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The supports of simple modules over toroidal algebras
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Abstract. We present a description of possible supports for simple modules
over toroidal Lie algebras associated with sl(2,C). This description is analogous
to that known for finite-dimensional simple Lie algebras and affine Lie algebras.

1. Introduction

The problem to describe the support of a simple weight module over a Lie algebra
with triangular decomposition is very popular and has been studied in many cases.
The final results were obtained for complex simple finite-dimensional algebras in
[1], for superalgebras in [2], for the A

(1)
1 case in [4], for all affine Lie algebras by

I. Penkov (work in progress), for rank two generalized Witt algebras in [6] and for
Harish-Chandra modules over higher rank Virasoro algebras in [7].

In the present paper we give the complete answer on the formulated question
in the case of an arbitrary toroidal Lie algebra that can be obtained from sl(2) by
the method described in [3]. In fact, the final result states that any simple weight
module over such an algebra is either dense (i.e. for any weight λ and root β an
element λ+ β is again a weight) or cut (i.e. its support is a subset of the support
of some induced module).

The paper is organized as follows: In Section 1 we collect all necessary
preliminaries and formulate the main result of this paper. In Section 3 we will
prove some auxiliary lemmas that will be used in the proof of the main theorem
presented in Section 4. Finally, in Section 5 we construct an example of a simple
cut G-module without semi-primitive elements.

2. Toroidal algebras and main theorem

Let C denote the set of complex numbers, Z denote the set of integers, Z+ denote
the set of non-negative integers and N denote the set of positive integers. For a
Lie algebra L we will denote by U(L) its universal enveloping algebra.

Fix n ∈ N. Let A = sl(2,C) be the Lie algebra of 2 × 2 complex matrix
with zero trace and A = C[t±1

1 , . . . , t±1
n ] be the algebra of Laurent polynomials
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with complex coefficients. Let e, f, h be the standard basis of A. Consider the Lie
algebra GA = A⊗CA with bracket [x⊗a, y⊗b] = [x, y]⊗ab, x, y ∈ A and a, b ∈ A.
Let Ĝ be the universal covering algebra for GA ([5]). The algebra Ĝ is usually
called toroidal. To get the representation theory of Ĝ reasonable we factor out the
central ideal consisting of the span of all homogeneous elements of non-zero degree
in ΩA/dA and obtain the algebra G̃. Then for our convenience we will extend G̃
by commuting differentials d1, . . . , dn such that [di, x⊗tk1

1 . . . tknn ] = kix⊗tk1
1 . . . tknn ,

x ∈ A (di commutes with ΩA/dA) to form the Lie algebra G.

Let H = 〈h〉 be the standard Cartan subalgebra of A. Then

H = (H ⊗ 1)⊕ ΩA/dA⊕ 〈d1, . . . , dn〉

is the standard Cartan subalgebra of G. Let ∆ ⊂ H∗ be the root system of G
with respect to H. For β ∈ ∆ let Gβ denote the corresponding root space in G.
In a standard way ∆ can be decomposed into the disjoint union ∆ = ∆< ∪ ∆= ,
where ∆< is the set of roots of elements of the form e⊗a or f⊗a, a is a monomial
in A and ∆= = ∆ \∆< . We will also denote by ∆+

< (∆−< ) the set of roots of the
elements of the form e⊗a (f⊗a) and by G+ (G− ) the corresponding subalgebras
in G. A root α ∈ ∆= will be called simple if α/k is not a root for any k ∈ N.
It follows easily from the definition of G that the sum of two elements from ∆+

<
(or ∆−< ) is never a root and the sum of any element form ∆+

< (or ∆−< ) with any
element from ∆= is always a root.

For a G-module V and λ ∈ H∗ let Vλ = {v ∈ V | hv = λ(h)v for all h ∈ H}
denote the weight subspace of V corresponding to a weight λ. A module V is
said to be a weight module provided it can be decomposed into a direct sum of its
weight subspaces. For a weight G-module V let supp V be the set of all weights
of V with non-trivial weight subspaces. This set will be called the support of V .

Let P denote the abelian group spanned by ∆. One can easily see that
P ' Zn+1 . For any order 6 on P (here and on by an order we mean an order on
an abelian group, hence, we assume that this order is compatible with the group
structure) we will denote P6+ = {p ∈ P | 0 6 p, p 66 0}, P6− = {p ∈ P | p 6 0, 0 66
p}, P60 = {p ∈ P | 0 6 p, p 6 0} and set ∆6i = P6i ∩∆, i = 0,+,−. We will say
that 6 is non-trivial if P6+ is not empty.

Clearly, supp V ⊂ λ + P for any simple weight module V and any λ ∈
suppV . A weight module V is called dense if supp V = λ + P , λ ∈ supp V and
cut if supp V ⊂ λ+ P6− for a non-trivial order 6 and some λ ∈ H∗ .

For any weight module V and any v ∈ Vλ (λ ∈ supp V ) we will say that
a subset S ⊂ ∆ is an annihilating v -set provided Gβv = 0 for any β ∈ S . A
non-zero element v ∈ Vλ will be called semi-primitive if there exists a non-trivial
order 6 on P such that ∆6+ is an annihilating v -set. Any subset S ⊂ ∆ can be
enlarged by adding to it all the roots of the form α + β , where α, β ∈ S and at
least one of them belongs to ∆< . Starting from S we can enlarge it to the set S1 ,
then we can enlarge the obtained set to the set S2 and so on. The set S = ∪∞i=1Si
will be called the additive closure of S . The following lemma follows easily from
the fact that dim Gδ = 1 for all δ ∈ ∆= .

Lemma 2.1. Let V be a weight G-module, λ ∈ suppV , v ∈ Vλ and S be an
annihilating v -set. Then S is an annihilating v -set.

Now we can formulate the main result of this paper:
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Theorem 2.2. Let V be a simple weight G-module. Then V is either dense
or cut.

We have to remark that in the case n = 1 our algebra G is an affine Lie
algebra. In this case theorem 2.2 was obtained in [4].

3. Preliminary lemmas

For a simple weight G-module V we will denote by P (V ) the set λ + P , λ ∈
suppV . Clearly, P (V ) does not depend on the choice of λ. We also set s(V ) =
P (V ) \ suppV . During this section we fix a non-trivial non-dense simple weight
G-module V . For a fixed µ ∈ H∗ we will write Hµ for the set {µ} ∪ µ + ∆. We
note that s(V ) is not empty since V is not dense.

A non-zero element v of a weight module V will be called bounded of type
(β1, . . . , βn), where βi ∈ ∆= , 1 6 i 6 n are linearly independent simple roots
provided there exist α± ∈ ∆±< such that {α± + k1β1 + · · · + knβn | ki ∈ Z+, i =
1, . . . , n} is an annihilating v -set.

Lemma 3.1. There exists µ ∈ s(V ) and λ ∈ suppV ∩Hµ such that µ−λ ∈ ∆< .

Proof. Clearly, there exists µ1 ∈ s(V ) such that supp V ∩ Hµ1 is not empty.
If µ1 + ∆< ⊂ s(V ) then one can take µ ∈ µ1 + ∆< and λ ∈ supp V ∩Hµ1 .

Lemma 3.2. Suppose that v ∈ Vλ is a non-zero element. Then either G+v 6= 0
(G−v 6= 0) or v is semi-primitive.

Proof. Follows from the fact that by setting ∆6+ = ∆+
< one defines a non-trivial

order 6 on P .

Lemma 3.3. Let v ∈ Vλ and S ⊂ ∆ be an annihilating v -set. Suppose that
g ∈ Gβ and S1 ⊂ S such that β+S1∩∆ ⊂ S . Then S1 is an annihilating gv -set.

Proof. Let α ∈ S1 and x ∈ Gα . One has xgv = [x, g]v + gxv . The right hand
side of this equality will be zero as soon as [x, g] = 0 since xv = 0. Moreover, if
[x, g] 6= 0 it follows that [x, g] ∈ Gα+β with α + β ∈ S . Hence xgv = 0 and the
statement follows.

Lemma 3.4. Let V be a simple weight module and 0 6= v ∈ V be a bounded
element of type (β1, . . . , βn). Then any non-zero element in V is bounded of the
same type.

Proof. Let 0 6= w ∈ V . Since V is simple there exists u ∈ U(G) such that
w = uv . Thus it is sufficient to prove the statement of the lemma for any element
of the form xv where x ∈ Gγ , γ ∈ ∆.

Consider an r -dimensional Euclidian space X and fix linearly independent
x1, . . . , xr ∈ X . For y ∈ X set Cy be the cone consisting of all elements of the
form y+ s1x1 + · · ·+ srxr where si are non-negative for 1 6 i 6 r . Since X is r -
dimensional it follows immediately that for any two cones Cy1 and Cy2 there exists
y ∈ X such that Cy ⊂ Cy1 ∩Cy2 . The statement now follows from Lemma 3.3.

Lemma 3.5. Let V be a non-trivial simple weight G-module and v ∈ V be
a non-zero bounded element of type β1, . . . , βn . Suppose that V is not dense and
µ ∈ s(V ). Then µ+ s1β1 + · · ·+ snβn ∈ s(V ) for si ∈ N, 1 6 i 6 n.
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Proof. Suppose that λ = µ + s1β1 + · · · + snβn ∈ supp V for some si ∈ N,
1 6 i 6 n and 0 6= w ∈ Vλ . Then w is a bounded element of type β1, . . . , βn
by Lemma 3.4. Let T denotes the corresponding annihilating w -set. Then the
additive closure of T ∪ {µ − λ} is an annihilating w -set by Lemma 3.3. Using
previous lemmas one can show that this closure coincides with ∆ and thus w
generates a trivial G-submodule in V and we obtain a contradiction.

Lemma 3.6. Let V be a simple weight G-module. Suppose that there exists
α ∈ ∆< , 0 6= Xα ∈ Gα , k ∈ N and 0 6= v ∈ V such that Xk

αv = 0. Then Xα acts
locally nilpotent on V .

Proof. Follows from the fact that adXα is nilpotent on G.

Lemma 3.7. Let V be a simple weight non-dense G-module, λ ∈ supp V ,
µ ∈ s(V ) such that µ−λ = kα for some α ∈ ∆< and k ∈ N. Then λ+lα 6∈ suppV
for all l > k .

Proof. Let 0 6= v ∈ Vλ and 0 6= Xα ∈ Gα . Then Xk
αv = 0 and thus Xα is

locally nilpotent on V by Lemma 3.6. Suppose that λ + lα ∈ supp V for some
l > k . Then Vλ+lα 6= 0 and Gl−k

−α Vλ+lα = 0 and thus X−α is also locally nilpotent
on V . Since G±α generate an sl(2)-subalgebra of G it follows that sl(2)-module
⊕m∈ZVλ+mα contains two finite dimensional subquotients and their supports have
empty intersection. The last is impossible and thus we obtain the statement of the
Lemma.

4. Proof of the main theorem

Suppose that V is a simple weight non-dense G-module and n > 1 (for n = 1 our
proof reduces to that from [4]). Clearly, the existence of a semi-primitive vector
in V will imply the statement of the main theorem. It is impossible to prove the
existence of a semi-primitive element in the general case, so, in fact we will prove
the following statement: Let V be a non-dense simple G-module, then either there
exists a semi-primitive element in V or V is cut. Thus we can suppose that there
were no semi-primitive elements in V . Our first goal is to prove that there exist
some bounded element in V .

Consider the elements µ ∈ s(V ) and λ ∈ supp V given by Lemma 3.1.
Without loss of generality we can assume that µ − λ ∈ ∆+

< . Let v ∈ Vλ be a
non-zero element. Then the set S = {µ− λ} is an annihilating v -set.

Since v is not semi-primitive, by Lemma 3.2 there exist α̂ ∈ ∆+
< and g ∈ Gα̂

such that v1 = gv 6= 0. Let δ be a simple root such that µ−λ− α̂ = Nδ for some
N ∈ N. One can choose α̂ such that Gα̂+kδv = 0, 0 < k < N .

By Lemma 3.3 we have that S is an annihilating v1 -set. Moreover, we can
enlarge S to an annihilating v1 -set S1 by elements α̂ + kδ , 0 < k < N , Nδ
and thus by µ − λ + kNδ , k ∈ N. Applying Gδ to v1 we can find an element
0 6= v2 ∈ Vµ+N1δ such that S2 = {δ} ∪ {µ − λ + kδ | k ∈ N} is an annihilating
v2 -set.

Since v2 is not semi-primitive, using Lemma 3.2 and the same procedure
as above one can find an element α ∈ ∆+

< and g1 ∈ Gα such that v3 = g1v2 6= 0.
Suppose that α = µ − λ + kδ for some k ∈ Z and it is impossible to choose α
that is not of this form. Then ∆+

< \ {µ− λ + kδ | k ∈ (Z \ N)} is an annihilating
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v3 -set. Applying to v3 any non-zero element x from Gβ where β ∈ ∆= such that
β and δ are linearly independent we immediately obtain that either v3 or xv3 6= 0
is semi-primitive.

Thus we can choose α such that α 6= µ−λ+kδ for all k ∈ Z. Let α1 be the
weight of v3 . In this case an additive closure T of {µ−λ+ kδ | k ∈ N}∪ {µ−α1}
is an annihilating v3 -set by Lemma 2.1 and Lemma 3.3. Moreover, one can see
that α can be chosen such that it would be possible to find simple β1, β2 ∈ ∆=
and γ± ∈ ∆±< such that T contains all γ± + s1β1 + s2β2 for s,s2 ∈ Z+ .

Applying the same procedure to v3 with the use of elements from ∆−< and
then again from ∆+

< and so on, one can construct a bounded element 0 6= w ∈ V
of type β1, . . . , βn for some simple linearly independent βi ∈ ∆= , 1 6 i 6 n.
Thus, any element of V should be bounded of type β1, . . . , βn by Lemma 3.4. By
Lemma 3.5 we also obtain that µ+s1β1 + · · ·+snβn ∈ s(V ) for si ∈ N, 1 6 i 6 n.

Now, using Lemma 3.4 and the same arguments as in the preceding para-
graph it is easy to see that there exists a non-trivial order 6= on ∆= and ξ ∈
(µ+∆=)∪{µ} such that ξ+P+

= ⊂ s(V ), where P+
= = {α ∈ ∆= |α 66= 0, 0 6= α}.

Indeed, fixing the support of V and assuming that this statement is false it follows
with the same arguments as above that s(V ) can be enlarged. Clearly, we can
choose ξ minimal with respect to 6.

The last observation together with Lemma 3.4 immediately implies the
following: if µ′ ∈ supp V and α ∈ ∆= such that µ′ + α ∈ s(V ) then there exists
minimal ξ′ ∈ µ′ + ∆= such that ξ′ + P+

= ⊂ s(V ). Otherwise, one can easy find
0 6= v ∈ V such that Gv = 0.

Consider the subsets H± of Hµ defined as follows: H± = µ+∆±< . Suppose
that H− ⊂ supp V (H+ ⊂ supp V ). Then H+ ⊂ s(V ) (H− ⊂ s(V )) by
Lemma 3.7 and we obtain that V contains a semi-primitive element. Hence we
can fix elements ξ′ ∈ H− and ξ as above. Set β = ξ − ξ ′ ∈ ∆+

< .

Consider the non-trivial order 6 on ∆ (and thus on P ) such that ∆6+ =
P+
= ∪±β +P+

= . Now Lemma 3.7 guarantees that ξ+P6+ ⊂ s(V ) which completes
the proof of the theorem.

5. Examples

Example of cut G-modules with semi-primitive elements can easily be constructed
as the unique simple quotients of Verma modules using partitions of ∆ as it was
done for example in [4, 8]. At the same time, examples of dense modules also
can be constructed by using the standard technique. Unlike the classical case of
affine Kac-Moody Lie algebras we can not state that any cut G-module contains
a semi-primitive element. The aim of this section is to construct an example of a
simple cut module without semi-primitive elements.

Let P= = Z∆= and consider an order 6 on P= that satisfies the following
condition: for any 0 6 x 6 y , x, y ∈ P= there exists k ∈ N such that y 6 kx.
Let P+ denote the set {x ∈ P= | 0 6 x, x 66 0}. Fix α ∈ ∆+

< and set ∆+ =
P+ ∪ {α} ∪ α + P+ ∪ −α + P+ , ∆− = −∆+ . Let G = G+ ⊕ H ⊕ G− be the
corresponding decomposition of G. Consider C as the trivial G+⊕H-module and
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form a module M as follows:

M = U(G)
⊗

U(G+⊕H)

C.

Let P (−) be the semigroup generated by ∆−∪{0}. Clearly, M is a weight module
and suppM = P (−). Let N be the subspace of M generated by all Mλ , λ 6= 0.

Proposition 5.1. 1. N is a G-submodule of M .

2. N is simple.

3. N contains no semi-primitive elements.

Proof. The first statement follows from the fact that N is the kernel of the
canonical epimorphism of M onto trivial G-module. The last one follows from
the second and the description of suppN . Thus we only need to prove the second
statement.

Let v denote a canonical generator of M . First we note that it is enough
to show that for any w ∈ N the module Nw = U(G)w contains an element of the
form Xβv for some β ∈ ∆− . Fix a non-trivial w . The order 6 trivially induces
an order on ∆− which we will also denote by 6. Thus by PBW theorem w can be
written as a linear combination of the monomials and, moreover, each monomial
is a product of Xβ for β ∈ ∆− . By the length of a monomial we will mean the
number of multiplicands occurring in it.

Fix the set S(w) of monomials of maximal length in w and choose the
smallest β1 that occurs as a multiplicand in these monomials. Applying the
elements Xβ2 to w such that −β2 is smaller than arbitrary multiplicand of a
monomial from S(w) but β1 one can easily show that suppNw = suppN and,
moreover, that Nw contains an element w1 such that |S(w1)| = 1. Thus we can
assume that |S(w)| = 1.

Now we can consider the sets S1 = {−β1 +Zα} ∩∆, S2 = S1 + β for some
β ∈ ∆+ small enough and S3 = S1 ∪ S2 . Consider the elements Xγw , γ ∈ S3 .
One can see that β can be chosen in such way that at least one of the elements
Xγw is non-zero. Now it is easy to obtain that any monomial occurring in this
non-zero element has length smaller than |S(w)|. Trivial induction completes our
proof.
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