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Abstract. In this paper we study degenerations of nilpotent Lie algebras.
If λ, µ are two points in the variety of nilpotent Lie algebras, then λ is said

to degenerate to µ , λ→deg µ , if µ lies in the Zariski closure of the orbit

of λ . It is known that all degenerations of nilpotent Lie algebras of dimen-
sion n < 7 can be realized via a one-parameter subgroup. We construct

degenerations between characteristically nilpotent filiform Lie algebras. As
an application it follows that for any dimension n ≥ 7 there exist examples

of degenerations of nilpotent Lie algebras which cannot be realized via a

one–parameter subgroup.

1. Introduction

Let V be a vector space of dimension n over a field K . An n–
dimensional Lie algebra g may be considered as an element λ of the affine
variety Hom(Λ2V, V ) via the bilinear skew–symmetric mapping λ : g ⊗ g 7→ g
defining the Lie bracket on g . The set of Lie algebra structures is an algebraic
subset Ln of the variety Hom(Λ2V, V ) and the linear reductive group GLn(K)
acts on Ln by (g ∗µ)(x, y) = g(µ(g−1(x), g−1(y))). The orbits under this action
are the isomorphism classes. We say that λ degenerates to µ , if µ is in O(λ),
the Zariski closure of the orbit of λ . We denote this by λ→deg µ . The degener-
ation is nontrivial if µ lies in the boundary of O(λ). In this paper we consider
the GLn(K)–stable subvariety Nn of Ln consisting of nilpotent Lie algebras. In
particular, we deal with the open subset Fn of Nn consisting of filiform nilpotent
Lie algebras. If not otherwise declared we will assume K = C . The determina-
tion and classification of orbit closures is a difficult problem. An important tool
is the study of degenerations via a one–parameter subgroup, in short 1–PSG.
Here there are many results known for the action of a linear reductive group on
an algebraic variety (e.g., the theorems of Hilbert, Kraft and Mumford). In [6]
there is discussed whether every degeneration of A–modules can be obtained via
a 1–PSG. (See the remark following the theorem of Hilbert–Mumford–Birkes,
p. 232. Here A is a finitely generated associative C–algebra.) It is shown that
for two A–modules M,N ∈ modA,V there is a 1–PSG g : C∗ → GL(V ) with
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limt→0 gt ·M = N if and only if there is a filtration on M such that the asso-
ciated graded module is isomorphic to N . In fact, there exist degenerations of
A–modules which cannot be realized via a 1–PSG. This question is more difficult
for the variety of nilpotent Lie algebras. It is known that all degenerations of
nilpotent Lie algebras of dimension n < 7 can be realized via a one–parameter
subgroup. In higher dimensions this was not known. In [4] a criterion is proved
deciding whether a nilpotent Lie algebra is a degeneration of some other nilpotent
Lie algebra via a one–parameter subgroup. It is the analog of Kraft’s criterion:

If µ is a degeneration of λ via a one–parameter subgroup gt , then µ is the
associated graded Lie algebra given by the filtration on λ induced by gt .

Also the converse holds. We will establish nontrivial degenerations between char-
acteristically nilpotent Lie algebras. By the above criterion such a degeneration
cannot be realized via a one–parameter subgroup: If λ, µ are characteristically
nilpotent Lie algebras, then they do not admit such a gradation. It is natural
to look for nilpotent Lie algebras of maximal nilpotence index, i.e., filiform Lie
algebras. We construct column–degenerations of filiform nilpotent Lie algebras.
These are the main degenerations λ→deg µ which are possible such that λ and
µ are both filiform nilpotent.

2. Preliminaries

A Lie algebra g over a field K determines a multiplication table relative
to each basis of g . If [ei, ej ] =

∑n
k=1 γ

k
ijek , then (γkij) ∈ Kn3

is called a structure
for g . A point in Ln is a Lie algebra structure which can be identified with the
bilinear skew–symmetric mapping λ : g ⊗ g → g defining the Lie bracket on
g . Since the Jacobi identity and the antisymmetry are defined by polynomial
conditions, i.e., by (n3 − n)/6 algebraic equations, Ln is an affine algebraic
subvariety of Hom(Λ2V, V ). GLn(K) acts on Ln via change of basis, i.e. by
(g ∗µ)(x, y) = g(µ(g−1(x), g−1(y))). An orbit O(µ) under this action consists of
all structures in a single isomorphism class.

Definition 1. A Lie algebra λ is said to degenerate to another Lie algebra
µ , if µ is represented by a structure which lies in the Zariski closure of the
GLn(K)–orbit of a structure which represents λ . In this case the entire orbit
O(µ) lies in the closure of O(λ). We denote this by λ→deg µ .

Degeneration (for isomorphism classes) is transitive: If λ →deg µ and
µ →deg ν , then λ →deg ν . Let K = C . It is known that the usual analytic

topology on Cn
3

leads to the same degenerations as does the Zariski topology.
Therefore the following condition will imply that λ→deg µ :

∃ gt ∈ GLn(C(t)) such that lim
t→0

gt ∗ λ = µ

Here C(t) is the field of fractions of the polynomial ring C[t] .

Example 1. Any n–dimensional Lie algebra λ degenerates to the abelian Lie
algebra Kn which corresponds to 0 ∈ Hom(Λ2V, V ): Let gt = t−1En , where
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En is the identity matrix. Then we have (gt ∗ λ)(x, y) = t−1λ(tx, ty) = tλ(x, y),
hence limt→0 gt ∗ λ = 0 .

Let Z(λ) denote the center of the Lie algebra λ and [λ, λ] the commutator sub-
algebra. To construct degenerations we have to respect the following necessary
conditions:

Lemma 1. Let λ→deg µ be a nontrivial degeneration. Then it follows that:

(1) dim Der(λ) < dim Der(µ)

(2) dimO(λ) > dimO(µ)

(3) dim[λ, λ] ≥ dim[µ, µ]

(4) dimZ(λ) ≤ dimZ(µ)

(5) rank(λ) ≤ rank(µ)

If λ is solvable of step k , then µ is solvable of step ≤ k . The same holds for
nilpotent. In that case, dimλ(i) ≥ dimµ(i) where λ(1) = λ, λ(i+1) = [λ, λ(i)] .

Note that dimO(λ) = (dimλ)2 − dim Der(λ). The proof can be found more or
less in the literature, see [1], [7]. The main argument relies on the following fact:
Let B be a Borel subgroup of GLn(K) and λ, µ ∈ Nn . If λ →deg µ and λ
lies in a B–stable closed subset R ⊂ Nn , then µ must also be represented by a
structure in R .

We remark that a Borel subgroup plays an important role for degenerations. We
will use also Borel subgroups in Proposition 3. The following fact is proved in
[4]: Let G be a complex reductive algebraic group acting rationally on some
algebraic set X . Let B be a Borel subgroup of G . Then G ∗ x = G ∗ (B ∗ x)
for all x ∈ X .

Definition 2. A degeneration λ →deg µ is called a one–parameter subgroup
degeneration (1–PSG) if it can be realized by a group homomorphism g : K∗ →
GLn(K) such that µ = limt→0 gt ∗ λ .

The notion of a 1–PSG degeneration is independent of the choice of a
basis. We have the following criterion [4]:

Proposition 1. If λ→deg µ via a 1–PSG then µ is the associated Z–graded
Lie algebra given by the filtration on λ induced by gt . Conversely, if µ is the
associated graded Lie algebra given by some filtration of λ then λ→deg µ via a
1–PSG.

Example 2. Let K = C . Every degeneration λ →deg µ of nilpotent Lie
algebras of dimension n < 7 can be obtained via one–parameter subgroups [4],
[7]. Every degeneration in L3 can be realized via a 1–PSG, but not in L4 [1].

Definition 3. A Lie algebra g is called characteristically nilpotent if all its
derivations are nilpotent.

Lemma 2. Let g be a characteristically nilpotent Lie algebra. Then g is
nilpotent and admits no nontrivial Z–gradation.
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Proof. The first part follows by Engel’s theorem since all inner derivations
ad(x) are nilpotent. Suppose that g =

⊕
i∈Z gi is a gradation. Then we can

construct a derivation by D(xi) = ixi for all xi ∈ gi which clearly is not
nilpotent. This is a contradiction.

Characteristically nilpotent algebras form a relatively large subclass of nilpotent
Lie algebras. In [3] the following result is proved:

Proposition 2. For n ≥ 8 any irreducible component of the variety Fn con-
tains a nonempty Zariski–open subset of characteristically nilpotent Lie algebras.

Finally, let us mention the connection between degenerations and deformations.
Gerstenhaber’s definition of a deformation is as follows: Let V be a vector space
over K and λ ∈ Hom(Λ2V, V ) be a Lie product. If λt := λ+tφ1+t2φ2+t3φ3+. . .
is a Lie product on V ⊗K K((t)) where K((t)) is the formal power series field
and φi ∈ Hom(Λ2V, V ), then λt is called a deformation of λ .

A more general definition is given in [2]. This paper deals with the connection
of degenerations and deformations. It is proved that every nontrivial degenera-
tion λ →deg µ defines a nontrivial deformation of µ . The converse is not true.
However, there are special classes of deformations which do define degenerations.
In the following we will consider infinitesimal deformations of filiform Lie alge-
bras which define, under certain conditions, degenerations between filiform Lie
algebras.

3. Degenerations of filiform Lie algebras

We will construct degenerations between filiform Lie algebras in any dimension
n ≥ 7 which cannot be realized via 1–PSGs.

Let L = L(n) be the standard graded filiform Lie algebra generated by e1, . . . , en
with Lie brackets [e1, ei] = ei+1 for i = 2, . . . , n − 1. Denote by H2(L,L) the
second Lie algebra cohomology of L with adjoint coefficients and by

{FkH2(L,L)}k∈Z the canonical filtration of this space [5]. Let ψ be an integrable
2–cocycle and define the Lie algebra Lψ by [x, y]ψ = [x, y]L + ψ(x, y). There is
a canonical basis for H2(L,L). Define the index set I0

n := {(k, s) ∈ N2 | 2 ≤
k ≤ [n/2], 2k + 1 ≤ s ≤ n} and let

In =




I0
n, n ≡ 1(2)

I0
n ∪ {

(n
2
, n
)
}, n ≡ 0(2)

The space F1H
2(L,L) has a canonical basis consisting of the cohomology classes

of the 2–cocycles ψk,s for (k, s) ∈ In . The 2–cocycles are defined by

ψk,s(ei, ei+1) = δikes . We have

dimF1H
2(L,L) =





(n− 3)2

4
, n ≡ 1(2)

(n− 4)(n− 2) + 4

4
, n ≡ 0(2)
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The following result is known [5]:

Lemma 3. Every filiform nilpotent Lie algebra of dimension n ≥ 3 is isomor-
phic to an infinitesimal deformation Lψ of L where ψ is an integrable 2–cocycle
whose cohomology class lies in F1H

2(L,L) .

It follows that we can obtain a special form for the structure constants γkij of a
filiform Lie algebra:

Lemma 4. Let g be a complex filiform nilpotent Lie algebra of dimension n .
Then there exists a basis {e1, . . . , en} such that

(a) [e1, ei] = ei+1 for i = 2, . . . , n− 1

(b) The structure constants in [ei, ej ] =
∑
k γ

k
ijek , 2 ≤ i < j can be written

as

γkij =

[(j−i−1)/2]∑

`=0

(−1)`
(
j − i− `− 1

`

)
αk−j+i+2`+1
i+`

where the constants αji are zero for all pairs (i, j) not in In .

There are (n−3)2/4 structure constants αji if n is odd, and 1
4(n−2)(n−

4) + 1 otherwise. The formula above yields a convenient way to describe filiform
Lie algebras. The Jacobi identity is not satisfied automatically, unless n < 8.
However, the polynomial conditions are much simpler with respect to the above
basis.

We may represent such a filiform Lie algebra by a diagram of the structure
constants: Let N = [n

2
] :

α5
2 α6

2 · · · · · · αn-1
2 αn2

α7
3 α8

3 · · · αn3

· · · · · ·

αnN

Denote the columns of that diagram from the left by An−4, An−3, . . . , A2, A1 .

Example 3. Let g be a complex filiform Lie algebra of dimension 9. Then
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there is a basis {e1, . . . , e9} such that

[e1, ei] = ei+1, i ≥ 2

[e2, e3] = α1e5 + α2e6 + α3e7 + α4e8 + α5e9

[e2, e4] = α1e6 + α2e7 + α3e8 + α4e9

[e2, e5] = (α1 − α6)e7 + (α2 − α7)e8 + (α3 − α8)e9

[e2, e6] = (α1 − 2α6)e8 + (α2 − 2α7)e9

[e2, e7] = (α1 − 3α6 + α9)e9

[e3, e4] = α6e7 + α7e8 + α8e9

[e3, e5] = α6e8 + α7e9

[e3, e6] = (α6 − α9)e9

[e4, e5] = α9e9

where g depends on 9 parameters {αsk | (k, s) ∈ I9} = {α1, . . . , α9} . The Jacobi
identity for g is equivalent to α9(2α1 + α6)− 3α2

6 = 0. The diagram is given by

α1 α2 α3 α4 α5

α6 α7 α8

α9

Let λ be a complex filiform Lie algebra of dimension n with Lie brackets given
in Lemma 4, i.e., λ is an infinitesimal deformation of L , the standard graded
filiform. The question is whether there exists a degeneration λ →deg L . In
general, the answer is no – see the Lie algebra of example 1.5. in [2], which is
the filiform Lie algebra λ with n = 7. The bracket [e2, e4] given there should
be equal to βe6 + γe7 .

However, under certain conditions one can degenerate “by columns”, and iterat-
ing this process will yield a degeneration to L .

Definition 4. Let λ be as above and k ∈ {2, . . . , n− 5} . Suppose that the
columns An−4, . . .Ak+2 of the diagram of λ have only zero entries, but Ak+1

has a nonzero entry. Let Tn(C(t)) denote the Borel subgroup of GLn(C(t))
consisting of lower–triangular matrices and define a matrix g−1

t,k ∈ Tn(C(t)) by

g−1
t,k (e1) = te1

g−1
t,k (ei) = tn+i−4−k

(
ei +

k−1∑

j=1

fj(s)ei+j+1

)
, i ≥ 2

with polynomial functions fi(s) ∈ C(αlk)[s] in the variable s = 1 − t and
coefficients in C(αlk). The inverse matrix gt,k is called the column degeneration
matrix of level k.

This matrix will realize a degeneration λ →deg µ0,k to a filiform Lie
algebra µ0,k as follows: Under certain conditions on the polynomials fi the Lie
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algebra µt,k := gt,k ∗ λ will have the same diagram as λ except for the entries
of the first column Ak+1 multiplied by t . In that case µ0,k := limt→0 µt,k
(which is just µt,k for t = 0) is a degeneration of λ . Then the columns
An−4, . . . , Ak+1 of the diagram of µ0,k are zero. There are of course necessary
conditions on such polynomials fi , e.g., the properties of Lemma 1. In particular,
dim Der(λ) < dim Der(µ0,k) must be satisfied. If k = 2 then these conditions
are obvious and we obtain nontrivial degenerations between filiform Lie algebras
of any dimension n ≥ 7:

Proposition 3. Let λ be a complex filiform Lie algebra of dimension n ≥ 7
with basis {e1, . . . , en} , α = αn−2

2 , β = αn−1
2 , γ = αn2 , δ = αn3 and defining

brackets
λ(e1, ei) = ei+1, i ≥ 2

λ(e2, e3) = αen−2 + βen−1 + γen

λ(e2, e4) = αen−1 + βen

λ(e2, e5) = (α− δ)en
λ(e3, e4) = δen

and let s = 1− t and f(s) = γ
2δ s with δ 6= 0 . Define gt ∈ Tn(C(t)) by

gt(e1) =
1

t
e1

gt(ei) =

[(n−i)/2]∑

j=0

(−1)j
f(s)j

tn+i+2j−6
ei+2j , i ≥ 2

Then µt := gt ∗ λ is a filiform Lie algebra with brackets

µt(e1, ei) = ei+1, i ≥ 2

µt(e2, e3) = tαen−2 + βen−1 + γen

µt(e2, e4) = tαen−1 + βen

µt(e2, e5) = t(α− δ)en
µt(e3, e4) = tδen

Therefore λ degenerates to µ := limt→0 µt :
α β γ

δ
−−→deg

0 β γ

0

Proof. Note that the Jacobi identity for λ is satisfied. The inverse of gt is
given by

g−1
t (e1) = te1

g−1
t (ei) = tn+i−6(ei + f(s)ei+2), i ≥ 2

We have to compute the Lie brackets of µt . The crucial ones are the following:

µt(e1, ei) = gt(λ(g−1
t (e1), g−1

t (ei))) = gt(λ(te1, t
n+i−6ei + f(s)tn+i−6ei+2))

= tn+i−5
([(n−i−1)/2]∑

j=0

(−1)j
f(s)j

tn+i+2j−5
ei+1+2j

+

[(n−i−3)/2]∑

j=0

(−1)j
f(s)j+1

tn+i+2(j+1)−5
ei+1+2(j+1)

)
= ei+1
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µt(e2, e3) = gt(λ(g−1
t (e2), g−1

t (e3)))

= gt(λ(tn−4e2 + f(s)tn−4e4, t
n−3e3 + f(s)tn−3e5))

= t2n−7gt(αen−2 + βen−1 + (γ + (α− 2δ)f(s))en)

= t2n−7
( α

t2n−8
en−2 −

αf(s)

t2n−6
en +

β

t2n−7
en−1 +

γ + (α− 2δ)f(s)

t2n−6
en

)

= tαen−2 + βen−1 +
γ − γ(1− t)

t
en

= tαen−2 + βen−1 + γen

µt(e3, e4) = gt(λ(g−1
t (e3), g−1

t (e4)))

= gt(λ(tn−3e3 + f(s)tn−3e5, t
n−2e4 + f(s)tn−2e6))

= t2n−5gt(δen) = tδen

Corollary 1. Let α, β, γ, δ 6= 0 . Then the above degeneration λ →deg µ
cannot be realized via a 1–PSG.

Proof. The degeneration is nontrivial since λ is not isomorphic to µ : The
commutator subalgebra [µ, µ] is abelian, whereas [λ, λ] is not. It is easy to see,
that µ is characteristically nilpotent: For β, γ 6= 0 the derivations are stricly
lower triangular matrices relative to the given basis and hence nilpotent. By
Lemma 2, µ does not admit any nontrivial Z–gradation. Hence the corollary
follows by Proposition 1.

To show that Proposition 3 can be generalized for k = 3 we state the following
result:

Proposition 4. Let λ be a complex filiform Lie algebra of dimension n ≥ 8
with basis {e1, . . . , en} and defining brackets

λ(e1, ei) = ei+1, i ≥ 2

λ(e2, e3) = αen−3 + βen−2 + γen−1 + δen

λ(e2, e4) = αen−2 + βen−1 + γen

λ(e2, e5) = (α− ε)en−1 + (β − κ)en

λ(e2, e6) = (α− 2ε)en

λ(e3, e4) = εen−1 + κen

λ(e3, e5) = εen

Let s = 1− t , ε 6= 0 and define gt ∈ Tn(C(t)) by

g−1
t (e1) = te1

g−1
t (ei) = tn+i−7

(
ei + f1(s)ei+2 + f2(s)ei+3

)
, i ≥ 2

where
f1(s) =

γ

2ε
s

f2(s) =
−δ
3ε
s2 +

(
2δε− γκ

3ε2

)
s.
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Then the Lie algebra µt := gt ∗ λ has the same brackets as λ except for α, ε
replaced by tα, tε . Hence λ degenerates to the limit algebra µ :

α β γ δ

ε κ
−−→deg

0 β γ δ

0 κ

Proof. The proof consists of the computation of the Lie brackets.

For k ≥ 4 it is no longer true that the conditions of Lemma 1 do not
imply conditions on the structure constants of g . Let g be as in example 3.
The Jacobi identity is equivalent to α9(2α1 + α6)− 3α2

6 = 0. In order to obtain
a column degeneration of level 4, the following conditions (given by Lemma 1)
have to be satisfied:

α6, 2α6 − α9 6= 0, α3α9 = α6α8

Then the degeneration

α1 α2 α3 α4 α5

α6 α7 α8

α9

−−−→deg

0 α2 α3 α4 α5

0 α7 α8

0

is given by the following matrix:

g−1
t,4 =




t 0 0 0 0 0 0 0 0
0 t3 0 0 0 0 0 0 0
0 0 t4 0 0 0 0 0 0
0 f1(s)t3 0 t5 0 0 0 0 0
0 f2(s)t3 f1(s)t4 0 t6 0 0 0 0
0 f3(s)t3 f2(s)t4 f1(s)t5 0 t7 0 0 0
0 0 f3(s)t4 f2(s)t5 f1(s)t6 0 t8 0 0
0 0 0 f3(s)t5 f2(s)t6 f1(s)t7 0 t9 0
0 0 0 0 f3(s)t6 f2(s)t7 f1(s)t8 0 t10




Here s = 1− t and fi are polynomials in C[s] as follows:

f1(s) =
α3

2α6
s ,

f2(s) =
−α4

3α6
s2 +

2α4α6 − α3α7

3α2
6

s ,

f3(s) =
α5

2(2α6 − α9)
s3 +

2α2
3α6 + α2

3α9 − 12α2
6α5 + 4α6α4α7

8α2
6(2α6 − α9)

s2 +

α3α
2
7 − α2

3α9 + 3α2
6α5 − 2α6α4α7

2α2
6(2α6 − α9)

s
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