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Abstract. Given a finite set S of isometries of an affine Euclidean space.

We ask when the group Γ generated by S is discrete. This includes as a

special case the question when the group generated by a finite set of rotations
is finite. This latter question is answered in an appendix. In the main part

of the paper the general case is reduced to this special case. The result is

phrased as a series of tests: Γ is discrete iff S passes all the tests. The
testing procedure is algorithmic.

Suppose we are given a finite set S of isometries of some affine Euclidean space.
We ask when the group Γ generated by S is discrete. This includes as a special
case the question when the group generated by a finite set of rotations is finite.
We deal with this special case in an appendix. In the main part of the paper we
reduce the general question to this special case. The main result is phrased as a
series of tests. Γ is discrete iff S passes all the tests.

The method is based on Bieberbach’s theorems characterizing discrete
groups of affine isometries. Bieberbach’s second theorem says that a group Γ of
isometries of an affine Euclidean space E is discrete (if and) only if there is a
Γ–invariant affine subspace F of E such that the restriction homomorphism r
from Γ to the group of isometries of F has finite kernel and a crystallographic
group as image.

This theorem suggests the following procedure to check if a given group Γ
of affine isometries is discrete. First find a minimal Γ–invariant affine subspace F .
This is motivated by the fact that the Γ–invariant affine subspace in Bieberbach’s
theorem is minimal. Then test if Γ restricted to F is crystallographic. Finally,
check if the restriction homomorphism r : Γ→ Γ|F has finite kernel.

Accordingly, the contents of chapters two to four are as follows. In chap-
ter two we describe a minimal Γ–invariant affine subspace F for any group Γ of
affine isometries. In chapter three we present a test for Γ to be crystallographic.
Here we suppose that the group λ(Γ) of linear parts of Γ is finite, a necessary
condition by Bieberbach’s first theorem. In chapter four we describe ways to
check if r : Γ→ Γ|F has finite kernel. In chapter five we give examples.

The main result is phrased as a series of tests. The group Γ is discrete
iff S passes all the tests. The testing procedure is algorithmic and hence should
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be capable of being computerized. We thus discuss the computational aspects as
we go along.

This work was motivated by the following question asked by A. Dress in
[6]. Suppose a finite set S of affine isometric involutions of an affine Euclidean
space E is given. When is the group Γ generated by S discrete, respectively
finite? Restricting the discussion to a set of generators of this type seems to have
more disadvantages than advantages for the general theory.

I thank E. B. Vinberg for helpful discussions.

1. The Bieberbach theorems

In this chapter we establish notations to be in force for the whole paper and
recall the Bieberbach theorems.

Notations 1.1. Let V be a finite dimensional real vector space endowed
with a positive definite inner product 〈 , 〉 . Let E be the corresponding
affine Euclidean space. So E has a simply transitive action of V , denoted
(v, x) 7−→ x + v , and a metric d(x, x + v) = 〈v, v〉 1

2 . Let G = Iso(E) be the
group of isometries of E . Given x0 ∈ E , t ∈ V and U in the orthogonal group
O of (V, 〈 , 〉) we define an isometry

g = A(x0, t, U)(1.2 by)

g(x0 + v) = x0 + t+ Uv .(1.3)

Every isometry of E is of this form. We note for later reference the multiplication
formula

(1.4) iA(x0, t0, U0) ·A(x0, t1, U1) = A(x0, t0 + U0t1 , U0U1) ,

and the dependence on the base point chosen:

(1.5) A(x0, t0, U0) = A(x1, t1, U1)

iff U0 = U1 and t1 = t0 + (U0 − 1)(x1 − x0), where, of course, x1 − x0 is the
unique vector v ∈ V such that x1 = x0 + v . So the translation t depends on the
base point chosen (but cf. 2.1c)), whereas the linear part U does not. We thus
have a homomorphism

(1.6) λ : G→ O

defined by
λ(A(x0, t, U)) = U .

We call λ(g) the linear part or the differential of g ∈ G .

The translations of E are the isometries in the kernel of λ . We identify
V with the group of translations of E .
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For an affine subspace F of E we denote by TF the subspace of V of
translations of F , so TF = {v ∈ V ; x + v ∈ F for every x ∈ F} . One can also
think of TF as the tangent space of F . A subgroup Γ of G = Iso(E) is called
crystallographic if it is discrete and Γ\E is compact. The following two theorems
due to Bieberbach are basic.

Bieberbach’s First Theorem. For a crystallographic group Γ the group λ(Γ)
of linear parts of Γ is finite.

It follows that Γ ∩ V = ker(λ|Γ) is of finite index in Γ and hence Γ ∩ V
is a discrete subgroup of V with (Γ ∩ V ) \ V compact. So there is a basis of
the vector space V over the reals which is a set of generators for Γ ∩ V . With
respect to this basis λ(γ) has integer entries for every γ ∈ Γ.

Bieberbach’s Second Theorem. If Γ is a discrete subgroup of G there is
a Γ–invariant affine subspace F of E such that the restriction homomorphism
r : Γ → Iso(F) has finite kernel and a crystallographic subgroup of Iso(F) as
image.

Note that F is a minimal Γ–invariant affine subspace of E , i.e. a minimal
element in the set of Γ–invariant affine subspaces, partially ordered by inclusion,
since the translations in r(Γ) span TF by Bieberbach’s first theorem.

The following corollary of the Bieberbach theorems suggests our proce-
dure to check if a given subgroup Γ of G is discrete.

Corollary. A subgroup Γ of G is discrete iff there is a minimal Γ–invariant
affine subspace F of E such that for the restriction homomorphism r : Γ→ Iso(F)
the kernel is finite and the image is a crystallographic group on F .

Proof. Necessity follows from the Bieberbach theorems, as seen above. Con-
versely, under the conditions of the corollary Γ acts properly discontinuously on
F hence is discrete.

2. A minimal invariant subspace

Let Γ be a subgroup of G , not necessarily discrete. We shall describe explicitly
a minimal Γ–invariant affine subspace F of E . It is known that any two such
F are translates of each other by translations which are fixed by λ(Γ) so that it
suffices to answer our questions for one of them.

Of particular importance for our description of F is the concept of the
axis Eg of an affine isometry g, that is the largest g–invariant affine subspace of
E on which g acts by translations, see 2.1. To find F we shall use the following
two facts:

(i) Any Γ–invariant affine subspace F of E intersects the axis Eg of every
element g of Γ. (ii) For certain affine subspaces E1,E2 of E the set E1,2 of feet
of common perpendiculars from E2 to E1 intersects F if both E1 and E2 do.
Starting with (i) and using (ii) repeatedly we finally find a minimal Γ–invariant
subspace.
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We start by defining the notions of axis and translational part. Fix an
element g ∈ G . If λ(g) is the linear part of g , let V 1 = {v ∈ V |λ(g)v = v} be
the +1–eigenspace of λ(g) in V and let V 6=1 be the orthogonal complement of
V 1 in V .

2.1 Lemma and Definition

a) For g ∈ G there is a unique largest (not only maximal) g–invariant affine
subspace Eg of E on which g acts as a parallel translation. We call Eg the
axis of g .

b) The corresponding vector subspace TEg is V 1 . In particular, Eg is not
empty.

c) The translation τ(g) := g|Fg ∈ TEg = V 1 is called the translational part of
g .

d) If g = A(x0, t, U) and t = t1 + t2 is the decomposition of t according to
V = V 1 ⊕ V 6=1 , then τ(g) = t1 .

e) Every point x ∈ E can be written uniquely in the form x = y+v with y ∈ Eg
and v ∈ V 6=1 . Then

gx = x+ τ(g) + (λ(g)− 1)v

Proof. Write g = A(x0, t, U), so U = λ(g). Decomposet = t1 + t2 according
to V = V 1⊕V 6=1 . Then, by (1.3), g(x0 + v) = x0 + t1 + t2 +Uv = x0 + v+ t1 +
(t2 + (U − 1)v). There is a vector v0 ∈ V 6=1 such that (U − 1)v0 + t2 = 0, since
U induces linear endomorphism of V 6=1 and (U − 1)|V 6=1 has kernel zero. So
g(x0 +v0) = x0 +v0 + t1 and for x1 = x0 +v0 we have g = A(x1, t1, U) by (1.5).
It follows that g induces a parallel translation by t1 on x1 + V 1 . Every point
x ∈ E can be written uniquely in the form x = x1 + v1 + v2 where v1 ∈ V 1 ,
v2 ∈ V 6=1 . Then

gx = x+ t1 + (λ(g)− 1)v2 .

Thus, if x is contained in a g–invariant affine subspace F such that g acts on
F by a parallel translation, by τ ∈ TF say, then gnx = x+ nτ and on the other
hand gnx = x+ nt1 + (λ(g)− 1)nv2 which implies τ = t1 by taking lim

n→∞
gnx−x
n

and hence v2 = 0. All the claims are now proved.

Corollary 2.2. An affine isometry g has a fixed point iff τ(g) = 0 .

Here is our first handle on finding invariant subspaces.

Corollary 2.3. For every nonempty g -invariant affine subspace F of E we
have τ(g) ∈ TF and Eg intersects F .

Proof. We have the following more precise assertion. For the restriction g|F
of g to F the axis Fg is F ∩ Eg for the following reasons: Fg ⊃ F ∩ Eg , since
g induces a parallel translation on F ∩ Eg ; and Fg ⊂ F ∩ Eg since Fg is a g–
invariant subspace of F on which g induces a parallel translation.

The next proposition allows to get further information about invariant
subspaces. We need the following lemma, which we state for later reference in
greater generality than presently needed.
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Lemma 2.4. Let V be a finite dimensional real Euclidean vector space and
let U1 and U2 be two vector subspaces. Let Pi , i = 1, 2 , be the orthogonal
projections of V onto Ui . Let A be a finite dimensional subalgebra of End (V )
over some subfield k of R . Suppose A contains P1 and P2 . Then A also
contains the orthogonal projection onto U1 ∩U2 . Furthermore, A contains three
operators Q1, Q2 and Q3 with the following properties:

a) Q1 +Q2 +Q3 = 1 where 1 is the identity of V .

b) Q3 is the orthogonal projection onto (U1 + U2)⊥ .

c) The image of Qi is contained in Ui for i = 1, 2 .

For the proof let us first recall the following fact from linear algebra.

Lemma 2.5. Let V be a vector space over a field k and let T : V → V
be a linear map. Let f ∈ k[t] be a polynomial such that f(T ) = 0 . Suppose
f = f1 · f2 with relatively prime polynomials fi ∈ k[t] . Then V is the direct sum
of the subspaces V1 = ker f1(T ) and V2 = ker f2(T ) , and the projections pi of
V onto Vi are in k[T ] .

The proof consists in writing 1 = h1f1+h2f2 with hi ∈ k[t] and checking
that the maps pi = (hjfj)(T ), j 6= i , are the projections onto Vi .

Proof of Lemma 2.4. Put W = U1 ∩ U2 . Note that Pi(W
⊥) ⊂ W⊥ , since

Pi is self adjoint and Pi(W ) ⊂ W , in fact Pi | W = 1W . Thus the operator
S := P1P2 maps W⊥ to itself. Furthermore S | W = 1W and ‖S | W⊥‖ < 1
for the following reason: Every orthogonal projection decreases the norm, i.e.
‖Px‖ ≤ ‖x‖ for every x , and ‖Px‖ = ‖x‖ iff Px = x . It follows that ‖Sv‖ < ‖v‖
for every 0 6= v ∈ W⊥ since such a vector v is not in U2 or if in U2 not in U1 .
Thus the norm of S |W⊥ is strictly smaller than 1, since this operator norm is
the maximum of ‖Sv‖ where v runs through the compact unit sphere of W⊥ .
In particular, all the eigenvalues of S |W⊥ are of modulus strictly less than 1.

We now show that the orthogonal projection Q of V onto W is in
A . The operator S fulfills a polynomial equation f ∈ k[t] , since A is finite
dimensional over k . Now write f = f1 · f2 with relatively prime polynomials
f1, f2 ∈ k[t] where f1 is a power of (t − 1). Note that the case f1 = 1 is not
excluded. Then ker f1(S) = W , since f1(S) maps W to zero and induces an
automorphism of W⊥ . And ker f2(S) = W⊥ since W ⊕ f2(S) = V and f2(S)
maps both W and W⊥ to itself and hence ker f2(S) is the sum of its intersections
with W and W⊥ . Note that if follows that the polynomial g = (t− 1) · f2 has
the property g(S) = 0.

To finish the proof we now apply these results to the two projections
1 − Pi onto U⊥i and the operator T = (1 − P1)(1 − P2). So T induces the
identity on U⊥1 ∩U⊥2 = (U1+U2)⊥ and maps the orthogonal complement U1+U2

to itself. There is a polynomial g ∈ k[t] of the form g = (t − 1) · f2 such that
f(T ) = 0 and f2 and t−1 are relatively prime. Then ker(T−1) = (U1+U2)⊥ and
ker f2(T ) = U1+U2 , the corresponding projections are the orthogonal projections
and belong to A . Let Q3 ∈ A be the orthogonal projection onto (U1 + U2)⊥ .
By the proof of 2.5 there is an operator Q4 ∈ A such that (T − 1) ·Q4 = 1−Q3 ,
namely Q4 = h1(T ) in the notations of that proof. Now put Q1 = −P1(1−P2)Q4

and Q2 = −P2Q4 .
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2.6. The common perpendicular. Let E1 and E2 be two nonempty affine
subspaces of E . Let (x1, x2) be a pair of points with xi ∈ Ei of minimal distance,
so d(x1, x2) ≤ d(y1, y2) for any pair (y1, y2) of points with yi ∈ Ei . Equivalently,
x1 − x2 is orthogonal to V1 + V2 where Vi = TEi . If x1, x2 is one such pair all
other such pairs are of the form (x1 + v1 , x2 + v2) where v1 = v2 ∈ V1 ∩ V2 .
So the difference vector x1 − x2 ∈ V for any such pair depends only on the two
subspaces E1 , E2 and will be called the common perpendicular vector from E2

to E1 and will be denoted perp(E2,E1). So perp (E2,E1) is the unique vector
of E1 − E2 = {x1 − x2|xi ∈ Ei} orthogonal to V1 + V2 . The first entry x1 of a
pair (x1, x2) with xi ∈ Ei and x1 − x2 = perp (E2,E1) is called the foot of a
common perpendicular from E2 to E1 . The set of feet of common perpendiculars
from E2 to E1 will be denoted E1,2 . So E1,2 is an affine subspace of E1 with
TE1,2 = V1 ∩ V2 .

Let us return to our subgroup Γ of G . Let A be the subalgebra R[λ(Γ)]
of End (V ) consisting of all linear combinations of elements of λ(Γ) with real
coefficients.

Proposition 2.7. Suppose F , E1 and E2 are affine subspaces of E with the
following properties: F is Γ–invariant, both Ei intersect F and the orthogonal
projections Pi of V onto TEi are elements of A . Then E1,2 intersects F , the
orthogonal projection of V onto TE1,2 is in A and perp (E2,E1) is in TF .

Proof. Let Pi be the orthogonal projection of V onto Vi := TEi . Then the
orthogonal projection of V onto TE1,2 = V1 ∩ V2 is in A , by 2.4. Let Q1 , Q2

and Q3 be operators as in lemma 2.4. Suppose ai ∈ F ∩ Ei . Put t = a1 − a2 ,
b1 = a1 − Q1t and b2 = a2 + Q2t . Then t is in the A–module W := TF ,
hence Q1t ∈ V1 ∩W and thus b1 ∈ F ∩ E1 , and similarly b2 ∈ F ∩ E2 . Finally,
b1 − b2 = Q3t ∈ (V1 + V2)⊥ , so b1 is the foot of a common perpendicular from
E2 to E1 . We have perp (E2,E1) = b1 − b2 ∈W .

We can apply the procedure of the proposition to axes Ei of single
elements or generators of our group Γ and then iterate the procedure with the
spaces obtained and thus produce further points in F and further vectors in TF .
We formalize the iteration as follows.

2.8. Let X be a set and let MX be the free non–associative semigroup on
X , called a free magma by Serre ([Lie algebras and Lie groups. Benjamin New
York 1965] LA 4.1) We have MX =

∐∞
n=1 Xn where Xn is inductively defined

by X1 = X and Xn =
∐∞
p+q=nXp × Xq for n ≥ 1 and the multiplication

MX × MX → MX is defined by the natural inclusion Xp × Xq → Xp+q .
The product of the elements m and n in MX will be denoted by (m,n).
We have a unique map MX to the set of non–empty subsets of X , called
support and denoted supp with the properties supp(x) = {x} for x ∈ X1 and
supp(m,n) = supp(m) ∪ supp(n).

2.9. Now let Γ be the subgroup of G generated by a subset S of G . Define
for every element m of the free magma MS a subspace Em of E as follows. For
γ ∈ X let Eγ be the axis of γ , and for m,n in MS let E(m,n) be the set Em,n
of feet of common perpendiculars from En to Em . The family of Em ’s has the
following properties:

a) E(m,n) ⊂ Em .
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b) TEm = V λ〈supp(m)〉 .
c) For every nonempty Γ–invariant affine subspace F of E we have Em∩F 6= Ø

and perp (Em,En) ∈ TF for m,n in MΓ .

Here we denote by 〈Y 〉 the subgroup of G generated by the subset Y
of G . For a subgroup H of λ(G) we denote by V H the subspace of vectors
of V fixed by every element of H . The properties a) – c) follow from 2.6 and
2.7 using the fact that the orthogonal projection of V onto V H is contained in
R[H] . Here is our description of all the minimal Γ-invariant affine subspaces
of E .

Theorem 2.10. Let W be the subspace of V spanned by the set of vectors
τ(g) , g ∈ Γ , and perp (Em,En),m, n in MΓ . An affine subspace F of E is a
minimal Γ–invariant affine subspace of E iff TF = W and F intersects one of
the subspaces Em with m ∈ MΓ and TEm = V λ(Γ) . Every Γ–invariant affine
subspace of E contains a space F of this form.

The following consequence is well known, see [10], chapter 3, end of § 1.

Corollary 2.11. Any two minimal Γ–invariant affine subspaces F of E are
translates of each other by a vector in V λ(Γ) .

In particular, F is unique if V λ(Γ) = 0.We restate the theorem for the
case that the group Γ is given by a set of generators.

Theorem 2.12. Let S be a subset of G generating the subgroup Γ of G .
There is an m ∈MS such that V λ〈supp(m)〉 = V λ(Γ) . Let x be a point contained
in a minimal Γ–invariant affine subspace F of E , e.g. x ∈ Em . The subspace
W = TF is the smallest R[λ(Γ)]–submodule of V containing any one of the
following two sets of vectors

a) {gx− x ; g ∈ S} .

b) {τ(g), g ∈ S} ∪ {perp (Em,E(g,m)), g ∈ S}.

Note that in case V λ(Γ) = 0 the sets Em and E(g,m) consist of one point
only, by 2.9 b).

Proofs. Every Γ-invariant affine subspace F′ of E intersects Em , by 2.9 c).
And TF′ contains τ(g) for every g ∈ Γ, by 2.3, and perp (Em,En) for any two
m,n in MΓ , by 2.9 c). Hence F′ contains a subspace F as in 2.10. To see that
such an F is Γ-invariant, first note that for g and h in G we have

τ(hgh−1) = λ(h)τ(g)(2.13)

by 2.1 a), and

Ehgh−1 = hEg(2.14)

by the definition of the axes. Hence

Eγm = γEm(2.15)



328 Abels

for m ∈ MΓ and γ ∈ Γ, where m 7−→ γm is the unique morphism of
magmas such that δ 7−→ γδγ−1 for δ ∈ Γ. So

(2.16) perp (Eγm,Eγn) = λ(γ) perp (Em,En) .

It follows that the vector space W of 2.10 is an R[λ(Γ)]–module. So, to finish
the proof of 2.10, it remains to show that γx0 ∈ x0 +W for γ ∈ Γ and x0 ∈ Em .

Our hypothesis about m implies that every point x of Em is a foot of a
perpendicular from En to Em for every n ∈MΓ , since

TEm,n = V λ〈supp(m)∪ supp(n)〉 = V λ(Γ) = V λ〈supp(m)〉 = TEm

by 2.9 b). Hence for t = perp (Em,Eγ) we have x+ t ∈ Eγ and thus

(2.17) γx = x+ τ(g)− (λ(g)− 1)t

by 2.1 e), so γx ∈ x+W for γ ∈ Γ.

Corollary 2.11 follows from the following facts. Any two minimal Γ–
invariant subspaces are parallel since their translation subspaces are the same,
namely W . They both intersect every Em where m ∈MΓ and TEm = V λ(Γ) ,by
2.9 c), hence they are parallel translates of each other by a vector in TEm =
V λ(Γ) .

The first claim of 2.12 is clear for dimension reasons. To prove the
second one let Wa and Wb be the R[λ(Γ)]–submodules of V generated by the
sets given in a) and b), respectively. Clearly, x + Wa is Γ–invariant and every
Γ–invariant affine subspace of E containing x contains x+Wa , thus F = x+Wa

is aminimal Γ–invariant affine subspace of E . Concerning b), we have Wb ⊂W
by the definition of W in 2.10. For x0 ∈ Em we have γx0 ∈ x0 +Wb for γ ∈ S
by 2.17.

Note here that perp (E1,E2) = perp (E1,E2,1). It follows that x0 +Wb

is γ –invariant for every γ ∈ S and hence for any γ ∈ Γ. This implies that
x0 +Wb is a minimal Γ–invariant affine subspace, in particular Wb = W . Hence
x+Wb is a minimal Γ–invariant affine subspace of E for every point x contained
in a minimal Γ–invariant affine subspace of E .

Remark 2.18. W is not generated by one of the two subsets in 2.12 b) alone.
E.g. if Γ consists of translations only, then Em = E for every m ∈ MΓ and
hence perp (Em,En) = 0 always. On the other hand, there are examples of
subgroups Γ of G such that every element γ of Γ has a fixed point, but there is
no common fixed point. So τ(γ) = 0 for every γ ∈ Γ but W 6= 0. An example
of such a group Γ can be obtained as follows. Take two elements g1, g2 of G for
dimE = 4 such that for every reduced word w different from the empty word
all the eigenvalues of λ(w(g1, g2)) are different from 1 and the points Fix (g1)
and Fix (g2) are different. Then every element of the group Γ generated by g1

and g2 has a fixed point, since τ(g) ∈ V λ(g) = {0} . The existence of such a pair
(g1, g2) can be seen as follows. The group H1 of quaternions of norm 1 acts on
H by left multiplication. An element h ∈ H1 has one eigenvalue equal to 1 iff
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h = 1. The set of pairs (h1, h2) ∈ H1×H1 which freely generate a free subgroup
of H1 hasa complement of measure zero. Hence there are many pairs (g1, g2) as
above. By contrast, if Γ is discrete, the set of translational parts τ(γ), γ ∈ Γ
generates W , by the Bieberbach theorems.

2.19. Computational aspects. For an element g of G the axis Eg can be
computed as follows. Suppose g is given in the form A(x0, t, U). Decompose
t = t0 + t1 according to V = V 1 ⊕ V 6=1 , where V 1 = ker(U − 1) and V 6=1 is
the orthogonal complement of V 1 . Then Eg consists of the points x0 + v where
t2 + (U − 1)v = 0, by the proof of 2.1. So Eg can be computed by solving
systems of linear equations. If E1 and E2 are two affine subspaces of E both
perp (E1,E2) and E1,2 can be computed by solving systems of linear equations,
see 2.6. After at most dimV such steps we arrive at Em with Em = V λ(Γ) .
To determine F take a point x ∈ Em and compute W = TF as follows. Let
D0 = {γx − x; γ ∈ S} . Start with a basis B0 ⊂ D0 of the R–vector subspace
< D0 >R of V spanned by D0 . Suppose Bj has been defined. Check for every
pair (γ, b), γ ∈ S, b ∈ Bj , if (γ)b ∈< Bj >R . If not define Bj+1 = Bj ∪ {γb} .
By numbering the elements of S and of

⋃
Bj starting with those of B0 one sees

that one arrives at a basis of W after at most #S · dimV such checks.

3. When is a group crystallographic?

In the last chapter we described a minimal Γ–invariant affine subspace F of E
for every subgroup Γ of G . According to the Bieberbach theorems our first
test for discreteness of Γ will be to check whether the restriction of Γ to F is
crystallographic. Here is our test.

Theorem 3.1. The group r(Γ) is crystallographic for F iff there is a point
x in E such that the abelian subgroup D(x) generated by {γx − x; γ ∈ Γ} is
discrete.

In order to apply the theorem for the case that Γ is given by a set S of
generators, note that D(x) is the smallest Z[λ(Γ)]–submodule of V containing
{γx − x; γ ∈ S} . The group D(x) is not discrete for arbitrary points x ∈ E ,
nor even for arbitrary points x ∈ F , even if r(Γ) is crystallographic. E.g. let
F = E = R and Γ = {x 7→ ±x + n;n ∈ Z} . Then D(x) is discrete iff x ∈ Q .
This is a typical behavior, see 3.3 e). So an obvious question – essential for
computations – is how to find a point x as in the theorem. Incidentally, the
answer uses the concepts of the preceding chapter. We thus use the notations of
chapter two, in particular 2.9.

Addendum 3.2. Suppose r(Γ) is crystallographic. Let m ∈ MΓ be such that
TEm = V λ(Γ) . Then D(x) is discrete for x ∈ Em , in fact ∆ = Γ∩V is of finite
index in D(x) and TF = D(x)R = ∆R .

The properties of r(Γ) are independent of the particular choice of a
minimal Γ–invariant affine subspace F of E : Any two such subspaces F1 and
F2 are translates of each other by a vector in V λ(Γ) , according to 2.11, and
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this translation commutes with Γ, induces an isometry F1 → F2 and yields an
isomorphism r1(Γ)→ r2(Γ).

In the rest of this chapter we give a proof of 3.1 and 3.2. Let us start by
establishing a few elementary and basic facts about D(x).

Lemma 3.3. Suppose λ(Γ) = F is a finite group of order f . Let ∆ =
ker(λ|Γ) = Γ ∩ V and let x be a point of E .

a) D(x) is a Z[λ(Γ)]–module containing ∆ .

b) D(x) spans TF over R for every x ∈ F .

c) There is a point x ∈ E with D(x) ⊂ 1
f∆ .

d) For every point x with D(x) ⊂ ∆R the affine space x + ∆R is a minimal
Γ–invariant affine subspace of E .

e) Suppose D(x) ⊂ ∆Q then

{y;D(y) ⊂ ∆Q} = x+ ∆Q + V F .

Proof. a) is clear, b) follows from 2.12 a). c): For x ∈ E put x = 1
f

∑
γix ,

where γi runs through a set of representatives of Γ modulo ∆. Note that affine
combinations

∑
λixi of points xi ∈ E , that is combinations with

∑
λi = 1, are

well defined in the affine space E , namely x0 +
∑
λi(xi − x0) is independent of

a chosen point x0 ∈ E . For another set γ′i of representatives of Γ modulo ∆ we
have γ′i = γiδi with δi ∈ ∆ and thus the point

y =
1

f

∑
γ′ix =

1

f
(
∑

λ(γi)(δix− x) +
∑

γix) ∈ x+
1

f
∆

is in the 1
f∆–orbit of x . In particular, for γ ∈ Γ the point γx = 1

f

∑
γγix is in

the 1
f∆–orbit of x .

d) The affine space x+ ∆R is Γ–invariant since it contains the orbit of
x and ∆R is an R[λ(Γ)]–module. It is minimal since ∆ ⊂ {γx− x ; γ ∈ Γ} for
every x ∈ E .

e) That the right hand side is a subset of the left hand side, is clear. The
converse inclusion is a consequence of the following lemma.

Lemma 3.4. Let Γ1 be a subgroup of Γ . Suppose F1 = λ(Γ1) is finite of order
f1 , say. Let D and D′ be subgroups of V such that x + D and x′ + D′ are
Γ1 –invariant. Then

f1 · (x− x′) ∈ D +D′ + V F1 .

Proof. Note that D and D′ are F1 –modules since D contains γ(x+d)−x =
(γx−x)+λ(γ)d for d ∈ D and γ ∈ Γ1 , and similarly for D′ . For any two points
x and x′ in E we have for γ ∈ Γ

γx′ − x′ = γx− x+ (λ(γ)− 1)(x′ − x) .

Take x and x′ as in the lemma and put w = x′−x . Our hypothesis γx−x ∈ D
and γx′ − x′ ∈ D′ for γ ∈ Γ1 imply by summing over a set of representatives of
F1 in Γ1 ∑

h∈F1

hw − f1 · w ∈ D +D′

which implies the lemma in view of
∑
h∈F1

hw ∈ V F1 .
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We are now ready to prove theorem 3.1.

3.5. Proof of Theorem 3.1. To prove necessity we may assume that F = E
and that Γ is crystallographic. Then, by Bieberbach’s first theorem, λ(Γ) = F
is finite and ∆ is discrete. Hence 1

f∆ is a discrete subgroup of V containing

γx − x for every γ ∈ Γ if x is as in 3.3 c). Conversely, let x be a point of E
such that D := D(x) is discrete. Note that we do not have x ∈ F nor D ⊂ ∆R ,
in general, e.g. if E = F× U , where Γ acts on F by translations and as a finite
rotation group on the vector space U ,and x is any point not in F . The smallest
Γ–invariant affine subspace of E containing x is x + W , where W = DR . We
may suppose that E = x + W by restricting Γ to x + W if necessary, since
it suffices to prove that r(Γ) is crystallographic for some minimal Γ–invariant
affine subspace F of E , by the remark following 3.2. The subgroup λ(Γ) of
the (compact) orthogonal group of W leaves the discrete spanning subset D
of W invariant, hence is discrete and thus finite. So we can apply 3.3. The
group ∆ = ker(λ|Γ) = Γ ∩ V is discrete since ∆ ⊂ D . Let x be a point with
D(x) ⊂ 1

f
∆. Such a point exists by 3.3c). Then F = y + ∆R is a minimal

Γ–invariant affine subspace of E , by 3.3d), and r(Γ) is crystallographic on F ,
since Γ contains ∆ of finite index.

We are now heading for a proof of 3.2. The proof consists in redoing the
proof of the last chapter, this time over the rationals rather than the reals, using
the hypothesis that λ(Γ) = F is finite. To prove 3.2 we could actually assume
that E = F and that Γ is discrete but we need only the following

Assumption. λ(Γ) is finite.

Again, we put λ(Γ) = F , #F = f , ∆ = ker(λ|Γ) = Γ ∩ V . We do not suppose
that Γ is discrete nor that F = E . Our first handle towards finding a point x
with D(x) discrete is analogous to 2.3:

Corollary 3.6. Let D be a Q[F ]–submodule of V . Any Γ–invariant D–orbit
x+D ⊂ E intersects the axis Eγ for every γ ∈ Γ .

This applies in particular for D = ∆Q and any Γ–invariant subset of the
form x+ ∆Q of E , e.g. for x as in 3.3 c)

Proof. Apply lemma 3.4 to the following situation: Let Γ1 be the subgroup
of Γ generated by the element γ , let x + D be Γ–invariant, x′ ∈ Eγ and
D′ = Zτ(γ). We have D′ ⊂ D in view of the following facts: ∆ is contained in
D by Γ–invariance of x+D , the power γf of γ ∈ Γ is contained in ∆ and γf

is the translation by f · τ(γ). So x − x′ ∈ D + V λ(γ) by lemma 3.4. Now use
TEγ = V λ(γ) .

Again, as in chapter 2, we shall prove that every Γ–invariant subset of
the form x+ ∆Q intersects Em for every m ∈MΓ , thus proving 3.2.

Proposition 3.7. Suppose E1 and E2 are affine subspaces of E such that
the orthogonal projections of V onto TEi , i = 1, 2 , are in Q[F ] . Let D be a
Q[F ]–submodule of V and let x+D be Γ–invariant. Suppose x+D intersects
both E1 and E2 then x+D intersects E1,2 , the orthogonal projection of V onto
TE1,2 is in Q[F ] and perp (E1,E2) is in D .
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Proof. We apply lemma 2.4 for Pi the orthogonal projections of V onto TEi ,
i = 1, 2, and A = Q[F ] . Thus A contains the orthogonal projection of V onto
TE1∩TE2 and contains operators Q1, Q2 and Q3 such that Q1+Q2+Q3 = 1, Q3

is the orthogonal projection onto (TE1+TE2)⊥ and the image of Qi is contained
in TEi for i = 1, 2. Now let ai ∈ Ei ∩ (x + D) then b1 := a1 − Q1(a1 − a2) ∈
E1 ∩ (x+ D), b2 := a2 + Q2(a1 − a2) ∈ E2 ∩ (x+ D), b1 − b2 = Q3(a1 − a2) =
perp (E2,E1) ∈ D , b1 ∈ E1,2 ∩ (x+D) and b2 ∈ E2,1 ∩ (x+D).

We obtain as in 2.9:

Corollary 3.8. Every Γ–invariant ∆Q–orbit intersects Em for every
m ∈MΓ and perp (Em,En) ∈ ∆Q for every pair m,n of elements of MΓ .

3.9. We are now ready to prove 3.2. There is a point x ∈ E such that x+ 1
f

∆

is Γ–invariant, by 3.3 c). For every point y ∈ x+ 1
k∆ we have

γy − y = (γx− x) + (λ(γ)− 1)(y − x) ∈ 1

kf
∆,

hence D(y) ⊂ 1
kf

∆ for y ∈ x+ 1
k

∆ where D(y) is as always the abelian subgroup

of V generated by {γy − y; γ ∈ Γ} . This holds in particular for a point y ∈ Em
with TEm = V F for an appropriate integer k depending on y , by 3.8. Finally,
D(y) = D(y′) for every point y′ ∈ Em since y− y′ is fixed by F . The last claim
of 3.2 follows from 3.3d).

3.10. Computational aspects. Let S be a finite set of elements of G gen-
erating a subgroup Γ of G , let m ∈ MS be such that TEm = V λ(Γ) , let x
be a point of Em and let B ⊂ D(x) be a basis of the vector space W = TF
where F = x+W is a minimal Γ–invariant affine subspace of E . In 2.18 it was
described how all these things can be computed. With these notations we have

Corollary 3.11. r(Γ) is crystallographic iff the following three conditions
hold

(i) γx− x is a rational linear combination of B for every γ ∈ S .

(ii) With respect to the basis B of W the linear map λ(γ) | W = λ ◦ r(γ) is
represented by a matrix in GL(d;Q) , d = dimW , for every γ ∈ S .

(iii) The subgroup of O(W ) generated by λ(γ) |W = λ ◦ r(γ) , γ ∈ S , is finite.

Proof. If r(Γ) is crystallographic then ∆R = W ⊃ D(x) ⊃ ∆ and D(x)
contains the subgroup ∆ of finite index, hence D(x)Q = ∆Q which implies (i)
and (ii). Bieberbach’s theorems imply (iii). To prove sufficiency let D0 be the
Z–submodule of W generated by B and {γx− x; γ ∈ S} . Then D0 is a lattice
in W , by (i). The group λ(γ)D0 is commensurable with D0 by (ii) for every
γ ∈ S and hence for every γ ∈ Γ. Then D1 =

∑
γ∈Γ λ(γ)D0 is commensurable

with D0 , by (iii), and hence a lattice in W in particular the subgroup D(x) of
D1 generated as a Z[λ(Γ)]–module by {γx− x; γ ∈ S} is discrete.

Remark 3.12. Concerning computations, it is easy to check (i) and (ii). As
for (iii), the proof above shows that a finite subgroup of GL(d;Q) is conjugate
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in GL(d,Q) to a subgroup of GL(d;Z) – a basis transformation from a Z–basis
of D0 to a Z–basis of D1 will give the desired conjugation. But the order of a
finite subgroup of GL(d;Z) is bounded by a number depending only on d , by a
theorem of Minkowski. We want to point out the following consequences of what
was developed in the last two chapters. These results give necessary conditions
for a given subgroup Γ of G to be discrete.

Notations will be as above: Γ is a subgroup of G , F a minimal Γ–
invariant affine subspace, r : Γ → Iso(F) the restriction homomorphism and
∆ = r(Γ) ∩ TF the subgroup of translations of r(Γ). We will assume that r(Γ)
is crystallographic. So this applies in particular when Γ is discrete.

Proposition 3.13. The following elements are contained in ∆Q :

a) the translational part τ(γ) for every γ ∈ Γ

b) perp (Em,En) for m,n in MΓ

c) γx− x for γ ∈ Γ and x ∈ Em , where m ∈MΓ and T (Em ∩ F) = (TF)λ(Γ) .

It is not true in general that all these elements are contained in a lattice in
∆Q , see example 5.11. They are though, if we restrict the length of the elements
m ∈MΓ . Here the length of an element m in the free non-associative semigroup
MX generated by X is defined in the obvious way, i.e. l(x) = 1 for x ∈ X and
l((m,n)) = l(m) + l(n).

Proposition 3.14. For every N there is a lattice ∆N in ∆Q which contains
the following elements:

a) τ(γ) for every γ ∈ Γ

b) perp (Em,En) for m,n ∈MΓ and l(m) ≤ N , l(n) ≤ N
c) γx− x for γ ∈ Γ and x ∈ Em , where m ∈MΓ , T (Em ∩ F) = (TF)λ(Γ) and

l(m) ≤ N .

A geometric consequence is the following

Corollary 3.15. Suppose Γ is crystallographic. Then for a given number N
the set {Em , l(m) ≤ N} is locally finite. In particular, the set {Eγ , γ ∈ Γ} is
locally finite.

This holds in particular for the set Fr(γ) = Eγ∩F , γ ∈ Γ, and the derived
set Fm = Em ∩ F if Γ is discrete. But it is not true in general for a discrete
subgroup Γ of G that the set{Eγ , γ ∈ Γ} is locally finite. For an example see
5.3.

Proof. It suffices to prove 3.14, since 3.13 is an immediate consequence and
3.15 follows in view of the following facts: The distance of Em and En is the
length of perp (Em,En) and thus equal to zero or bounded a way from zero by
3.14, if the lengths of m and n are bounded. But for a point x ∈ Em an affine
subspace En , n ∈ MΓ , containing x is characterized by the vector subspace
TEn = V λ〈supp(n)〉 , see 2.9 b), which is one of a finite collection of subspaces
V H , H a subgroup of the finite group F = λ(Γ).

To prove 3.14 we may assume that F = E and thus that Γ is crystallo-
graphic and ∆ is a lattice in V = TE , since all our vectors in a)–c) are in TF
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by 2.3 and 2.9 c). Again, we put F = λ(Γ), f = #F . Then for γ ∈ Γ we have
τ(γf ) = fτ(g) and γf is a translation, i.e. γf ∈ ∆, so τ(γ) ∈ 1

f∆.

Let m0 ∈ MΓ be such that λ〈supp(m0)〉 = F and hence TEm0
= V F .

Then for x0 ∈ Em0
the set γx−x , γ ∈ Γ, is contained in the lattice D(x0), and

D(x0) ⊃ ∆, by 3.2. Let w = perp (Em0
,Eγ). Then

γ(x0 + w) = γx0 + λ(γ)w

and

γ(x0 + w) = x0 + w + τ(γ)

since x0 + w ∈ Eγ , hence

(3.16) γx0 − x0 = τ(γ)− (λ(γ)− 1)w.

so (λ(γ)− 1)w is contained in the lattice ∆0 = 1
f

∆ +D(x0).

For every λ(γ) ∈ F there is a polynomial h1 ∈ Q[t] such that

h1(λ(γ)) · (λ(γ)− 1)w = w

for every w ∈ (V F )⊥ , e.g. if we decompose the polynomial tf − 1 into the

relatively prime polynomials tf − 1 = (t− 1) · f2 , where f2 =
∑f−1
i=0 t

i , and write
1 = h1 · (t − 1) + h2 · f2 with hi ∈ Q[t] , see the proof of lemma 2.5. It follows
that there is a lattice ∆′ ⊃ ∆0 which contains perp (Em0

,Eγ) for every γ ∈ Γ.
We may assume that ∆′ is a Z[F ]–module.

Now choose for every pair H1, H2 of subgroups of F operators Q1, Q2

and Q3 in Q[F ] satisfying the conditions of lemma 2.4 for Ui = V Hi , i = 1, 2,
that means Q1 +Q2 +Q3 = 1, Qi(V ) ⊂ Ui for i = 1, 2 and Q3 is the orthogonal
projection of V onto (U1 +U2)⊥ . Suppose M is a positive integer such that M
times all these operators for all pairs H1, H2 are in Z[F ] . Then for γ1, γ2 in Γ
and x0+wi ∈ Eγi , wi = perp (Em0

,Eγi), we have perp (Eγ1
,Eγ2

) = Q3(w2−w1)
for Q3 as above for the two subgroups Hi = 〈λ(γi)〉 , see the proof of 3.7. So the
lattice 1

M ·∆′ contains perp (Eγ1
,Eγ2

) for every pair γ1, γ2 of elements of Γ.

The same argument shows that if we have ai = x+wi ∈ Emi for some x ∈
E and wi is contained in the Z[F ]–submodule ∆i of V then perp (Em1

,Em2
) =

Q3(w2 − w1) ∈ 1
M (∆1 + ∆2), x + w1 − Q1(w1 − w2) ∈ E(m1,m2) and x+ w2 +

Q2(w1 − w2) ∈ E(m2,m1) , see the proof of 3.7. It thus follows that for m0

as above, firstly,x0 + 1
Ml(m) ∆′ intersects Em0

, and secondly,perp(Em1
,Em2

) ∈
1

Ml(m1)+l(m2) ∆′ . Finally, if x ∈ Em , w = perp (Em,Eγ),x+ w ∈ Eγ , we have

γ(x+ w) = γx+ λ(γ)w

= x+ w + τ(γ)

since x + w ∈ Eγ and hence γx − x = τ(γ) − (λ(γ) − 1)w ∈ 1
Ml(m)+1 ∆′ ,which

proves the claim concerning 3.14 c) since if TEm = V F , every point x of Em is
the foot of a perpendicular to Eγ , i.e. Em = E(m,γ) by 2.9 a) and b).
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4. When is a group discrete?

4.1. Hypotheses and notations for this whole chapter. Γ = 〈S〉 is a subgroup
of G = Iso(E)given by a finite set S of generators, F is a minimal Γ–invariant
affine subspace of E and r: Γ → Iso(F) is the restriction homomorphism. We
suppose that r(Γ) is a crystallographic group on F .

Then Γ is discrete iff the kernel of r is finite. But this seems difficult
to check in terms of the generating set S of Γ. We thus propose a different
procedure, which is algorithmic. It is based on two ingredients, firstly the
observation that the finiteness of the kernel of r is easy to check if B is an
abelian group of a certain type and secondly, that Γ contains such a subgroup
B of finite index if Γ is discrete.

We start with the following well known fact (s. [11], [1]). We give a short
proof based on the Bieberbach theorems which also gives additional information
we shall use in the algorithmic procedure.

Proposition 4.2. If Γ is discrete then Γ contains a subgroup B of finite
index such that its group λ(B)of linear parts is contained in a torus and r(B)
consists of translations of F only.

Proof. Let Γ1 be the normal subgroup of those γ ∈ Γ for which r(γ)
is a translation of F . Then Γ1 is of finite index in Γ by the corollary to
the Bieberbach theorems and Bieberbach’s first theorem, and the commutator
subgroup of Γ1 is finite by Bieberbach’s second theorem. Hence the commutator
subgroups of the following groups are finite: λ(Γ1), the closure L1 of λ(Γ1),
the connected component L0 of the identity in L1 . So the Lie algebra of L0 is
abelian. Both the closure L of λ(Γ) and L1 are compact, being closed subgroups
of the orthogonal group of TE . Furthermore, L/L1 and L1/L0 are finite, so L0

is the connected component of L and is a torus. Nowr(γγ1γ
−1) is the translation

λ(γ)r(γ1) for γ1 ∈ Γ1 . So the torus L0 acts on the lattice r(Γ1) in TF , hence
fixes TF . It follows that the normal subgroupB = {γ ∈ Γ; r(γ) ∈ TF, λ(γ) ∈ L0}
of Γ is abelian and of finite index in Γ.

Note that the proof has shown that the torus L0 is the connected
component of (λ(Γ))− .

Corollary 4.3. If Γ is discrete then L0 := (λ(Γ))0 is a torus and fixes TF .
So B = {γ ∈ Γ ; r(γ) ∈ TF, λ(γ) ∈ L0} is an abelian normal subgroup of Γ of
finite index.

If our group Γ is of the special form as B in 4.2 then it is easy to check
if r has finite kernel, as follows.

Proposition 4.4. Suppose a subgroup B of G leaves the affine subspace
F invariant and r(B) consists of translations only. Suppose furthermore that
λ(B) is contained in a torus T . Then the homomorphism (λ, r) : B → T × TF
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is injective. Let t be the Lie algebra of T and let exp : t→ T be its exponential
map. Let A be the inverse image of the subgroup (λ, r)B of T × TF under
exp×id : t× TF→ T × TF . Then

rank A = rank ker(r) + rank r(B) + dim T.

In particular, if B is finitely generated then ker(r) is finite iff rank A =
rank r(B) + dim T.

Here and in the proof the rank of an abelian group D is dimQD ⊗Q .

Proof. Put W = TF and e = exp×id : t×W → T ×W . For a subgroup A
of T ×W the surjection e : e−1(D)→ D has as its kernel the lattice ker(e) in t .
Thus rank D = rank(e−1D)−dim T . Hence for our group D = (λ, r)B we have
rank(ker(r)) = rank D − rank(r(D)) = rank(e−1(D))− dim T − rank(r(D)).

4.5. Here is now the procedure to determine if Γ is discrete.

Step 1. Find a finite subset S1 of Γ with the following properties

a) r(γ) is a translation of F for every γ ∈ S1 .

b) The subgroup of TF generated by {r(γ) ; γ ∈ S1} is a lattice in TF
c) 〈λ(γ)〉− is connected for every γ ∈ S1 .

We describe below how to find such a set S1 , see 4.13. Concerning c) we
use the following notation. For an element U of the orthogonal group O = O(V )
of V = TE let C(U) be the closure of the cyclic group generated by U , so
C(U) = 〈U〉− . Let C0(U) be the connected component of 1 in C(U). The
order m of the finite cyclic group C(U)/C0(U) can be determined (see 4.8). For
a non zero multiple n of m we have C(Un) = C0(U) = C0(Um).

The remaining steps of our test if Γ is discrete are as follows.

4.6. Suppose S1 is a finite subset of Γ with the properties a)–c) of 4.5.

Test (i) The tori C0(λ(γ)), γ ∈ S1 , commute.

If (i) holds, let T be the subtorus
∏
γ∈S1

C0(λ(γ)) of O(V ) generated
by the C0(λ(γ)), γ ∈ S1 . Let t be its Lie algebra and let exp : t → T be its
exponential map. Put e = exp × id : t× TF→ T × TF .

Let Θ be the subgroup of t× TF generated by {e−1(γ) , γ ∈ S1} .

Test (ii) rankQΘ = dimF+ dimT .

The group Γ acts on the Lie algebra o of O(V ) via Ad◦λ . Also, Γ acts
on TF by γ · t = λ(γ)t = γtγ−1 , hence on the product o× TF . So the following
condition makes sense.

Test (iii) Every γ ∈ Γ maps ΘQ to itself.

Now comes the last test which is the hardest to perform. Put B1 = 〈S1〉 .
Note that r(B1) is a subgroup of ∆ of finite index, by 4.5 a) and b). Let Em
be as in 3.2, i.e. m ∈ MS and TEm = V λ(Γ) . Let x0 ∈ Em ∩ F . We have
r(B1)Q = ∆Q = D(x0)Q by 3.2. So we can pick an element β = βγ ∈ e(ΘQ) for
every γ ∈ S such that

β(x0) = γx0

Here is our last test:
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Test (iv) The group 〈γ−1βγ ; γ ∈ S〉 is finite.

As always, let S be a finite subset of G , Γ = 〈S〉 , F a minimal Γ–
invariant affine subspace of E .

Theorem 4.7. Γ is discrete iff r(Γ) is crystallographic and one (any) S1 as
in 4.5 passes the Tests (i)–(iv).

The rest of this chapter is devoted to questions of the type how to find the
relevant objects (S1, C0(U), βγ, . . . ), how to perform the tests, possible variations
and, of course, a proof of 4.7.

4.8. The first question we deal with is how to find for an element U in O(V )
an integer m 6= 0 such that C(Um) = C0(U), where C(U) = 〈U〉− and C0(U)
is the connected component of C(U). Note that m 6= 0 has this properties iff m
is a multiple of the order r of the finite cyclic group C(U)/C0(U).

To actually compute r one can proceed as follows. Choose a torus
T in the special orthogonal group of V which contains U 2 , for instance by
decomposing V into mutually orthogonal one and two dimensional U –invariant
subspaces and taking for T the corresponding product of SO2 ’s, one for every
2–dimensional U –invariant subspace.

Let t be the Lie algebra of T and let exp : t → T be its exponential
map. The lattice Λ := ker exp gives t a Z–structure. We use this structure
to define the following notion: A linear form ` on t is said to be defined over
Z or Q , respectively, if `(Λ) ⊂ Z or Q , respectively. Let t∗Z and t∗Q be the
set of linear forms defined over Z and Q , respectively. Here is a description
of C(U) and C0(U). Choose an element X ∈ t with expX = U . Put
D(X) = {` ∈ t∗Q | `(X) ∈ Q} .

4.9. Then

a) exp−1 C(U) = {Y ∈ t | `(Y ) ∈ Z · `(X) + Z`(Λ)for every ` ∈ D(X)}
b) For the Lie algebra LC(U) = LC0(U) we have

LC(U) =
⋂

`∈D(X)

ker `

c) If we write X =
n∑
i=1

ξiei with respect to a basis e1, . . . , en of Λ , then

1 + dimC0(U) is equal to the dimension of the Q–vector subspace of R
spanned by 1 , ξ1, . . . , ξn .

d) The order r of the cyclic group C(U)/C0(U) is the maximal denominator of
the numbers `(X) , ` ∈ D(X)∩ t∗Z . Hence if `1, . . . , `d is a basis of the lattice
D(X)∩t∗Z in D(X) , then r is the least common multiple of the denominators
of the numbers `1(X), . . . , `d(X) .

Proof. These claims are clear for the torus R/Z with exponential map
R→ R/Z and follow in general from Pontryagin duality: Every closed subgroup
of a torus T is the intersection of kernels of homomorphisms T → R/Z . These
homomorphisms correspond on the level of Lie algebras to linear maps in t∗Z .
Concerning c) look at the Q–linear map F : Qn+1 → R , F (a0, . . . , an) =
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−a0 + a1ξ1 + · · ·+ anξn . For (a1, . . . , an) ∈ Qn we have
∑n
i=1 aie

∗
i ∈ D(X) iff

(a0 =
∑n
i=1 a1ξi, a1, . . . , an) ∈ Qn−1 ∩ kerF where e∗1, . . . , e

∗
n is a dual basis of

the basis e1, . . . , en in c) of the Q–vector space tQ . Hence dimD(X) = dim kerF
and thus dimC(U) = n− dimD(X) = n− (n+ 1− rankQ{1, ξ1, . . . , ξn}).

4.10. Necessity of (i)–(iv) in 4.6. If Γ is discrete then (λ(Γ)−)0 is a torus,
hence the tori C(λ(γ)), γ ∈ S1 , commute. Furthermore, the restriction ho-
momorphism r : Γ → Iso(F) has finite kernel, hence so does r|B1 , which is
equivalent to (ii) by 4.4. Furthermore, B1 is of finite index in Γ, since r has
finite kernel and r(B1) is a lattice in TF contained in r(Γ)∩TF , hence of finite
index in r(Γ). It follows that there is a normal subgroup B2 of Γ contained in
B1 and of finite index in B1 . Then Θ2 := e−1(B2) is a subgroup of Θ of finite
index, hence Θ2,Q = ΘQ and thus every γ ∈ Γ maps ΘQ to itself.

Concerning (iv), there is a non–zero integer m such that for Θ3 := 1
mΘ

we have Θ3 ⊃ Θ and e(Θ3) contains all the elements βγ we have picked, one for
every γ ∈ S . So the group Γ3 = Γ · e(Θ3) contains Γ of finite index and thus is
discrete. It follows that the group generated by {γ−1βγ ; γ ∈ S} which fixes x0

is finite.

4.11. Sufficiency of the conditions (i)–(iv) in 4.6. The torus C(λ(γ)) acts on
the lattice r(B1) in TF , so the action of C(λ(γ)) on TF is trivial. Thus B1

is abelian, by (i), and r|B1 has finite kernel by (ii), in view of 4.4. So B1 is
discrete. The group Θ = e−1(B1) is finitely generated, since B1 and the kernel
of exp : t→ T are so. It follows from (ii) that Θ is a lattice in t× TF .

Let O1 be the subgroup of those elements of the orthogonal group of V
which fix TF . Embed O1 × TF into G by i(U, t) = A(x, t, U) where x ∈ F , see
1.2. This embedding does not depend on the chosen point x of F , by 1.5. Hence
if γ ∈ G maps F to itself we have

γi(t, U)γ−1 = i(λ(γ)Uλ(γ)−1 , λ(γ)t) .

It follows from (iii) that the differential of the conjugation by γ ∈ Γ maps the
Lie algebra ΘR of T × TF to itself and thus Γ normalizes D := T × TF . The
group D ·Γ acts on D by conjugation and hence on its Lie algebra ΘR . Here D
acts trivially. For the corresponding homomorphism Γ ·D → Aut(ΘR) the image
is finite, by (iv), since βγ ∈ D . Notice that the homomorphism takes values in
Aut (ΘQ) by (iii). It follows that there is a lattice Θ2 in ΘQ with the following
properties: e(Θ2) contains βγ for every γ ∈ S , Θ2 contains Θ of finite index
and Θ2 is Γ-invariant. So B2 = e(Θ2) contains βγ for every γ ∈ S , contains
B1 of finite index and is normalized by Γ. So the group Γ2 = Γ · B2 contains
Γ of finite index. On the other hand, Γ2/B2 is a quotient of the group in (iv),
hence finite. So Γ is commensurable to B1 and hence discrete.

Remark 4.12. Note the following variation of condition (iv). Pick for every
γ ∈ S a pair of elements βi(γ) ∈ e(ΘQ) such that β2(γ) ◦ γ ◦ β1(γ) fixes the
point x0 ∈ Fm . Then theorem 4.7 holds with (iv) replaced by

Test (iv ′ ) The group generated by {β2(γ) ◦ γ ◦ β1(γ) ; γ ∈ S} is finite.
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For the proof note that γ ◦ β1(γ) ◦ γ−1 ∈ e(ΘQ) by (iii), hence (iv) is
equivalent to (iv ′ ).

4.13. It remains to describe a procedure how to find a subset of Γ with the
properties of 4.5. The first step is to

4.13a. Find an element γ ∈ Γ such that r(γ) is a translation.

Form a list of elements of Γ by taking successive generations of S , as follows.
Let lS(γ) = min{q; γ = γε11 · . . . · γ

εq
q , γi ∈ S , εi ∈ {±1}} be the length of

γ ∈ Γ with respect to the generating set S . Put Bm = {γ ∈ Γ; lS(γ) ≤ m}
and Sm = {γ ∈ Γ; lS(γ) = m} . The sets Bm = {e} �∪ S1

�∪ · · · �∪ Sm can be
computed inductively. Recall that there is an upper bound on the orders of the
finite subgroups of SL(d,Z), d = dimF , by a theorem of Minkowski, see 3.12.
Hence, if #Bm is larger than this bound there are two different elements g and
h in Bm such that λ(g)|TF = λ(h)|TF and hence g−1h restricts to a translation
on F .

4.13b. Take elements γ1, . . . , γt ∈ Γsuch that r(γ1), . . . , r(γt) are linearly in-
dependent elements of TF and span a λ(Γ)–module.

This can be done starting from elements α ∈ Γ with r(α) ∈ TF by taking
conjugates γαγ−1 , γ ∈ Γ. Linear independence and spanning can be taken
over Q or R , this leads to the same conditions, since r(Γ) is crystallographic
on F and hence r(Γ) ∩ TF a lattice in TF . At this point one can perform easy
finiteness checks: If when looking for linearly independent elements in TF one
finds elements γ1, . . . , γt in Γ such that r(γ1), . . . , r(γt) are linearly dependent,
say

∑
nir(γi) = 0, ni ∈ Z , then the products of γn1

1 , . . . , γntt in any order must
be contained in a finite group, in particular of finite exponent.

4.13c. If we have a situation as in 4.13b we can use induction on dimF to find
more elements γ ∈ Γ with τ(γ) 6= 0 , as follows.

More precisely, let γ1, . . . , γt ∈ Γ be such that r(γ1), . . . , r(γt) are in TF and
their R–span W := 〈r(γ1), . . . , r(γt)〉R is an R[λ(Γ)]–module. Then Γ acts on
E/W and F/W by affine isometries and the image of Γ in the affine group of
F/W is a crystallographic group on F/W , since r(Γ) is crystallographic on F .
So we can apply the procedure described in 4.13a on the space F/W of smaller
dimension than dimF and we find an element γ ∈ Γ which induces a translation
on F/W , so τ(γ) 6∈ W , and hence γq | F is a translation in TF not in W if q
is a multiple of the order of λ(γ)|W .

Note that the image of Γ on E/W may not be discrete even if Γ is
discrete on E , e.g. if W = TF .

4.14. It would be nice to have an easier procedure to produce an element γ ∈ Γ
with τ(γ) 6= 0, easier than 4.13a which uses Minkowski’s theorem. If τ(γ) = 0
for every γ ∈ S and

⋂
γ∈S

Fix (γ) = Ø then Γ = 〈S〉 is infinite, but the example

2.18 of an infinite group Γ such that Fix (γ) 6= 0 for every γ ∈ Γ shows that one
has to use the fact that the relevant group is crystallographic or at least has a
finite group of linear parts. So there is no general procedure, i.e. one which does
not use the arithmeticity or at least finiteness of the relevant linear parts of Γ,
to find a non–commutative analogue of perp(Eg,Eh),i.e. an element f ∈ 〈g, h〉
with non–zeroτ(f) ∈ Q · perp(Eg,Eh).
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5. Examples

In this chapter we give various examples and counterexamples. We also present
a complete answer to the question when a finite set S of affine isometries of a
Euclidean affine space E generates a discrete group for dimensions of E up to 3.

We use the following notation. If F is an affine subspace of our Euclidean
affine space then the reflection σF in F is the affine map defined by

σF(x+ v) = x− v

where x is a point of F and v is a vector orthogonal to TF . Every involution
σ , i.e. element of order ≤ 2, in G is the reflection in the affine subspace
Fix (σ) = {x ∈ E | σ(x) = x} .

5.1. Every finite non–abelian simple group Γ when faithfully represented is
generated by linear involutions σFi where all the Fi have the same dimension.

By the theorem of Feit–Thompson Γ has even order, so contains an
involution σ by the Sylow theorems. Then Γ is generated by the set of involutions
γσγ−1 , γ ∈ Γ. Note that γσγ−1 is the reflection in the linear subspace γF ,
where F is the linear subspace of fixed points of σ .

5.2. Let σ1 = σE1
and σ2 = σE2

be two involutions in G . Then Γ = 〈σ1, σ2〉
is discrete iff
a) E1 ∩ E2 = Ø
or
b) σ1 · σ2 is of finite order.

Proof. Necessity: If E1 and E2 intersect, say x ∈ E1 ∩ E2 , then Γ fixes x
hence must be finite if Γ is discrete. Sufficiency: The subgroup Γ1 = 〈σ1 · σ2〉 is
of index 2 in Γ. We thus may assume that E1∩E2 = Ø. An affine subspace F of
E is minimal Γ–invariant iff F is a line perpendicular to and intersecting both
E1 and E2 . Then σ1σ2 induces the translation by perp(E2,E2) on F , which
implies that Γ is discrete.

Here is the counterexample promised in the paragraph following Corol-
lary 3.15.

5.3. There is a discrete group Γ for which the set of axes Eγ , γ ∈ Γ , is not
locally finite.

Let V = V1 ⊕ V2 , dimV1 = dimV2 = 2 and embed O(V2) into O(V ) as
{1V1
} × O(V2). Let γ1 = A(ti, Ui), i = 1, 2 with ti ∈ V1 , U1 ∈ O(V2) such that

det U1 = −1, U2 ∈ SO(V2) of finite order and {t1, t2} is a basis of V1 . Then the
minimal Γ–invariant subspace is F = x0 + V1 and for γ = γn2 · γ1 · γ−n2 we have
Eγ = F + Un2 Fix (U1), an infinite set of different subspaces of E , all containing
F .

5.4. For a finite set of points E1, . . . ,Em in E the subgroup Γ generated by
σi := σEi is discrete iff for the family of difference vectors tij = Ei − Ej ,
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1 ≤ i, j ≤ m we have

rankQ{tij ; 1 ≤ i, j ≤ m} = rankR{tij ; 1 ≤ i, j ≤ m} .

The group Γ generated by the σi ’s contains the group ∆ of translations gener-
ated by 2tij , 1 ≤ i, j ≤ m , as a subgroup of index 2.

5.5. We proceed to give a complete discussion of our problem for affine spaces
E of small dimension, i.e. dimE ≤ 3.

Let S be a finite subset of the affine group G of isometries of the affine
Euclidean space E . Let Γ = 〈S〉 and let F be a minimal Γ–invariant affine
subspace of E .

5.6. dim E = 1 . The group G has two connected components, one consisting
of the translations by elements t ∈ V = TE and one consisting of the reflections
σP in points P ∈ E .

The group Γ = 〈S〉 for S = 〈t1, . . . , tm ; σP1
, . . . , σPr〉 is discrete iff

rankQ{t1, . . . , tm , Pi − Pj , 1 ≤ i, j ≤ r} ≤ 1 .

The subgroup ∆ of translations in Γ is generated by {t1, . . . , tm ; 2tPi−Pj ,
1 ≤ i, j ≤ r} and [Γ : ∆] ≤ 2.

5.7. dim E = 2 . The group G = Iso(E) has three types of elements:

a) λ(g) = 1. Then g is a translation by a vector t ∈ TE .

b) λ(g) ∈ SO(V ), λ(g) 6= 1. Then g has a unique fixed point, P say, and is
a rotation by a unique angle ϕ ∈ R/2πZ, ϕ /∈ 2πZ , around P . We write
g = D(P, ϕ). Here we suppose that E is oriented.

c) λ(g) /∈ SO(V ). Then g has a one–dimensional axis, L say, and g is of the
form t ◦ σL = σL ◦ t where t ∈ TL and σL is the orthogonal reflection in L .
Then g is called a glide reflection. Both t and L are uniquely determined
by g .

We distinguish cases according to the dimension of invariant subspaces.

Fixed point.

Clearly, all the elements of S , and hence of Γ, have the point F as a common
fixed point iff S contains no non–trivial translation, for all the rotations D(P, ϕ)
in S we have P = F and for all the glide reflections t ◦ σL in S we have F ∈ L
and the translational part t is equal to zero.

If this is the case, then Γ is discrete iff Γ is finite iff the following two
conditions hold:

a) For every rotation D(P, ϕ) in S the rotation angle ϕ is commensurable with
π , i.e. ϕ ∈ Q · π .

b) For any two reflections σLi , σLj in S the angle ](Li,Lj) is commensurable
with π .

The subgroup Γ∩λ−1(SO) is of index ≤ 2 in Γ and is generated by the
rotations D(P, ϕ) in S and the products σL1

◦ σLj = D(P, 2αi,j) where σLi , σLj
are in S and αi,j = ](Li,Lj).

Invariant line.

All the elements of S , and hence of Γ, leave the line L invariant iff
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a) all the translations of S are in TL
b) for every rotation D(P, ϕ) in S we have P ∈ L and ϕ = π mod 2πZ
c) for every glide reflection t ◦ σL′ in S we have

c1) L = L′ or
c2) L ⊥ L′ and t = 0.

Suppose this is the case. We then have for the restriction homomorphism
r : Γ→ Iso(TL) in the various cases:

a) r(t) = t for the translation t in TL .

b) r(D(P, π)) = σP for P ∈ L .

c1) r(t ◦ σL) = t for the glide reflection t ◦ σL .

c2) r(σL′) = σL∩L′ for the reflection in the line L′ orthogonal to L .

Let

Ta = {r(t); t ∈ S}
Tc1 = {r(t ◦ σL); t ◦ σL ∈ S}
Pb = {P;D(P, π) ∈ S}
Pc2 = {L ∩ L′;L ⊥ L′ and σL′ ∈ S}

So Ta and Tc1 are subsets of TL and Pb and Pc2 are subsets of L .

Then Γ is discrete iff the Q–rank of the following subset of TL is ≤ 1 :

Ta ∪ Tc1 ∪ {P− P′; where P and P′ are in Pb ∪ Pc2} .

The proof follows from the case dimE = 1 in view of the following facts: r(Γ)
is generated by Ta ∪ Tc1 ∪ {σP;P ∈ Pb ∪ Pc2} . An element γ of the kernel of r
is uniquely determined by λ(γ) | (TL)⊥ , so ker(r) has at most two elements.

Note that although the line L is invariant in the case under consideration
it may not be a minimal Γ–invariant subspace in certain very special cases.

Γ crystallographic

The whole plane E is the only Γ–invariant subspace iff none of the cases described
above occurs, i.e. iff there is no fixed point and no invariant line. Then Γ is
crystallographic if Γ is discrete. The following well known fact is crucial for
dimE = 2:

5.8. If Γ is crystallographic then every element of λ(Γ) has order 1, 2, 3, 4 or 6 .

Proof. Every element of O(V ), not in SO(V ), has order 2. If λ(γ) is in
SO(V ), say λ(γ) is rotation by the angle ϕ , then traceλ(γ) = 2 cosϕ .

On the other hand λ(γ) is represented by a matrix in SL(2;Z) with
respect to a basis of ∆ = Γ ∩ V , hence traceλ(γ) ∈ Z , which immediately
implies that ϕ ≡ 0, ±π/3, ±π/2, ±2π/3, π mod 2π .

5.9. dim F = 2 , S finite ⊂ G = Iso(E) . Then Γ = 〈S〉 is discrete if the
following two conditions A and B hold. Conversely, if Γ is crystallographic
then A and B hold.
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To formulate the two conditions we need the following set of notations:

Ta = {t ∈ TE; t ∈ S}
Eb = {P; D(P, ϕ) ∈ S and ϕ 6≡ 0}
λb = {ϕ ∈ R/2πZ; D(P, ϕ) ∈ S and ϕ 6≡ 0}
Ec = {L line in E; t ◦ σL ∈ S for some t ∈ TL}
λc = {σL; t ◦ σL ∈ S for some t ∈ TL}
Tc = {t ∈ TE; there is a line L in E such that t ∈ TL and t ◦ σL ∈ S}

A. (Angle Condition) All the angles in the following set of angles are integer
multiples of π/6 or all of them are integer multiples of π/4 :

λb ∪ {2 · ](Li,Lj);Li and Lj in Ec} .

Note that λ(Γ) is generated by λb ∪ λc and hence λ(Γ) ∪ SO is generated by
the set in condition A, for any S ⊂ G .

In order to formulate the translational condition we use the following
notations. Let M and N be sets of affine subspaces of E . Then we define

perp(M,N) := {perp(E1,E2); E1 ∈M,E2 ∈ N}
perp(M) := perp(M,M)

feet(M,N) := {E1,2; E1 ∈M ;E2 ∈ N}
feet(M) := feet(M,M)

where as usual the set E1,2 is the affine subset of E1 consisting of the feet of
perpendiculars from E2 to E1 .

B. (Translational Condition) The smallest λ(Γ)–module containing the fol-
lowing subset of TE is discrete:

Ta ∪ Tc ∪ perp(feet(Eb ∪ Ec)) .

Let us write more explicitly the last part T3 := perp(feet(Eb ∪ Ec))

feet(Eb ∪ Ec) = Eb ∪ Ec ∪ Ec,b ∪ Ec,c

where Ec,b = feet(Ec,Eb) and Ec,c = feet(Ec,Ec) is the disjoint union of Ec
and the set

�
Ec,c of points P such that {P} = Li ∩ Lj for two non parallel

lines Li and Lj in Ec . We thus have to consider 10 types of translations, using
perp(M,N) = −perp(N,M). Things simplify considerably in the following two
special cases to which we can always reduce. Namely we assume that our set S
of generators of Γ contains at most one glide reflection. This can be achieved by
replacing the set of glide reflections γ1, . . . , γr in S by the set γ1, γ

−1
1 γ2, . . . γ

−1
1 γ

which does not change the group generated but γ−1
1 γi is a translation or a

rotation.



344 Abels

Case 0. S contains no glide reflection. Then

T3 = perp(Eb,Eb) = {Pi − Pj ; Pi and Pj in Eb}

Case 1. S contains exactly one glide reflection, say t ◦ σL with axis L and
translational part t ∈ TL .

Then Ec = Ec,c = {L} , Tc = {t} and Ec,b is the set of feet of per-
pendiculars from points P ∈ Eb to the line L . It is easy to see that the set
Tb,c ∪ T(c,b),(c,b) generates the same Z–module as T3 does, where

Tb,c = perp(Eb,Ec) ⊂ (TL)⊥

and
T(c,b),(c,b) = perp(Ec,b,Ec,b ⊂ TL .

Thus in case 1 the translational condition B reduces to one–dimensional condi-
tions for TL and (TL)⊥ if the angle condition A holds. So suppose A holds.
Note that in the case 1 at hand the second set

{2 · ](Li,Lj);Li and Lj in Ec}

in condition A reduces to 0, since Ec = {L} . We distinguish the following three
cases of the angle condition A.

A 2: Every element of λb has oder ≤ 2 .

A 4: There is an element in λb of order 4 .

A 6: There is an element in λb of order 3 or 6 .

Let pW be the orthogonal projection of TE onto the linear subspace W
of TE . Put

T1 = pTL(Ta ∪ T(c,b),(c,b))

T2 = p(TL)⊥(Ta ∪ Tc ∪ Tb,c)

and let U = D(0, ±π/2) be one of the two elements of SO(TE) of order 4.
So U maps (TL)⊥ to TL . Then in case 1 under the hypothesis that the angle
condition A holds the translational condition B is equivalent to

B, A 2: rkQT1 ≤ 1 and rkQT2 ≤ 1 if A 2 holds.

B, A 4: rkQ(T1 ∪ UT2) ≤ 1 if A 4 holds.

B, A 6: rkQ(T1 ∪
√

3UT2) ≤ 1 if A 6 holds.

Remark . If the subgroup F of O(V ) contains a rotation of order 4, respec-
tively 3, then every F –invariant lattice Θ in V = TE is equal to the lattice
generated by the roots of the root system B2 or BC2 , respectively A2 or G2 ,
up to homothety. If we identify V with C then Θ = Z + ξZ where ξ = i resp.
ξ is a primitive third (or sixth) root of unity, up to a conformal linear map, i.e.
multiplication by a non–zero complex number.

5.10. Proof of 5.9. With notations as in 5.9 note that for an arbitrary subset
S of G the group F := λ(Γ) of O(TE) is generated by λb ∪ λc and hence
F ∩ SO(TE) is generated by the set λb ∪ λcλ−1

c mentioned in condition A. Let
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T be the F –module generated by the set Ta ∪Tb ∪T3 of condition B. We embed
F into G by taking as center of the rotations a point of Eb ∪Ec,c , this set is not
empty, otherwise F is the trivial group. Then Γ ⊂ F nT , so conditions A and B
are sufficient. Conversely, if Γ is crystallographic then every element of F ∩ SO
is of order 1, 2, 3, 4, or 6 and hence the set of rotations λb ∪ λcλ−1

c generating
this group cannot contain one of order 4 and of order 3 or 6. So A is necessary.
That B is necessary follows from proposition 3.14.

The statements claimed under case 1 are seen as follows. That the
Z–module T3,Z generated by T3 is the same as the Z–module generated by
its subset Tb,c ∪T(c,b),(c,b) is immediate. Let Θ be the ZF –module generated by
T3,Z . Then Θ is commensurable with pTLΘ ⊕ p(TL)⊥Θ = T1,Z ⊕ T2,Z , since the
reflection in TL is in F . If we are then in case Ai , i = 2, 4 or 6, the equivalence
of B with B,Ai follows readily.

Example 5.11. We are now ready to give the counterexample promised after
3.13, namely that the set ofperp(Em,En), m , n in MΓ , need not be discrete. Let
E1,E2,E3 be three lines in the Euclidean plane E any two of which intersect at
an angle of π/3 and E1∩E2∩E3 = Ø, thus forming an equilateral triangle. The
group Γ generated by the reflections σi := σEi , i = 1, 2, 3, is crystallographic, by

5.9, Case 1, B, A 6 for σ1, σ1σ2, σ1σ3 . It is in fact the affine Weyl group Ã2 . Let
now Emk be the following sequence of iterated feet of perpendiculars, where mk

is defined inductively by m0 = (2, 3), m2k−1 = (1,m2k−2), m2,k = (3,m2k−1)
for k ≥ 1. Then the sequence of points Emk converges to the point E(1,3) .

5.12. dimE = 3 .

Let us fix notations. We choose an orientation on V = TE . Every
element g of SO(V ) fixes some line L and induces a rotation on the plane L⊥ .
The line L is unique unless g = 1. The sign of the rotation angle on L⊥ depends
on the orientation of L⊥ . Every element of O(V ) of determinant −1 has a line
L as −1−eigenspace and induces a rotation of L⊥ . The line L is unique unless
g = −1. Again the sign of the rotation angle depends on the orientation of L⊥ .
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We have the following classification of elements g of G according to the
dimension of the +1−eigenspace of λ(g), i.e. the dimension of the axis of g .

a) dim (axis) = 3: λ(g) = 1. Then g is a translation by a vector t ∈ V .

c2) dim (axis) = 2: λ(g) has eigenvalues {+1,+1,−1} . Then g induces a
translation t on a unique plane F in E . We have t ∈ TF and g = σF ◦ t =
t ◦ σF , where σF is the orthogonal reflection in the plane F . So g is a glide
reflection.

b) dim (axis) = 1: λ(g) ∈ SO(V ), λ(g) 6= 1. Then g induces a translation t
on a unique line L . Then t ∈ TL and

g(x+ v) = x+ t+ λ(g)v

for x ∈ L and v ∈ TL⊥ . We denote g = Screw(L, t, ϕ) if ϕ is the rotation
angle where we orient L⊥ so that (t, e1, e2) is an oriented basis of V if
(e1, e2) is an oriented basis of L⊥ . This makes sense unless t = 0 in which
case we write g = Screw(L, 0,±ϕ). This ambiguity of ϕ causes no problems
since we are only interested in groups containing g . So in case b) g is a
screw motion along the line L for t 6= 0 or a rotation around the line L .

c0) dim (axis)=0: the number +1 is not an eigenvalue of λ(g). Then
detλ(g) = −1, g has a unique fixed point, say P , and

g(P+ v) = P+ Uv for v ∈ V

where U = λ(g) ∈ O(V ). We denote g = D(P, U). So we can think of g as
a linear orthogonal map U if we take P as the origin of a linear coordinate
system.

Let now S be a finite subset of G and let Γ = 〈S〉 . Again, we discuss
the cases according to the dimension of invariant subspaces.

Fixed point

The point P of E is a common fixed point for Γ iff S contains only elements
with translational part zero and axis containing P . If this is the case we can
think of P as the origin of the vector space V = E and Γ ⊂ O(V ). And Γ is
discrete iff Γ is finite.

Invariant line

Let L be a line in E . The subgroup GL = {g ∈ G; gL = L} is isomorphic to
Iso(L)×O((TL)⊥) via g 7→ (g | L , λ(g) | (TL)⊥). Choosing coordinates we can
thus identify GL with G1 × O(2), where G1 is the group of (affine) isometries
of the Euclidean line R . The group of connected components of G1 × O(2)
can be identified with {±1} × {±1} via Det: G1 × O(2) → {±1} × {±1} ,
Det(g, A) = (λ(g), detA).

Now suppose S is a finite subset of G1 × O(2) then it is easy to find
a set S0 of generators for the intersection Γ0 of Γ = 〈S〉 with the connected
component R × SO(2) of G1 × O(2). A wasteful but short way to write down
such set is

S0 = {γ1γ2γ
−1
3 ; γi ∈ Sδi,εi , δ3 = δ1δ2 , ε3 = ε1ε2}

where Sδ,ε = {γ ∈ S ∪ {e} ; Det(γ) = (δ, ε)} .
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Finally, let e:R⊕R→ R× SO(2), e(t, ϕ) = (t, eiϕ), be the exponential
map of R× SO(2). Then
Γ is discrete iff rankQ e−1(S0) ≤ 2
Γ is finite iff rankQ e−1(S0) ≤ 1 .

The proof follows immediately from proposition 4.4.

Let us make explicit what it means for an element g ∈ G in the classifi-
cation above to leave the line L invariant.

a) A translation t leaves L invariant iff t ∈ TL .

b) A screw motion or rotation g leaves L invariant iff

b1) g has axis L , or

b2) g is a rotation by the angle π around an axis L′ , which intersects L
orthogonally.

c0) An orthogonal transformation g = D(P, U) with unique fixed point P leaves
L invariant iff P ∈ L and TL is contained in the −1−eigenspace of U .

c2) A glide reflection g = t ◦ σF leaves L invariant iff

c2.1 L ⊂ F and t ∈ TL , or

c2.2 t = 0 and F intersects L orthogonally

We summarize the information in the following table.

λ(g) | TL detU eigenvalues of
U = λ(g) | (TL)⊥

translational
part t ∈ TL dim(axis) axis

A
type

a 1 1 {1, 1} 3 E translation

b1 1 1 e±iϕ 6= 1 1 L screw motion or
rotation around L

b2 −1 −1 {+1,−1} 0 1 *) reflection inline
A

c0 −1 1 e±iϕ 6= 1 0 0 ∈ L “linear” orthogonal
map

c2.1 1 −1 {+1,−1} 2 ⊃ L glide reflection

c2.2 −1 1 {+1,+1} 0 2 *) reflection in
plane A

*) A ∩ L 6= Ø, A ⊥ L
Invariant plane

Let F be a plane in E . Then the group GF = {g ∈ G; gF = F} is isomorphic to
Iso(F)×O(TF)⊥) via g 7→ (g | F, λ(g) | TF). So a subgroup Γ of GF is discrete
iff r(Γ) is discrete, where r : GF → Iso(F) is the restriction homomorphism. We
are thus reduced to the 2–dimensional case.

Γ crystallographic

The whole space E is the only Γ–invariant affine subspace if none of the cases
above occurs, i.e. if there is no invariant point, line or plane. Then Γ is
crystallographic if Γ is discrete. The following well known facts are crucial.
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5.13. If Γ is crystallographic then every element of λ(Γ) has order 1, 2, 3, 4
or 6 .

The proof is very similar to the 2-dimensional case. One eigenvalue
of λ(γ) is detλ(γ) ∈ {±1} ,the other two are e±iϕ . We have traceλ(γ) =
2 cosϕ ± 1 ∈ Z , hence ϕ ∈ R/2πZ has order p , where p is one of the numbers
of the claim. So the order of λ(γ) is p , if detλ(γ) = +1, and the least common
multiple of 2 and p if detλ(γ) = −1.

5.14. A finite subgroup of SO(3) is either contained in a dihedral group or an
octahedral, a tetrahedral or an icosahedral group.

Here the latter are the groups of elements of SO(3) preserving a regular octa-
hedron, tetrahedron or icosahedron, respectively. The corresponding groups are
isomorphic to S4 , A4 and A5 , respectively. These two facts viz. 5.13 and 5.14,
together leave only very few cases for λ(Γ) if Γ is crystallographic. In particu-
lar, the icosahedral group is impossible. One can hence discuss the various cases
according to the possible groups λ(Γ). We will not go into the details.

Remark 5.15. For hyperbolic groups of motions the following result is due
to Jørgensen [9]. A non–elementary group Γ of motions of the hyperbolic
space of dimension at most 3 is discrete if every two generator subgroup is
discrete. This is not true for subgroups Γ of the group G of affine isometries of
a Euclidean space E . This is already false for subgroups Θ of the group V of
translations of E . E.g. if dim V = 2 and Θ is the Z–module in V generated by
(e1, e2, α1e1 + α2e2) where (e1, e2) is a basis of V and α1, α2 are real numbers
such that (1, α1, α2) are linearly independent over Q , then Θ is not discrete but
every two generator subgroup of Θ is discrete since any two elements of Θ are
either linearly dependent over Q or linearly independent over R .

The question when two elements of PSL(2,R) generate a discrete group
is difficult, but it has been answered, see [8].
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[4] —, Über die Bewegungsgruppen der Euklidischen Räume (Zweite Ab-
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