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Abstract. In this work, we introduce the notion of algebraic subgroups
of complex Lie groups, and prove that every faithfully representable complex
analytic group G admits an algebraic subgroup T (G) which is the largest
in the sense that it contains all algebraic subgroups of G . Moreover, the
rational representations of the algebraic subgroup T (G) are exactly the
restrictions to T (G) of all complex analytic representations of G . This
enables us to single out a certain subgroup of a faithfully representable real
analytic group G with which the Tannaka duality theorem is restated.

Let K be a complex Lie subgroup of a complex analytic group G. We are first
concerned with the question of when K admits the structure of an affine algebraic
group which is compatible with the analytic structure of the ambient group G in
the sense that the restriction to K of every complex analytic representation of
G is rational. In [5], Hochschild and Mostow studied this question for the entire
group G, i.e., K = G, and gave a complete characterization of such G, when it is
a faithfully representable complex analytic group. In this work we introduce the
notion of algebraic subgroups of a complex analytic group, and prove that every
complex analytic representation of the ambient group is rational, when restricted
to such an algebraic subgroup. Our first result (Theorem 2.8) states that every
faithfully representable complex analytic group G always admits an algebraic
subgroup T (G), which is the largest in the sense that it contains all algebraic
subgroups of G, and that the rational representations of the algebraic subgroup
T (G) are exactly the restriction to T (G) of all complex analytic representations
of G. The subgroup T (G) was studied in [8] where the compatibility of its
algebraic group structure with the analytic group structure of G was not fully
established. Next we turn to real Lie groups. Chevalley’s complex formulation
of Tannaka’s duality theorem states that if G is a compact real Lie group, then
the universal complexification G+ of G is isomorphic with the group A(G) of
all proper automorphisms of the algebra R(G) of representative functions of G.
Harish-Chandra [2] established this result for semismple analytic groups, and
Hochschild and Mostow gave several conditions, each of which characterizes those
Lie groups G with finitely many components having such duality. One of these
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conditions states that G+ is equipped with the structure of an affine algebraic
group in such a way that every complex analytic representation of G+ becomes a
rational representation (or equivalently, every real analytic representation of G is
induced by a rational representation of G+ .) We prove (Theorem 3.4) that every
faithfully representable real analytic group G contains a closed normal analytic
subgroup T (G) of G, which we call the Tannaka subgroup of G, such that T (G)+ is
the maximal algebraic subgroup of G+ , and that every real analytic representation
of T (G) is induced by a rational representation of T (G)+ .

The main body of this work was done while I was visiting TU Darm-
stadt, Germany for the summer term of 1997 under the sponsorship of Deutsche
Forschungsgemeinschaft.

Convention and Terminology. Throughout this work, we will adopt the fol-
lowing convention. All representations of Lie groups are finite-dimensional and
over the field C of complex numbers. If a certain concept or result is valid for
both real and complex Lie groups, we will simply use the expression Lie groups
(thereby suppressing the words real or complex) with understanding that the con-
cept or result is valid within the category of real Lie groups as well as of complex
Lie groups. Thus for example the expression like an analytic representation of a
Lie group means a real (resp. complex) analytic representation of a real (resp.
complex) Lie group.

1. Preliminaries

In this section we put together some of basic results on Lie groups and their
representative functions. For a detailed discussion we refer to [4] and [5]. Let G be
a Lie group, and let R(G) denote the C-algebra of analytic representative functions
of G. If φ is an analytic representation of G, let [φ] denote the C-linear space of
all representative functions associated with φ. Then R(G) = ∪φ[φ]. This is a fully
stable C-algebra in the sense that it is stable under the left and right translations
by the elements of G and the involution f 7→ f ′ , where f ′(x) = f(x−1).

Let Q be any fully stable subalgebra of R(G). We regard Q as a G-
algebra with G acting on Q by right translations. A G-algebra automorphism of
Q is called a proper automorphism of Q. Thus a proper automorphism of Q is an
algebra automorphism which commutes with the right translations f 7→ f ·x : Q→
Q for all x ∈ G. Let AutG(Q) denote the group of all proper automorphisms of Q.
In a natural way, AutG(Q) is equipped with the structure of a pro-affine algebraic
group, and it may be identified with the set Spec(Q,C) of all specializations (i.e.,
C-algebra homomorphisms) of Q into C. The algebra Q is the polynomial algebra
of the pro-affine algebraic group AutG(Q), where one views the elements f of Q
as functions on AutG(Q) by the formula

f(α) = α(f)(1)

for α ∈ AutG(Q). For y ∈ G, the left translation τy: f 7→ y·f is a proper
automorphism of Q, and hence y 7→ τydefines a canonical homomorphism τ :G→
AutG(Q). If Q is finitely generated, then AutG(Q) has the usual structure of an
affine algebraic group.



Lee 273

For a closed normal Lie subgroup M of G, let R(G,M) denote the subal-
gebra of R(G) consisting of all analytic representative functions associated with
M -unipotent analytic representations of G (i.e., representations which are unipo-
tent on M). R(G,M) is a fully stable subalgebra of R(G).

Universal algebraic hull. For any complex analytic group G, let A(G) =
AutG(R(G)). The group A(G) acquires the structure of an irreducible pro-affine
algebraic group over C, for which R(G) is the polynomial algebra of A(G). We
call A(G) the universal algebraic hull of G.

The term universal is justified by the following universal property of the
canonical homomorphism τ :G→ A(G).

Proposition 1.1. For any analytic representation ρ:G → GL(V,C) there exists
a unique rational representation ρ̃:A(G)→ GL(V,C) such that ρ̃ ◦ τ = ρ.

Representation radical and reductive subgroups. For any Lie group G,
let N(G) denote the intersection of all kernels of semisimple analytic represen-
tations of G. The restriction to N(G) of every analytic representation of G is
unipotent, and it may be characterized as the largest subgroup of G with this
property. The subgroup N(G) is called the representation radical of G. If G
is a faithfully representable analytic group, then N(G) is equal to the radical of
the commutator subgroup of G. It follows from the theorem of Lie that every
analytic representation of G is N(G)-unipotent, and hence, in particular, we have
R(G) = R(G,N(G)).

A faithfully representable complex (resp. real) Lie group G is called reduc-
tive if every complex (resp. real) analytic representation of G is semisimple.

If G is a faithfully representable (real or complex) analytic group, it is a
semi-direct product G = S·H , where S is a simply connected closed solvable
normal subgroup and H is a reductive analytic subgroup of G. The subgroup S
is called a nucleus of G.

Universal Complexification of Real Lie Groups. By a universal com-
plexification of a real analytic group G, we mean a pair (G+, γ), where G+ is a
complex analytic group, and γ:G→ G+ is a continuous homomorphism satisfying
the following universal property:

For any complex analytic group K and any continuous homomorphism
u:G → K , there exists a unique complex analytic homomorphism u+:G+ → K
such that u = u+ ◦ γ . The pair (G+, γ) is uniquely determined (up to an
equivalence) by this property.

If a real analytic group G admits a finite-dimensional faithful analytic
representation, then the canonical map γ:G→ G+ is injective, and the Lie algebra
γ(G) is a real form of the Lie algebra of G+ . For the discussion of the universal
complexification of non-connected Lie groups, see [4].

Conjugacy of reductive groups. For later use we establish here the conjugacy
of reductive subgroups. The conjugacy of maximal reductive subgroups in a real
or complex analytic group seems to be well-known although we are unable to find
an explicit reference for it at least in the real case. As for the complex case,
see [5], p. 95, where the conjugacy for reductive subgroups was proven using the
structure theorem of complex reductive groups together with the known conjugacy
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of compact subgroups. Our proof is parallel to the usual proof of conjugacy
theorem of reductive algebraic subgroups in linear algebraic groups. We begin with
the following well-known result, whose proof is provided here for completeness.

Lemma 1.2. Let G be a reductive analytic group. For any finite-dimensional
analytic G-module V , every analytic 1-cocyle of G in V is a coboundary.

Proof. Let F denote either R or C, depending on whether G is a real or complex
analytic group. Let f :G → V be a 1-cocycle, and we define an action of G on
the direct sum V ⊕ F by

x·(v, a) = (af(x) + x·v, a)

where x ∈ G, v ∈ V and a ∈ F . The 1-cocycle identity implies that the above
defines an analytic G-module structure on V ⊕ F , which contains V as a G-
submodule. Since G is reductive, there is a G-module complement for V in
V ⊕ F . There is an element v ∈ V such that (v, 1) spans this complement over
F . Since the reductive group G acts trivially on any 1-dimensional G-module, we
have f(x) + x·v = v for all x ∈ G, proving that f is a coboundary.

Proposition 1.3. Let G be a faithfully representable (real or complex) analytic
group, and write G in the form

G = K·P

(semi-direct product), where K is a nucleus of G and P a closed reductive an-
alytic subgroup of G. If Q is any reductive subgroup of G, then there exists an
element u ∈ N(G) such that uQu−1 ⊂ P . In particular, P is a maximal reductive
subgroups, and any two maximal reductive subgroups are conjugate by an element
of N(G).

Proof. We prove the assertion by induction on dim(G). We put N = N(G).
Assume N = (1). Since N is the radical of the commutator subgroup [G,G], we
have N = [G,R], where R is the radical of G, and hence N = (1) implies that
R is central in G. Since the nucleus K is contained in R , the semidirect product
G = K·P is a direct product. Let η denote the restriction to Q of the projection
map G = K·P → K . Then η(Q) is a reductive subgroup of the vector group K ,
and hence must be trivial. This shows that Q ⊂ P , proving our assertion in this
case. Thus we may assume that N 6= (1). The center Z of N is a normal (vector)
subgroup of G, and if π:G → G/N denotes the canonical morphism, then by
induction hypothesis there exists an element u′ ∈ N(G/Z) = N(G)/Z such that
u′π(Q)(u′)−1 ⊂ π(P ). This shows that uQu−1 ⊂ ZP for some u ∈ N(G), and
replacing uQu−1 by Q, if necessary, we may assume that Q ⊂ ZP . Noting that
the subgroup ZP is a semidirect product, let ζ:Q → Z and π:Q → P denote
the projections (restricted to Q) of ZP onto Z and P , respectively, so that
x = ζ(x)π(x). We view the vector group Z as an analytic Q-module, where Q
acts on Z by x·z = π(x)zπ(x)−1 . Then ζ(xy) = ζ(x) + x·ζ(y) for all x, y ∈ Q,
i.e. ζ is a cocycle of Q with values in Z . By the lemma above, it is a coboundary,
and hence there exists an element v ∈ Z such that

ζ(x) = v − x·v
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for all x ∈ Q. Thus for x ∈ Q, xπ(x)−1 = ζ(x) = vπ(x)v−1π(x)−1 , and this
implies v−1xv = π(x) ∈ P , proving v−1Qv ⊂ P .

Decomposition of representative algebras. Let G be a complex Lie group
and assume G = A·B (semidirect product), where A and B are closed complex
Lie subgroups of G with B normal in G. Here we develop a condition for the
extendability of a representation of B to the entire group G.

For any function f :B → C (resp. f :A → C), define f+:G → C by
f+(ab) = f(b) (resp. f+(ab) = f(a)) for a ∈ A and b ∈ B . For a ∈ A, κ(a)
denotes the automorphism of B given by b 7→ a−1ba.

Lemma 1.4. If K is a closed normal Lie subgroup of G such that K ⊂ B , then
for g ∈ R(B,K), g ◦ κ(A) ⊂ R(B,K).

Proof. For a ∈ A and b ∈ B , we have

(b·g) ◦ κ(a) = (aba−1)·(g ◦ κ(a))

For a fixed a and with b ranges over B , this shows that g ◦ κ(a) ∈ R(B). To
show g ◦ κ(a) ⊂ R(B,K), let V and V ′ be the finite-dimensional subspaces
that are spanned by B·g and B·(g ◦ κ(a)), respectively, and let ρ and ρ′ be
the representations of B on V and V ′ , respectively, by left translations. We
have ρ′(z) = θ ◦ ρ(aza−1) ◦ θ−1 for z ∈ B , where θ:V → V ′ denotes the linear
isomorphism f 7→ f ◦κ(a). Hence, for any z ∈ B , and for any positive integer m,
we have

(ρ′(z)− 1)m = θ ◦ (ρ(aza−1)− 1)m ◦ θ−1

Since g ∈ R(B,K), ρ(K) acts on V unipotently, and the above equality shows
that ρ′(K) acts on V ′ unipotently, proving g ◦ κ(a) ∈ R(B,K).

The proof of the following lemma is essentially the same as that of [4],
Propoposition 2.4).

Lemma 1.5. Let G = A·B be a semidirect product of analytic groups with B
normal in G, and let K be a closed normal analytic subgroup of G with K ⊂ B .
Let R(G,K)B denote the image of the restriction map R(G,K)→ R(B,K). Then
for g ∈ R(B,K), the following are equivalent:

(i) g ∈ R(G,K)B ;

(ii) g ◦ κ(A) = {g ◦ κ(a): a ∈ A} spans a finite-dimensional subspace of R(B,K);

(iii) g+ ∈ R(G,K). Moreover, (f, g) 7→ f+·g+ induces an isomorphism

R(A)⊗ R(G,K)B ∼= R(G,K)

In particular, R(G,K) ∼= R(A) ⊗ R(B,K) canonically if and only if the
restriction morphism R(G,K)→ R(B,K) is surjective.

2. Algebraic Subgroups of Analytic Groups

A complex Lie subgroup K of a faithfully representable complex analytic group
G is called an algebraic subgroup of G if the restriction algebra R(G)K (i.e., the
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restriction to K of the functions in R(G)) is finitely generated as a subalgebra of
R(K), and if K is an affine algebraic group with R(G)K as its polynomial algebra.

Remarks. (1) From the definition, it follows that a closed complex Lie subgroup
K of G is an algebraic subgroup if and only if the following two conditions are
satisfied:

(i) R(G)K is finitely generated;

(ii) The canonical map K → AutK(R(G)K) is an isomorphism of groups.

(2) For any algebraic subgroup K of G, the algebraic group structure of K is
determined not by the analytic structure of K itself, but entirely by the analytic
structure of the ambient group G.

(3) We note that an algebraic subgroup of a faithfully representable complex
analytic group G is necessarily closed. In fact, if ρ:G → GL(V,C) is a faithful
complex analytic representation, then ρ(K) is an algebraic subgroup of GL(V,C).
Thus ρ(K) is closed in ρ(G), and hence K is closed in G.

In the sequel, P (H), for any affine (or pro-affine) algebraic group H ,
denotes the polynomial algebra of H .

Proposition 2.1. Let K be a closed complex Lie subgroup of a faithfully repre-
sentable complex analytic group G. The following are equivalent.

(i) K is an algebraic subgroup of G;

(ii) If τ :G→ A(G) denotes the canonical injection, τ(K) is an (affine) algebraic
subgroup of the pro-affine algebraic group A(G).

If K is an algebraic subgroup of G, then the restriction to K of every
complex analytic representation of G is rational.

Proof. (i) =⇒(ii): We need to show that if g ∈ P (A(G)) = R(G), then
g ◦ τK ∈ P (K). Write g as g = ε ◦ ψ , where ψ:A(G) → GL(V,C) is a rational
representation, and ε: End(V ) → C is a linear functional. Then ψ ◦ τ :G →
GL(V,C) is a complex analytic representation, and hence ε ◦ (ψ ◦ τ) ∈ R(G).
Thus g ◦ τK = (g ◦ τ)K = (ε ◦ ψ ◦ τ)K ∈ R(G)K = P (K) follows.

(ii)=⇒(i): Since τ(K) is an (affine) algebraic subgroup of A(G), P (τ(K))
is finitely generated and we have P (τ(K)) = P (A(G))τ(K) = R(G)τ(K) . Transport-
ing the affine algebraic group structure of τ(K) to K using the group isomorphism
τK , we obtain an affine algebraic group structure on K so that P (K) = R(G)K .

For the second assertion, let ρ:G → GL(V,C) be a complex analytic
representation. We must show that if η is any C-linear functional on the linear
space EndC(V ), then η ◦ ρK ∈ P (K). Indeed, η ◦ ρ ∈ R(G), and hence η ◦ ρK =
(η ◦ ρ)K ∈ R(G)K = P (K).

Lemma 2.2. If K is a reductive complex Lie subgroup of a faithfully representable
complex analytic group G such that K is finite modulo its identity component K0 ,
then K is an algebraic subgroup of G.

Proof. Let H be a maximal reductive complex Lie subgroup of G that contains
K . Then H is connected, and G is a semidirect product G = S·H , where S is a
nucleus of G. We first show that H is an algebraic subgroup of G. Every complex
analytic representation of H extends in an obvious way to a complex analytic
representation of G, and hence it follows that the restriction map R(G)→ R(H)
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is surjective, i.e., we have R(H) = R(G)H . By ([5], Th. 5.2), R(H) is finitely
generated, and the canonical monomorphism

H → A(H) = AutH(R(H))

is an isomorphism. This shows that H is an algebraic subgroup of G. Next we
show K is an algebraic subgroup of G. Let Q be a maximal compact subgroup
of K . Then K may be identified with the universal complexification of Q. (This
is Theorem 3.2 of [5], when K itself is connected. For non-connected K , one
may prove the assertion by verifying directly the universal property defining the
universal complexification, making use of the facts that K = K0Q and Q0 =
Q ∩ K0 , where L0 for any Lie group L denotes the connected component of L
containing the identity element.) It follows from ([4], Theorem 9.5 and Theorem
11.1) that R(Q) = R(K) is finitely generated and that K = Q+ is identified
with an affine algebraic group with its polynomial algebra R(K) in such a way
that every complex analytic representation of K becomes rational. It remains to
show that R(K) = R(G)K . If we view the affine algebraic group H as a linear
algebraic group and the inclusion map j:K → H as a linear representation, then
j is rational, and hence K = j(K) is Zariski closed in the algebraic group H .
This shows that R(H)→ R(K) is surjective. Since we have already observed that
R(H) = R(G)H , we see that R(K) = R(G)K .

Now we turn our attention to unipotent subgroups of complex linear groups.
Let N be a unipotent complex analytic subgroup of a full linear group GL(W,C).
There is a natural algebraic group structure on the simply connected nilpotent
complex analytic group N . If ρ:N → GL(U,C) is a unipotent complex analytic
representation of N , then ρ is a polynomial map of degree ≤ mn, where m =
dimW , and n = dimU . In fact, for x ∈ N , we have

ρ(x) = ρ(expW ◦ logW (x)) = expU ◦dρ(logW (x)) (1)

where expW and expU denote exponential maps on the full linear groups GL(W,C)
and GL(U,C), respectively.

Since N is unipotent, 1−x is a nilpotent linear transformation on W , and
we have

logW (x) = −
m∑

i=1

(1− x)i

i
(2)

Let N be the Lie algebra of N . Since every element z of dρ(N ) is a
nilpotent linear transformation of U , we have

expU(z) =
n∑

i=0

1

i!
zi (3)

It follows from (1), (2) and (3) that ρ is a polynomial map of degree ≤ mn.

Lemma 2.3. Let N be as above. Then P (N) = R(N,N) (i.e., the polynomial
algebra of the algebraic group N coincides with the algebra R(N,N) consisting of
all representative functions of N associated with the unipotent analytic represen-
tations of N .)
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Proof. Clearly P (N) ⊂ R(N,N). To show P (N) ⊃ R(N,N), let f ∈ R(N,N),
and express f = λ ◦ ρ, where ρ:N → GL(U,C) is a unipotent complex analytic
representation, and where λ is a C-linear functional on End(U,C). By what we
have observed above, ρ is a polynomial map, and hence f = λ ◦ ρ is a polynomial
function, proving f ∈ P (N).

Lemma 2.4. Let N be a unipotent complex analytic subgroup of a full complex
linear group GL(V,C), and let H be a complex Lie group. Suppose there is a
complex analytic homomorphism κ:H → Aut(N). Then for each f ∈ R(N,N),
the set {f ◦ κ(h) : h ∈ H} spans a finite-dimensional subspace of R(N,N).

Proof. By Lemma 1.4, f ◦κ(H) ⊂ R(N,N). Let h ∈ H , and consider κ(h):N →
N . By the lemma above, each κ(h):N → N is a polynomial map of degree ≤ m2 ,
where m is the dimension of the space on which N operates. Thus if f is a
polynomial function on N of degree ≤ n, then f ◦ κ(h) is a polynomial function
of degree ≤ nm2 . This shows that the set f ◦ κ(H) spans a finite-dimensional
space.

The following is ([6], Lemma 2.1).

Lemma 2.5. Let L be a finite-dimensional Lie algebra over an infinite field,
that is a semidirect sum L = H + K , where K is a solvable ideal of G , and H
is a complementary subalgebra that is reductive in L. Let M = [L,K]. Then K
contains a nilpotent subalgebra P such that K = P+M (not necessarily semidirect
sum) and that P centralizes H .

Let L be a subgroup of a group G, and let ρ be a representation of L
in a C-linear space V . A representation σ of G is said to be an extension of ρ
(or simply ρ is extendable to σ ) if the representation space of σ contains V as a
σ(L)-invariant subspace and σ(x) and ρ(x) coincides in V for all x ∈ L. It is
easy to verify that if every analytic representation of a closed Lie subgroup L of a
Lie group G is extendable to an analytic representation of L, then the restriction
map R(G)→ R(L) is surjective.

Lemma 2.6. Let G be a faithfully representable analytic group G, and let N
denote the representation radical of G. For any maximal reductive subgroup H of
G, every analytic representation of HN is extendable to an N -unipotent analytic
representation of G. In particular, the restriction map

R(G) = R(G,N)→ R(HN,N)

is surjective.

Proof. Write the faithfully representable group G as a semidirect product G =
K·H , where K is a nucleus of G. By Lemma 2.5, K contains a simply connected
nilpotent analytic subgroup P such that K = PN and that P centralizes H .
Then G = PNH , and clearly we have [P,G] ⊂ N . Since G/HN is a vector group
and G = PHN , we can find one-parameter subgroups P1, . . . , Pr ⊂ P such that
G is a successive semidirect product G = Pr . . . P1(HN). Let D0 = HN , and
define Di+1 = Pi+1Di , i = 0, 1, 2, . . . , r − 1. We show that every N -unipotent
analytic representation ρ of Di (0 ≤ i ≤ r− 1) is extendable to an N -unipotent
analytic representation σ of Di+1 (i.e., the representation space W of σ contains
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the representation space V of ρ as a Di -stable subspace and σ coincides with ρ
in V .) Since [P,G] ⊂ N , the action of the group Pi+1 on Di/N is trivial. Hence
applying [3], Th. 2.2 of Chap. 18) to the semidirect product Di+1 = Pi+1·Di , we
see that any N -unipotent analytic representation ρ of Di extendable to an N -
unipotent analytic representation σ of Di+1 . Putting these extensions together,
we see that every analytic representation of HN is extendable to an N -unipotent
analytic representation of G.

The second assertion follows from the remark preceding the lemma.

Lemma 2.7. Let G be a faithfully representable complex analytic group. Then
N(G) is a unipotent algebraic subgroup of G.

Proof. Let τ :G → GL(W,C) be faithful complex analytic representation of G,
and put N = N(G). Then N = rad(G′) is a simply connected nilpotent analytic
group, and hence N is isomorphic with the unipotent algebraic subgroup τ(N) of
GL(W,C). τ induces an isomorphism of C-algebras

R(N,N) ∼= R(τ(N), τ(N))

and R(τ(N), τ(N)) is the polynomial algebra of the algebraic group τ(N) by
Corollary 2.3. This, in particular, shows that R(N,N)is finitely generated. That
the canonical map

N → AutN (R(N,N))

is an isomorphism follows from the isomorphisms

N ∼= τ(N) ∼= Autτ(N)(R(τ(N), τ(N))) ∼= AutN (R(N,N))

Now it remains to show R(N,N) = R(G)N . By Lemma 2.6 the restriction
R(G) → R(NH,N) is surjective, and hence it is sufficient to show that the
restriction map R(NH,N)→ R(N,N) is surjective. But this follows from Lemma
1.5 and Lemma 2.4.

Theorem 2.8. Let G be a faithfully representable complex analytic group and let
H be a maximal reductive complex analytic subgroup of G. The complex analytic
normal subgroup HN(G), which is independent of maximal reductive subgroups H ,
is the maximal algebraic subgroup of G in the sense that it contains all algebraic
subgroups of G. Any complex analytic representation of G induces a rational
representation of HN(G), and conversely every rational representation of HN(G)
is obtained in this way.

Proof. Let N = N(G) and let τ :G → A(G) denote the canonical injection.
H and N are algebraic subgroups of G by Lemma 2.2 and Lemma 2.7. Hence
τ(N) and τ(H) are algebraic subgroups of the pro-affine algebraic group A(G)
in the usual sense by Proposition 2.1. It follows that τ(NH) = τ(N)τ(H) is
Zariski closed in the pro-affine algebraic group A(G), proving that NH is an
algebraic subgroup of G. That the subgroup HN is independent of maximal
reductive subgroups H follows from Proposition 1.3. We now show that HN is
the maximal algebraic subgroup of G. Let D be any algebraic subgroup of G.
We claim D ⊂ HN . Suppose D is not contained in HN . We first show that
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there is a complex analytic representation ϕ of G such that ϕ(D) is a nontrivial
unipotent subgroup. Let π:G→ G/HN be the canonical morphism, and let

ρ:G→ GL(V,C)

be a faithful complex analytic representation of G. The image ρ(HN) is an
algebraic subgroup of GL(V,C) by Proposition 2.1. Since HN is normal in G,
the algebraic subgroup ρ(HN) of GL(V,C) is normal in ρ(G) and hence also in
the Zariski closure ρ(G)# of ρ(G) in GL(V,C). Thus ρ(G)#/ρ(HN) is a linear
algebraic group, and the composite map

G/HN → ρ(G)/ρ(HN)
⊆−→ ρ(G)#/ρ(HN)

defines a faithful complex analytic representation ρ̃ of G/NH . Let ϕ = ρ̃◦π . Since
D is algebraic in G, ϕ(D) is Zariski closed in the algebraic group ρ(G)#/ρ(HN)
by Proposition 2.1. Since π(D) is a nontrivial subgroup of the vector group G/HN
with finitely many connected components, π(D) is a nontrivial vector subgroup
of G/HN . Thus ϕ(D) = ρ̃(π(D)) is a complex vector subgroup of the abelian
algebraic group ρ̃(π(G))# , and hence the algebraic subgroup ϕ(D) is unipotent.
Next we show that there is a nontrivial semisimple analytic representation ψ of G.
Choose a faithful, semisimple complex analytic representation σ of the complex
vector group G/HN . Then σ(π(D)) 6= {1}, and we take ψ to be σ ◦ π . If γ
denotes the direct sum of the representations ϕ and ψ , then γ is a complex analytic
representation of G such that γ(D) is not Zariski closed, and this contradicts the
assumption that D is an algebraic subgroup of G. This shows that D ⊂ HN .

We now prove the second assertion. Let ρ be a rational representation of
the algebraic group HN . Since N is a unipotent algebraic subgroup of HN , ρ
is an N -unipotent analytic representation of the analytic group HN , and Lemma
2.6 enables us to extend ρ to a complex analytic representation of G.

Notation. For a faithfully representable complex analytic group G, the maximal
algebraic subgroup HN of G in Theorem 2.8 is denoted by T (G).

3. Tannaka subgroup of real Lie groups

Lemma 3.1. Let G be a faithfully representable real analytic group. Then
N(G)+ = N(G+).

Proof. Put N = N(G), N+ = N(G)+ , and let G,G+,N and N+ denote the
Lie algebras of G,G+, N and N+ , respectively. Since an analytic representation
ρ:G → GL(V,C) is semisimple if and only if the corresponding complex analytic
representation ρ+:G+ → GL(V, C) is semisimple, it follows from the definition of
the representation radical that the canonical injection γ:G → G+ maps N into
N(G+). Thus there is a unique complex analytic homomorphism γ ′:N+ → N(G+)
such that γ′ ◦ η = γN , where η:N → N+ denotes the canonical injection. We
claim that γ′ is an isomorphism. We first note

dimCN(G+) = dimCN
+ = dimRN

In fact, we have the equality:

L(N(G+)) = Rad([G+,G+]) = Rad(C⊗ [G,G]) = C⊗ Rad([G,G]) = C⊗N



Lee 281

where Rad(L) for any Lie algebra L denotes the radical of L. (Here we identified
G with its image dγ(G) in G+ , which is a real form of the complex Lie algebra
G+ .) This equality shows that dγ(N ) spans L(N(G+)) over C. Since dη(N ) is a
real form of N+ , it follows from dγ′ ◦ dη = dγN that dγ′ is surjective, and hence
is an isomorphism due to the equality dimCN(G+) = dimCN+ . This means that
γ′ is a covering morphism of N(G+). But N(G+) is simply connected, and so γ ′

must be an isomorphism, proving our assertion.

Before we state our main result in this section, we prove the following
general lemma:

Lemma 3.2. If G = K×φH is a semidirect product of real analytic groups K and
H with respect to an analytic action φ:H → Aut(K), then G+ is the semidirect
product G+ = K+ ×φ+ H+ , where φ+:H+ → Aut(K+) is the homomorphism
defined by the commutative diagram

H+
φ+

−−−→ Aut(K+)x
xid

H −−−→
φ′

Aut(K+)

and where φ′:H → Aut(K+) is the unique homomorphism satisfying the commu-
tative diagram

K+
φ′(h)

−−−→ K+x
x

K −−−→
φ(h)

K.

Proof. The map γ:K×φH → K+×φ+ H+ defined by γ(k, h) = (γK(k), γH(h)) is
easily seen to be a homomorphism. We claim that K+ ×φ+ H+ together with the
map γ satisfies the universal property characterizing the universal complexification
of K×φH . Let α:K×φH → L be a real analytic homomorphism into a complex
analytic group L, and define

α+:K+ ×φ+ H+ → L

by α+(k′, h′) = α+
K(k′)α+

H(h′). In proving that α+ is a homomorphism, we must
show that

α+((k′1, h
′
1)(k′2, h

′
2)) = α+(k1′, h

′
1)α+(k′2, h

′
2)

or equivalently that

α+
K(φ+(h′)(k′)) = α+

H(h′)α+
K(k′)α+

H(h′)−1 (4)

for h′ ∈ H+ and k′ ∈ K+ . Since α:K ×φ H → L is a homomorphism, we have

αK(φ(h)(k)) = αH(h)αK(k)αH(h)−1 (5)

Define φ̂+:H+ × K+ → K+ , and φ̂:H × K → K by φ̂+(h′, k′) = φ+(h′)(k′),
and φ̂(h, k) = φ(h)(k). Then the equations (4) and (5) are equivalent to the
commutativity of the diagrams:

H+ ×K+
φ̂+

−−−→ K+

α+
H×α

+
K

y
yα+

K

L× L −−−→
η

L
(6)
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and

H ×K
φ̂

−−−→ K
αH×αK

y
yαK

L× L −−−→
η

L
(7)

respectively, where η:L×L→ L is given by η(x, y) = xyx−1. The commutativity
of the diagrams (6) and (7) holds if and only if their respective Lie algebra diagrams
(8) and (9) commute:

H+ ×K+
d φ̂+

−−−→ K+

dα+
H×dα

+
K

y
ydαK

L × L −−−→
dη

L
(8)

and

H×K
d φ̂
−−−→ K

dα×dα
y

ydα
L × L −−−→

dη
L

(9)

where H+ and K+ denote the Lie algebras of H+ and K+ , respectively. Since
the Lie algebras in the diagram (9) span the corresponding complex Lie algebras
in (8) over C , the commutativity of (8) follows from that of (9), and consequently
the diagram (6) commutes, proving (4).

That α+ is the only morphism with the relation α = α+ ◦ γ follows from
the fact that Im(dγ) spans K+ ×dφ+ H+ = L(K+ ×φ+ H+).

Lemma 3.3. If G is a faithfully representable real analytic group, then so is its
universal complexification.

Proof. Write the faithfully representable G as a semidirect product

G = S·H , where S is a nucleus of G and H a maximal reductive subgroup of G.
The universal complexification S+ of the simply connected solvable real analytic
group S is a simply connected solvable complex analytic group, and the universal
complexification H+ of the real reductive analytic subgroup H is a reductive
complex analytic group. Hence by Lemma 3.2, we have a semidirect product
G+ = S+·H+ , and consequently G+ is faithfully representable by ([3], Theorem
4.3, p. 223).

For a faithfully representable real analytic group G, set T (G) = HN(G),
where H is a maximal reductive subgroup of G. By the conjugacy of reductive
subgroups (Proposition 1.3), T (G) is independent of choice of a maximal reductive
subgroup H . We call T (G) the Tannaka subgroup of G.

Now we are ready to state and prove our main result in this section.
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Theorem 3.4. Let G be any faithfully representable real analytic group. Then

(i) T (G) is a closed normal analytic subgroup of G, and T (G)+ = T (G+), i.e.,
T (G)+ is the maximal algebraic subgroup of the complex analytic group G+ ;

(ii) Every analytic representation of T (G) is induced by a rational representation
of T (G)+ .

Proof. Let γ:G → G+ be the canonical injection. By Lemma 3.1 and Lemma
3.2, we have T (G)+ = (HN(G))+ ∼= H+N(G)+ (semidirect product). Since H+

is a maximal reductive subgroup of G+, it follows that T (G)+ is the maximal
algebraic subgroup of G+ , proving (i). To prove (ii), let ρ:T (G) → GL(V,C) be
an analytic representation. By Lemma 2.6, ρ extends to an analytic representation
σ:G → GL(W,C), and the induced complex analytic representation σ+:G+ →
GL(W,C) becomes a rational representation, when restricted to the maximal
algebraic subgroup T (G+) of G+ (Theorem 2.8). The representation space V
of ρ is a σ(T (G))-invariant and hence also σ+(T (G)+)-invariant subspace of W ,
and the representation

t′ 7−→ σ+(t′)V : T (G)+ → GL(V,C)

is exactly the complex analytic representation ρ+ of T (G)+ that is induced by
ρ. Since T (G)+ = T (G+) by (i), and since σ+

T (G)+ is a rational representation of

T (G+), it follows that ρ+ is a rational representation of T (G)+ .
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