention that this conjecture of Baum and Connes was recently proved by Higson and Kasparov ([10]; see also [20]) for torsion-free amenable groups; in particular, for such an amenable torsion-free group Γ, the group ring $\mathbb{C} \Gamma$ has no non-trivial idempotent: there is no algebraic proof of this result.

Our contribution to the conjecture of idempotents is the following:
Theorem 1.5. For a group Γ, denote by P_{Γ} the set of prime numbers p such that Γ embeds in a finite extension of a pro-p-group. If Γ is torsion-free and P_{Γ} is infinite, then there is no non-trivial idempotent in $\mathbb{C} \Gamma$.

We shall see that Theorem 1.5 implies the following result of Bass ([2], Corollary 9.3 and Theorem 9.6):

[^0]Corollary 1.6. If Γ is torsion-free and linear in characteristic 0 , then $\mathbb{C} \Gamma$ has no non-trivial idempotent.

Actually Bass proves this for torsion-free linear groups in any characteristic, but our proof only works in characteristic 0 .

2. Kaplansky's theorem

Kaplansky's theorem (see [12]) is the ancestor of all results on values of the trace on idempotents in group algebras. Existing proofs involve embedding $\mathbb{C} \Gamma$ in a suitable completion (see e.g. [16]). For completeness, we shall give a proof, by embedding $\mathbb{C} \Gamma$ in the von Neumann algebra $v N(\Gamma)$, i.e. the commutant of the right regular representation of Γ on $\ell^{2}(\Gamma)\left({ }^{2}\right)$.

Theorem 2.1. 1. Let e be an idempotent in $v N(\Gamma)$. Then $0 \leq \tau(e) \leq 1$, with equality if and only if e is a trivial idempotent.
2. If e is an idempotent in $\mathbb{C} \Gamma$, then $\tau(e)$ belongs to the field $\overline{\mathbb{Q}}$ of algebraic numbers.

Proof. 1. The trace τ on $v N(\Gamma)$ enjoys the following properties:

- positivity: $\tau\left(T^{*} T\right) \geq 0$ for $T \in C_{r}^{*} \Gamma$;
- faithfulness: $\tau\left(T^{*} T\right)=0$ if and only if $T=0$.

Fix an idempotent $e \in v N(\Gamma)$. Then the element $z=1+\left(e^{*}-e\right)^{*}\left(e^{*}-e\right)$ is self-adjoint and invertible in $v N(\Gamma)$. Set $f=e e^{*} z^{-1}$. Using the fact that z commutes with e, one sees that $f=f^{*}$. From $e e^{*} z=\left(e e^{*}\right)^{2}$, one deduces $f=f^{2}$; from $e z=e e^{*} e$, one deduces $f e=e$; clearly $e f=f$. So f is a self-adjoint idempotent and $\tau(f)=\tau(e)$. Since $\tau(f)=\tau\left(f^{*} f\right)$ and $\tau(1-f)=\tau\left((1-f)^{*}(1-f)\right)$, it follows from $1=\tau(f)+\tau(1-f)$ and positivity of τ that $0 \leq \tau(e) \leq 1$. If $\tau(e)=0$, then by faithfulness $f=0$, hence $e=0$; replacing e by $1-e$, one gets the other case of equality.
2. The group of all automorphisms of \mathbb{C} acts on $\mathbb{C} \Gamma$. If $e=e^{2} \in \mathbb{C} \Gamma$, then $\tau(\sigma(e))=\sigma(\tau(e))$ for every $\sigma \in$ Aut \mathbb{C}, so that $0 \leq \sigma(\tau(e)) \leq 1$ by the first part of the theorem. Since Aut \mathbb{C} acts transitively on transcendental numbers, this implies $\tau(e) \in \overline{\mathbb{Q}}$.

Remark 2.2. In the beginning of the proof of Theorem 2.1, the argument (taken from [7], 3.2.1) really shows that, in a unital C*-algebra A, any idempotent is equivalent to a self-adjoint idempotent. What is needed is the fact that every element of A of the form $1+x^{*} x$ is invertible in A.

[^1]Remark 2.3. The theorems of Kaplansky and Zalesskii are trivial for finite groups. Indeed, if Γ is a finite group of order n, denote by Tr the standard trace on $M_{n}(\mathbb{C})$, and by $\lambda: \mathbb{C} \Gamma \rightarrow M_{n}(\mathbb{C})$ the left regular representation. Then

$$
\tau(a)=\frac{\operatorname{Tr} \lambda(a)}{n}(a \in \mathbb{C} \Gamma) .
$$

In particular, if e is an idempotent in $\mathbb{C} \Gamma$, we get

$$
\tau(e)=\frac{\operatorname{Rank} \lambda(e)}{n},
$$

a rational number between 0 and 1. A similar argument appears in lemma 1.2 of Chapter 2 of [17].

Remark 2.4. Say that a group is locally residually finite if every finitely generated subgroup is residually finite. For example, abelian groups are locally residually finite, and so are linear groups (in any characteristic!), by a theorem of Mal'cev [14] (see [1] for a recent proof). We observe that the theorems of Kaplansky and Zalesskii are basically obvious for a locally residually finite group Γ. Indeed, let $e \in \mathbb{C} \Gamma$ be a non-zero idempotent, and denote by H the subgroup generated by $\operatorname{supp} e$. Since H is residually finite, we can find in H a normal subgroup N of finite index, such that $N \cap(\operatorname{supp} e)=1$. Let $\pi: \mathbb{C} H \rightarrow \mathbb{C}(H / N)$ be the homomorphism induced by the quotient map $H \rightarrow H / N$. Denote by $\tau_{H / N}$ the canonical trace on $\mathbb{C}(H / N)$, so that

$$
\tau_{H / N}(\pi(a))=\sum_{n \in N} a(n)(a \in \mathbb{C} H) .
$$

Because of the assumption on N, we have

$$
\tau(e)=\tau_{H / N}(\pi(e)) ;
$$

by the case of finite groups, we deduce that $\tau(e)$ is a rational number in $[0,1]$.

3. Zalesskii's theorem

We follow Zalesskii's original strategy, i.e. we first prove a result in positive characteristic, and then lift it to characteristic 0 . Thus we shall prove the following extension of Theorem 1.3:

Theorem 3.1. Let F be a field. Let $e \in F \Gamma$ be an idempotent. Then $\tau(e)$ belongs to the prime field of F.

Proof. char $F=p$. This part of the proof is basically Zalesskii's beautiful argument. Start with the remark that, if A is an algebra over F endowed with a trace $\operatorname{Tr}: A \rightarrow F$, then one enjoys "Frobenius under the trace": for every $x, y \in A$:

$$
\begin{equation*}
\operatorname{Tr}\left((x+y)^{p}\right)=\operatorname{Tr}\left(x^{p}\right)+\operatorname{Tr}\left(y^{p}\right) \tag{2}
\end{equation*}
$$

To see it, expand $(x+y)^{p}$ in 2^{p} monomials, and let the cyclic group of order p act by cyclic permutations on this set of monomials. The trace Tr is constant along orbits, so the traces along orbits with p elements sum up to 0 ; therefore only the two monomials x^{p} and y^{p} contribute to $\operatorname{Tr}\left((x+y)^{p}\right)$.

Write now $|\gamma|$ for the order of an element γ in Γ. Define a family of traces on $F \Gamma$ by

$$
\operatorname{Tr}_{k}(a)=\sum_{|\gamma|=p^{k}} a(\gamma) \quad(k \in \mathbb{N} ; a \in F \Gamma)
$$

notice that $\operatorname{Tr}_{0}=\tau$. Write $e=\sum_{\gamma \in \Gamma} e(\gamma) \cdot \gamma$; since $e=e^{p}$, formula (2) yields

$$
\begin{equation*}
\operatorname{Tr}_{k}(e)=\sum_{|\gamma|=p^{k}} e(\gamma)^{p} \operatorname{Tr}_{k}\left(\gamma^{p}\right) . \tag{3}
\end{equation*}
$$

But, for $k \geq 1$:

$$
\operatorname{Tr}_{k}\left(\gamma^{p}\right)= \begin{cases}1 & \text { if }|\gamma|=p^{k+1} \\ 0 & \text { otherwise }\end{cases}
$$

while, for $k=0$:

$$
\tau\left(\gamma^{p}\right)= \begin{cases}1 & \text { if either } \gamma=1 \text { or }|\gamma|=p \\ 0 & \text { otherwise. }\end{cases}
$$

For $k \geq 1$, we get from (3):

$$
\operatorname{Tr}_{k}(e)=\sum_{|\gamma|=p^{k+1}} e(\gamma)^{p}=\left(\operatorname{Tr}_{k+1}(e)\right)^{p} .
$$

Since e has finite support, we clearly have $\operatorname{Tr}_{k}(e)=0$ for k large enough. Going backwards, we get:

$$
\operatorname{Tr}_{1}(e)=\operatorname{Tr}_{2}(e)=\ldots=0
$$

For $k=0$, we get from (3):

$$
\tau(e)=e(1)^{p}+\sum_{|\gamma|=p} e(\gamma)^{p}=(\tau(e))^{p}+\left(\operatorname{Tr}_{1}(e)\right)^{p}=(\tau(e))^{p},
$$

so that $\tau(e)$ lies in the prime field of F.
This concludes the proof of Theorem 3.1 in positive characteristic.
We now want to lift this proof to characteristic 0 .
Lemma 3.2. If e is an idempotent in $\mathbb{C} \Gamma$, there exists an idempotent f in $\overline{\mathbb{Q}} \Gamma$ such that $\operatorname{supp} e \supset \operatorname{supp} f$ and $\tau(e)=\tau(f)$.

Proof. Set $S=\{s t: s, t \in \operatorname{supp} e\}$ and consider the affine algebraic variety in \mathbb{C}^{S} defined by the following set of equations:

$$
\begin{align*}
x_{\gamma} & =\sum_{s, t \in \operatorname{supp} e: s t=\gamma} x_{s} x_{t}, \quad \gamma \in S \tag{4}\\
x_{\gamma} & =0, \quad \gamma \in S-\operatorname{supp} e \tag{5}\\
x_{1} & =\tau(e) . \tag{6}
\end{align*}
$$

This variety has to be understood as follows: suppose that $x \in \mathbb{C} \Gamma$ is defined by this set of equations inside S, and by 0 outside S. Then (4) says that x is an idempotent, (5) prescribes the support, and (6) prescribes the trace. By Kaplansky's theorem, this variety is defined over $\overline{\mathbb{Q}}$, and it has a point over \mathbb{C} (namely e); by the Nullstellensatz, it has points over $\overline{\mathbb{Q}}$.

We shall need a particular case of the Frobenius density theorem [9]; see [19] for interesting historical comments on this not so well-known result.

Lemma 3.3. Let $f \in \mathbb{Z}[X]$ be an irreducible, monic polynomial; denote by $\operatorname{Gal}(f / \mathbb{Q})$ the Galois group of f over \mathbb{Q}. The set of prime numbers p such that f is a product of linear factors over \mathbb{F}_{p}, has an analytical density of $\frac{1}{|\operatorname{Gal}(f / \mathbb{Q})|}$.

Proof. Let K be the splitting field of f over \mathbb{Q}, denote by

$$
\zeta_{K}(s)=\prod_{\wp}\left(1-\frac{1}{N(\wp)^{s}}\right)^{-1} \quad(s>1)
$$

the Dedekind ζ-function of K, where the product is over prime ideals \wp in the ring of integers \Re of K. We shall use the fact that

$$
\lim _{s \rightarrow 1^{+}} \frac{\ln \zeta_{K}(s)}{\ln \frac{1}{s-1}}=1
$$

which follows easily from the fact that $\zeta_{K}(s)$ has a simple pole at $s=1$ (see 1(2) and 1(4) in Chapter V of [4]; note that we do not need the exact value of the residue at $s=1$). But

$$
\ln \zeta_{K}(s)=\sum_{\wp} \sum_{k=1}^{\infty} \frac{N(\wp)^{-k s}}{k}=\sum_{\wp} N(\wp)^{-s}+\psi(s),
$$

where ψ is a continuous function on $[1, \infty[$. For an ordinary prime p, denote by $\wp_{1}, \ldots, \wp_{g_{p}}$ the prime ideals in \Re lying above p, so that

$$
p \Re=\left(\wp_{1} \ldots \wp_{g_{p}}\right)^{e_{p}}
$$

all \wp_{i} 's have the same norm $N\left(\wp_{i}\right)=p^{f_{p}}\left(1 \leq i \leq g_{p}\right)$, and

$$
e_{p} f_{p} g_{p}=[K: \mathbb{Q}]=|\operatorname{Gal}(f / \mathbb{Q})|
$$

(see [18], Proposition 1 in Chapter VI). Then

$$
\begin{gathered}
\sum_{\wp} N(\wp)^{-s}=\sum_{p} g_{p} \cdot p^{-f_{p} s} \\
=|\operatorname{Gal}(f / \mathbb{Q})| \sum_{p: f_{p}=1, e_{p}=1} p^{-s}+\sum_{p: f_{p}=1, e_{p}>1} g_{p} \cdot p^{-s}+\sum_{p: f_{p}>1} g_{p} \cdot p^{-f_{p} s} .
\end{gathered}
$$

The first sum is exactly over primes p such that f is a product of linear factors over \mathbb{F}_{p}; the second sum is over some primes which are ramified in K, so that it
is a finite sum (see [4], 5(4) of Chapter III); the third sum converges at $s=1$. Finally, recalling that

$$
\lim _{s \rightarrow 1^{+}} \frac{\sum_{p} \frac{1}{p^{s}}}{\ln \frac{1}{s-1}}=1
$$

we get

$$
1=\lim _{s \rightarrow 1^{+}} \frac{\sum_{\wp} N(\wp)^{-s}}{\sum_{p} p^{-s}}=|\operatorname{Gal}(f / \mathbb{Q})| \lim _{s \rightarrow 1^{+}} \frac{\sum_{p: f_{p}=1, e_{p}=1} p^{-s}}{\sum_{p} p^{-s}}
$$

this concludes the proof.
Note that this proof shows that the primes p for which f is a product of linear factors over \mathbb{F}_{p}, are responsible for the pole of ζ_{K} at $s=1$.
Proof of Theorem 3.1: char $F=0$. Clearly we may assume that F is a subfield of \mathbb{C}. By lemma 3.2, we may assume that F is a finite algebraic extension of \mathbb{Q}. Enlarging F if necessary, we may assume this extension to be Galois. Let \Re be the ring of integers of F. For a prime ideal \wp of \Re not dividing denominators of coefficients of e, we may reduce modulo \wp and get an idempotent $\bar{e} \in(\Re / \wp) \Gamma$. By the first part of the proof, $\tau(\bar{e})$ is an element of the prime field of \Re / \wp; the same holds with e replaced by $\sigma(e)$, for every $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$. Write $\tau(e)=\frac{\alpha}{d}$, where $\alpha \in \Re$ and $d \in \mathbb{N}$, and let $f \in \mathbb{Z}[X]$ be the minimal polynomial of α over \mathbb{Q}. The preceding argument shows that, for all primes p but a finite number, the polynomial f splits completely into linear factors over \mathbb{F}_{p}. By lemma 3.3, this means that f has degree 1 , so that $\alpha \in \mathbb{Z}$, and $\tau(e) \in \mathbb{Q}$.

Remark 3.4. Compared with the original proof of Zalesskii [23], the main simplification in the above proof lies in lemma 3.2, which allows us to assume immediately, when the characteristic of F is 0 , that F is a number field (a similar argument also based on the Nullstellensatz appears in [2], Corollary 8.3). In this way one bypasses the results in commutative algebra saying that the Jacobson radical of finitely generated, commutative domain is zero, and that the quotient of such a domain by a maximal ideal is a finite field. Also, lemma 3.3 makes clear that only a very modest part of the Frobenius density theorem is needed in the lifting argument from characteristic p to characteristic 0 (for cyclotomic extensions, lemma 3.3 was probably known to Dirichlet).
Proof of Corollary 1.2: Let e be an idempotent in $\mathbb{C} \Gamma \otimes M_{n}(\mathbb{C})$; we have to show that $\left(\tau_{\Gamma} \otimes \operatorname{Tr}_{n}\right)(e)$ is rational. Let H be a finite group which has an irreducible representation of degree n; we view $\mathbb{C} \Gamma \otimes M_{n}(\mathbb{C})$ as a subalgebra of $\mathbb{C}(\Gamma \times H)$. Then $\left(\tau_{\Gamma} \otimes \operatorname{Tr}_{n}\right)(e)=\frac{|H|}{n} \cdot \tau_{\Gamma \times H}(e)$ is a rational number, since $\tau_{\Gamma \times H}(e)$ is.

4. On the conjecture of idempotents

For a group Γ, we define a set N_{Γ} of positive integers as follows:

$$
N_{\Gamma}=\left\{n \in \mathbb{N}-\{0,1\}: \text { there exists } x \in \Gamma-\{1\} \text { which is conjugate to } x^{n}\right\} .
$$

The method of proof of the next lemma is due to Formanek [8].

Lemma 4.1. Let F be a field of positive characteristic p. Assume that Γ has no p-torsion and, for every $k \geq 1: p^{k} \notin N_{\Gamma}$. Let e be an idempotent in $F \Gamma$. Then $\tau(e)=0$ or 1 .

Proof. For $x \in \Gamma-\{1\}$, denote by C_{x} the conjugacy class of x, and define a trace Tr_{x} on $F \Gamma$ by

$$
\operatorname{Tr}_{x}(a)=\sum_{\gamma \in C_{x}} a(\gamma) \quad(a \in F \Gamma)
$$

Write $e=\sum_{\gamma \in \Gamma} e(\gamma) . \gamma$; since augmentation $F \Gamma \rightarrow F$ is a character, we have $\sum_{\gamma \in \Gamma} e(\gamma) \in\{0,1\}$. Now

$$
\sum_{\gamma \in \Gamma} e(\gamma)=\tau(e)+\sum_{[x]} \operatorname{Tr}_{x}(e),
$$

where the last sum is over a set of representatives for non-trivial conjugacy classes. So it is enough to show

$$
\operatorname{Tr}_{x}(e)=0 .
$$

By formula (2), we have for all $k \geq 1$:

$$
\operatorname{Tr}_{x}(e)=\operatorname{Tr}_{x}\left(e^{p^{k}}\right)=\sum_{\gamma \in \Gamma} e(\gamma)^{p^{k}} \operatorname{Tr}_{x}\left(\gamma^{p^{k}}\right)=\sum_{\gamma \in \operatorname{supp} e ; \gamma^{p^{k} \in C_{x}}} e(\gamma)^{p^{k}} .
$$

We notice that, for a fixed $\gamma \in \Gamma$, there is at most one $k \geq 1$ such that $\gamma^{p^{k}} \in C_{x}$. Indeed, suppose by contradiction that $\gamma^{p^{j}}$ and $\gamma^{p^{k}}$ belong to C_{x}, for $j<k$. Then $\gamma^{p^{j}}$ is conjugate to $\left(\gamma^{p^{j}}\right)^{p^{k-j}}$, and since $p^{k-j} \notin N_{\Gamma}$ this implies $\gamma^{p^{j}}=1$; since Γ has no p-torsion this means that $\gamma=1$, which contradicts $x \neq 1$.

This remark shows, by taking k large enough, that $\operatorname{Tr}_{x}(e)=0$, which concludes the proof of the lemma.

At this point we re-obtain a result of Formanek ([8], Theorem 9; see also [17], Theorem 3.9 in Chapter 2).

Proposition 4.2. \quad Suppose that, for infinitely many primes p, one has $p^{k} \notin N_{\Gamma}$ for every $k \geq 1$. Then $\mathbb{C} \Gamma$ has no non-trivial idempotent.

Proof. We first notice that the assumption implies that Γ is torsion-free. Indeed, if Γ admits an element x of order $N \geq 2$, then for every prime p not dividing N and every integer $k \geq 1$ such that $p^{k} \equiv 1 \quad(\bmod N)$, we have $p^{k} \in N_{\Gamma}$ since $x^{p^{k}}=x$.

Let now e be an idempotent in $\mathbb{C} \Gamma$; in view of Kaplansky's theorem, it is enough to show that $\tau(e)=0$ or 1 . By lemma 3.2, we may assume that $e \in F \Gamma$, where F is a finite algebraic extension of \mathbb{Q}. Denote by \Re the ring of integers of F. Let p be a prime as in the assumption, not dividing denominators of coefficients of e, and let \wp be a maximal ideal of \Re lying above p; reducing modulo \wp, we obtain an idempotent $\bar{e} \in(\Re / \wp) \Gamma$ to which lemma 4.1 applies. So, for infinitely many \wp 's, we have $\tau(e) \equiv 0$ or $1(\bmod \wp)$; hence the result.

Remark 4.3. Let Γ be a torsion-free group which is hyperbolic in the sense of Gromov; it is then known that N_{Γ} is empty, so that $\mathbb{C} \Gamma$ has no non-trivial idempotent. Note that more is true in this case; indeed, Ji [11] showed that the Banach algebra $\ell^{1}(\Gamma)$ has no non-trivial idempotent; and Delzant [5] proved that $\mathbb{C} \Gamma$ has no zero divisor for many torsion-free hyperbolic groups.

Recall that, for an arbitrary group Γ, we defined a set P_{Γ} of primes by

$$
P_{\Gamma}=\{p: \Gamma \text { embeds in a finite extension of a pro- } p \text {-group }\} .
$$

Lemma 4.4. Let Γ be a non-trivial torsion-free group. If $p \in P_{\Gamma}$ and $n \in N_{\Gamma}$, then p does not divide n.

Proof. Since $p \in P_{\Gamma}$, there exists a decreasing sequence $\left(\Gamma^{(k)}\right)_{k \geq 0}$ of finite index normal subgroups of Γ, with $\Gamma^{(0)}=\Gamma, \bigcap_{k=0}^{\infty} \Gamma^{(k)}=\{1\}$ and $\Gamma^{(1)} / \Gamma^{(k)}$ a finite p group. Set $a_{p}=\left[\Gamma: \Gamma^{(1)}\right]$ and $p^{b_{k}}=\left[\Gamma^{(1)}: \Gamma^{(k)}\right]$. Let $x \in \Gamma-\{1\}$ be conjugate to x^{n}; denote by $|x|_{k}$ the order of the image of x in the quotient-group $\Gamma / \Gamma^{(k)}$. Since Γ is torsion-free, one has

$$
\lim _{k \rightarrow+\infty}|x|_{k}=+\infty
$$

On the other hand, $|x|_{k}$ divides $a_{p} \cdot p^{b_{k}}$, meaning that, for k large enough, p divides $|x|_{k}$. Now $|x|_{k}=\left|x^{n}\right|_{k}$, so that n and $|x|_{k}$ are relatively prime; in particular p does not divide n.

Proof of Theorem 1.5: Lemma 4.4 ensures that, if $p \in P_{\Gamma}$ and $k \geq 1$, then $p^{k} \notin N_{\Gamma}$. The desired result then follows from Proposition 4.2.

Proof of Corollary 1.6: If Γ is a finitely generated subgroup of $\mathrm{GL}_{n}(\mathbb{C})$, then all but a finite number of primes belong to P_{Γ}, by a result of Merzljakov [15]; see also [22], Theorem 4.7; [13], lemma 3.

References

[1] Alperin, R. C., An elementary account of Selberg's lemma, L'Enseignement Mathématique 33 (1987), 269-273.
[2] Bass, H., Euler characteristics and characters of discrete groups, Invent. Math 35 (1976), 155-196.
[3] Baum, P., and Connes, A., Geometric K-theory for Lie groups and foliations, Unpublished IHES preprint, 1982.
[4] Borevitch, Z. I., and Chafarevitch, I. R., "Théorie des nombres," GauthierVillars, 1967.
[5] Delzant, T, Sur l'anneau d'un groupe hyperbolique, C.R. Acad. Sci. Paris 324 (1997), 381-384.
[6] Farkas, D. R., Group rings: an annotated questionnaire, Comm. in Algebra 8 (1980), 585-602.
[7] Fack, T., and Maréchal, O., Application de la K-théorie algébrique aux C^{*} algèbres, in: Algèbres d'opérateurs, Springer LNM 725 (1979), 144-169.
[8] Formanek, E., Idempotents in noetherian group rings, Can. J. Math. 25 (1973), 366-369.
[9] Frobenius, F. G., Ueber Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe, in: Gesammelte Abhandlungen II, Springer, 1968.
[10] Higson, N., and Kasparov, G. G., Operator K-theory for groups which act properly and isometrically on Hilbert space, Preprint, October 1997.
[11] Ji, R., Nilpotency of Connes' periodicity operator, and the idempotent conjectures, K-theory 9(1995), 59-76.
[12] Kaplansky, I., "Fields and rings," Chicago Lect. in Maths, Univ. of Chicago Press, 1965.
[13] Lubotzky, A., A group theoretic characterization of linear groups, J. of Algebra 113 (1988), 207-214.
[14] Mal'cev, A. I., On the faithful representations of infinite groups by matrices, Amer. Math. Soc. Transl. 45 (1965), 1-18.
[15] Merzljakov, Ju. I., Central series and commutator series in matrix groups, Algebra i Logika 3 (1964), 49-59.
[16] Montgomery, M. S., Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539-540.
[17] Passman, D., "The algebraic structure of group rings," Krieger Publishing Company, 1985.
[18] Samuel, P., "Théorie algébrique des nombres," Hermann, 1971.
[19] Stevenhagen, P., and Lenstra, H. W., Jr, Chebotarëv and his density theorem, Math. Intelligencer 18(1996), 26-27.
[20] Tu, J.-L., La conjecture de Baum-Connes pour les feuilletages moyennables, Preprint, 1997.
[21] Valette, A., The conjecture of idempotents: a survey of the C^{*}-algebraic approach, Bull. Soc. Math. Belg. XLI(1989), 485-521.
[22] Wehrfritz, B. A. F., "Infinite linear groups," Springer-Verlag, 1973.
[23] Zalesskii, A. E., On a problem of Kaplansky, Soviet Math. 13 (1972), 449452.

Departement Mathematik
ETH Zűrich
Ra̋mistrasse 101
CH-8092 Zűrich, Switzerland
burger(a)math.ethz.ch

Institut de Mathématiques
Uni. Neuchâtel
Rue Emile Argand 11
CH-2007 Neuchâtel, Switzerland
alain.valette(a)maths.unine.ch

Received October 7, 1996
and in final form January 26, 1998

[^0]: ${ }^{1}$ On the other hand, the injectivity of μ_{0}^{Γ} implies deep results in topology, e.g. the Novikov conjecture on homotopy invariance of higher signatures for manifolds with fundamental group Γ.

[^1]: ${ }^{2}$ The double commutant theorem shows that $v N(\Gamma)$ is the weak closure of $\mathbb{C} \Gamma$ acting in the left regular representation; the canonical trace extends to $v N(\Gamma)$ by formula (1).

