The supports of simple modules over toroidal algebras

Volodymyr Mazorchuk

Communicated by G. I. Olshanski

Abstract. We present a description of possible supports for simple modules over toroidal Lie algebras associated with $\mathfrak{sl}(2,\mathbb{C})$. This description is analogous to that known for finite-dimensional simple Lie algebras and affine Lie algebras.

1. Introduction

The problem to describe the support of a simple weight module over a Lie algebra with triangular decomposition is very popular and has been studied in many cases. The final results were obtained for complex simple finite-dimensional algebras in [1], for superalgebras in [2], for the $A_1^{(1)}$ case in [4], for all affine Lie algebras by I. Penkov (work in progress), for rank two generalized Witt algebras in [6] and for Harish-Chandra modules over higher rank Virasoro algebras in [7].

In the present paper we give the complete answer on the formulated question in the case of an arbitrary toroidal Lie algebra that can be obtained from $\mathfrak{sl}(2)$ by the method described in [3]. In fact, the final result states that any simple weight module over such an algebra is either dense (i.e. for any weight λ and root β an element $\lambda + \beta$ is again a weight) or cut (i.e. its support is a subset of the support of some induced module).

The paper is organized as follows: In Section 1 we collect all necessary preliminaries and formulate the main result of this paper. In Section 3 we will prove some auxiliary lemmas that will be used in the proof of the main theorem presented in Section 4. Finally, in Section 5 we construct an example of a simple cut \mathfrak{G} -module without semi-primitive elements.

2. Toroidal algebras and main theorem

Let \mathbb{C} denote the set of complex numbers, \mathbb{Z} denote the set of integers, \mathbb{Z}_+ denote the set of non-negative integers and \mathbb{N} denote the set of positive integers. For a Lie algebra L we will denote by U(L) its universal enveloping algebra.

Fix $n \in \mathbb{N}$. Let $\mathfrak{A} = \mathfrak{sl}(2, \mathbb{C})$ be the Lie algebra of 2×2 complex matrix with zero trace and $A = \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ be the algebra of Laurent polynomials

with complex coefficients. Let e, f, h be the standard basis of \mathfrak{A} . Consider the Lie algebra $\mathfrak{G}_A = \mathfrak{A} \otimes_{\mathbb{C}} A$ with bracket $[x \otimes a, y \otimes b] = [x, y] \otimes ab, x, y \in \mathfrak{A}$ and $a, b \in A$. Let \mathfrak{G} be the universal covering algebra for \mathfrak{G}_A ([5]). The algebra \mathfrak{G} is usually called toroidal. To get the representation theory of \mathfrak{G} reasonable we factor out the central ideal consisting of the span of all homogeneous elements of non-zero degree in Ω_A/dA and obtain the algebra \mathfrak{G} . Then for our convenience we will extend \mathfrak{G} by commuting differentials d_1, \ldots, d_n such that $[d_i, x \otimes t_1^{k_1} \ldots t_n^{k_n}] = k_i x \otimes t_1^{k_1} \ldots t_n^{k_n}, x \in \mathfrak{A}$ (d_i commutes with Ω_A/dA) to form the Lie algebra \mathfrak{G} .

Let $H = \langle h \rangle$ be the standard Cartan subalgebra of \mathfrak{A} . Then

$$\mathfrak{H} = (H \otimes 1) \oplus \Omega_A / dA \oplus \langle d_1, \dots, d_n \rangle$$

is the standard Cartan subalgebra of \mathfrak{G} . Let $\Delta \subset \mathfrak{H}^*$ be the root system of \mathfrak{G} with respect to \mathfrak{H} . For $\beta \in \Delta$ let \mathfrak{G}_β denote the corresponding root space in \mathfrak{G} . In a standard way Δ can be decomposed into the disjoint union $\Delta = \Delta_{\mathfrak{R}} \cup \Delta_{\mathfrak{R}}$, where $\Delta_{\mathfrak{R}}$ is the set of roots of elements of the form $e \otimes a$ or $f \otimes a$, a is a monomial in A and $\Delta_{\mathfrak{F}} = \Delta \setminus \Delta_{\mathfrak{R}}$. We will also denote by $\Delta_{\mathfrak{R}}^+$ ($\Delta_{\mathfrak{R}}^-$) the set of roots of the elements of the form $e \otimes a$ ($f \otimes a$) and by \mathfrak{G}_+ (\mathfrak{G}_-) the corresponding subalgebras in \mathfrak{G} . A root $\alpha \in \Delta_{\mathfrak{F}}$ will be called simple if α/k is not a root for any $k \in \mathbb{N}$. It follows easily from the definition of \mathfrak{G} that the sum of two elements from $\Delta_{\mathfrak{R}}^+$ (or $\Delta_{\mathfrak{R}}^-$) is never a root and the sum of any element form $\Delta_{\mathfrak{R}}^+$ (or $\Delta_{\mathfrak{R}}^-$) with any element from $\Delta_{\mathfrak{F}}$ is always a root.

For a \mathfrak{G} -module V and $\lambda \in \mathfrak{H}^*$ let $V_{\lambda} = \{v \in V \mid hv = \lambda(h)v \text{ for all } h \in \mathfrak{H}\}$ denote the weight subspace of V corresponding to a weight λ . A module V is said to be a weight module provided it can be decomposed into a direct sum of its weight subspaces. For a weight \mathfrak{G} -module V let supp V be the set of all weights of V with non-trivial weight subspaces. This set will be called the support of V.

Let P denote the abelian group spanned by Δ . One can easily see that $P \simeq \mathbb{Z}^{n+1}$. For any order $\leq on P$ (here and on by an order we mean an order on an abelian group, hence, we assume that this order is compatible with the group structure) we will denote $P_+^{\leq} = \{p \in P \mid 0 \leq p, p \notin 0\}, P_-^{\leq} = \{p \in P \mid p \leq 0, 0 \notin p\}, P_0^{\leq} = \{p \in P \mid 0 \leq p, p \leq 0\}$ and set $\Delta_i^{\leq} = P_i^{\leq} \cap \Delta, i = 0, +, -$. We will say that \leq is non-trivial if P_+^{\leq} is not empty.

Clearly, $\operatorname{supp} V \subset \lambda + P$ for any simple weight module V and any $\lambda \in \operatorname{supp} V$. A weight module V is called dense if $\operatorname{supp} V = \lambda + P$, $\lambda \in \operatorname{supp} V$ and cut if $\operatorname{supp} V \subset \lambda + P^{\leq}_{-}$ for a non-trivial order \leq and some $\lambda \in \mathfrak{H}^*$.

For any weight module V and any $v \in V_{\lambda}$ ($\lambda \in \operatorname{supp} V$) we will say that a subset $S \subset \Delta$ is an annihilating v-set provided $\mathfrak{G}_{\beta}v = 0$ for any $\beta \in S$. A non-zero element $v \in V_{\lambda}$ will be called semi-primitive if there exists a non-trivial order \leq on P such that Δ_{+}^{\leq} is an annihilating v-set. Any subset $S \subset \Delta$ can be enlarged by adding to it all the roots of the form $\alpha + \beta$, where $\alpha, \beta \in S$ and at least one of them belongs to Δ_{\Re} . Starting from S we can enlarge it to the set S_1 , then we can enlarge the obtained set to the set S_2 and so on. The set $\overline{S} = \bigcup_{i=1}^{\infty} S_i$ will be called the additive closure of S. The following lemma follows easily from the fact that dim $\mathfrak{G}_{\delta} = 1$ for all $\delta \in \Delta_{\Im}$.

Lemma 2.1. Let V be a weight \mathfrak{G} -module, $\lambda \in \operatorname{supp} V$, $v \in V_{\lambda}$ and S be an annihilating v-set. Then \overline{S} is an annihilating v-set.

Now we can formulate the main result of this paper:

Theorem 2.2. Let V be a simple weight \mathfrak{G} -module. Then V is either dense or cut.

We have to remark that in the case n = 1 our algebra \mathfrak{G} is an affine Lie algebra. In this case theorem 2.2 was obtained in [4].

3. Preliminary lemmas

For a simple weight \mathfrak{G} -module V we will denote by P(V) the set $\lambda + P$, $\lambda \in \operatorname{supp} V$. Clearly, P(V) does not depend on the choice of λ . We also set $s(V) = P(V) \setminus \operatorname{supp} V$. During this section we fix a non-trivial non-dense simple weight \mathfrak{G} -module V. For a fixed $\mu \in \mathfrak{H}^*$ we will write \mathcal{H}_{μ} for the set $\{\mu\} \cup \mu + \Delta$. We note that s(V) is not empty since V is not dense.

A non-zero element v of a weight module V will be called bounded of type $(\beta_1, \ldots, \beta_n)$, where $\beta_i \in \Delta_{\mathfrak{F}}$, $1 \leq i \leq n$ are linearly independent simple roots provided there exist $\alpha^{\pm} \in \Delta_{\mathfrak{F}}^{\pm}$ such that $\{\alpha^{\pm} + k_1\beta_1 + \cdots + k_n\beta_n \mid k_i \in \mathbb{Z}_+, i = 1, \ldots, n\}$ is an annihilating v-set.

Lemma 3.1. There exists $\mu \in s(V)$ and $\lambda \in \operatorname{supp} V \cap \mathcal{H}_{\mu}$ such that $\mu - \lambda \in \Delta_{\Re}$. **Proof.** Clearly, there exists $\mu_1 \in s(V)$ such that $\operatorname{supp} V \cap \mathcal{H}_{\mu_1}$ is not empty. If $\mu_1 + \Delta_{\Re} \subset s(V)$ then one can take $\mu \in \mu_1 + \Delta_{\Re}$ and $\lambda \in \operatorname{supp} V \cap \mathcal{H}_{\mu_1}$.

Lemma 3.2. Suppose that $v \in V_{\lambda}$ is a non-zero element. Then either $\mathfrak{G}_+ v \neq 0$ $(\mathfrak{G}_- v \neq 0)$ or v is semi-primitive.

Proof. Follows from the fact that by setting $\Delta_+^{\leqslant} = \Delta_{\Re}^+$ one defines a non-trivial order \leqslant on P.

Lemma 3.3. Let $v \in V_{\lambda}$ and $S \subset \Delta$ be an annihilating v-set. Suppose that $g \in \mathfrak{G}_{\beta}$ and $S_1 \subset S$ such that $\beta + S_1 \cap \Delta \subset S$. Then S_1 is an annihilating gv-set.

Proof. Let $\alpha \in S_1$ and $x \in \mathfrak{G}_{\alpha}$. One has xgv = [x,g]v + gxv. The right hand side of this equality will be zero as soon as [x,g] = 0 since xv = 0. Moreover, if $[x,g] \neq 0$ it follows that $[x,g] \in \mathfrak{G}_{\alpha+\beta}$ with $\alpha + \beta \in S$. Hence xgv = 0 and the statement follows.

Lemma 3.4. Let V be a simple weight module and $0 \neq v \in V$ be a bounded element of type $(\beta_1, \ldots, \beta_n)$. Then any non-zero element in V is bounded of the same type.

Proof. Let $0 \neq w \in V$. Since V is simple there exists $u \in U(\mathfrak{G})$ such that w = uv. Thus it is sufficient to prove the statement of the lemma for any element of the form xv where $x \in \mathfrak{G}_{\gamma}, \gamma \in \Delta$.

Consider an r-dimensional Euclidian space X and fix linearly independent $x_1, \ldots, x_r \in X$. For $y \in X$ set C_y be the cone consisting of all elements of the form $y + s_1x_1 + \cdots + s_rx_r$ where s_i are non-negative for $1 \leq i \leq r$. Since X is r-dimensional it follows immediately that for any two cones C_{y_1} and C_{y_2} there exists $y \in X$ such that $C_y \subset C_{y_1} \cap C_{y_2}$. The statement now follows from Lemma 3.3.

Lemma 3.5. Let V be a non-trivial simple weight \mathfrak{G} -module and $v \in V$ be a non-zero bounded element of type β_1, \ldots, β_n . Suppose that V is not dense and $\mu \in s(V)$. Then $\mu + s_1\beta_1 + \cdots + s_n\beta_n \in s(V)$ for $s_i \in \mathbb{N}$, $1 \leq i \leq n$. **Proof.** Suppose that $\lambda = \mu + s_1\beta_1 + \cdots + s_n\beta_n \in \text{supp } V$ for some $s_i \in \mathbb{N}$, $1 \leq i \leq n$ and $0 \neq w \in V_{\lambda}$. Then w is a bounded element of type β_1, \ldots, β_n by Lemma 3.4. Let T denotes the corresponding annihilating w-set. Then the additive closure of $T \cup \{\mu - \lambda\}$ is an annihilating w-set by Lemma 3.3. Using previous lemmas one can show that this closure coincides with Δ and thus w generates a trivial \mathfrak{G} -submodule in V and we obtain a contradiction.

Lemma 3.6. Let V be a simple weight \mathfrak{G} -module. Suppose that there exists $\alpha \in \Delta_{\mathfrak{R}}, \ 0 \neq X_{\alpha} \in \mathfrak{G}_{\alpha}, \ k \in \mathbb{N}$ and $0 \neq v \in V$ such that $X_{\alpha}^{k}v = 0$. Then X_{α} acts locally nilpotent on V.

Proof. Follows from the fact that adX_{α} is nilpotent on \mathfrak{G} .

Lemma 3.7. Let V be a simple weight non-dense \mathfrak{G} -module, $\lambda \in \operatorname{supp} V$, $\mu \in s(V)$ such that $\mu - \lambda = k\alpha$ for some $\alpha \in \Delta_{\Re}$ and $k \in \mathbb{N}$. Then $\lambda + l\alpha \notin \operatorname{supp} V$ for all $l \geq k$.

Proof. Let $0 \neq v \in V_{\lambda}$ and $0 \neq X_{\alpha} \in \mathfrak{G}_{\alpha}$. Then $X_{\alpha}^{k}v = 0$ and thus X_{α} is locally nilpotent on V by Lemma 3.6. Suppose that $\lambda + l\alpha \in \operatorname{supp} V$ for some $l \geq k$. Then $V_{\lambda+l\alpha} \neq 0$ and $\mathfrak{G}_{-\alpha}^{l-k}V_{\lambda+l\alpha} = 0$ and thus $X_{-\alpha}$ is also locally nilpotent on V. Since $\mathfrak{G}_{\pm\alpha}$ generate an $\mathfrak{sl}(2)$ -subalgebra of \mathfrak{G} it follows that $\mathfrak{sl}(2)$ -module $\bigoplus_{m \in \mathbb{Z}} V_{\lambda+m\alpha}$ contains two finite dimensional subquotients and their supports have empty intersection. The last is impossible and thus we obtain the statement of the Lemma.

4. Proof of the main theorem

Suppose that V is a simple weight non-dense \mathfrak{G} -module and n > 1 (for n = 1 our proof reduces to that from [4]). Clearly, the existence of a semi-primitive vector in V will imply the statement of the main theorem. It is impossible to prove the existence of a semi-primitive element in the general case, so, in fact we will prove the following statement: Let V be a non-dense simple \mathfrak{G} -module, then either there exists a semi-primitive element in V or V is cut. Thus we can suppose that there were no semi-primitive elements in V. Our first goal is to prove that there exist some bounded element in V.

Consider the elements $\mu \in s(V)$ and $\lambda \in \text{supp } V$ given by Lemma 3.1. Without loss of generality we can assume that $\mu - \lambda \in \Delta_{\Re}^+$. Let $v \in V_{\lambda}$ be a non-zero element. Then the set $S = \{\mu - \lambda\}$ is an annihilating v-set.

Since v is not semi-primitive, by Lemma 3.2 there exist $\hat{\alpha} \in \Delta_{\Re}^+$ and $g \in \mathfrak{G}_{\hat{\alpha}}$ such that $v_1 = gv \neq 0$. Let δ be a simple root such that $\mu - \lambda - \hat{\alpha} = N\delta$ for some $N \in \mathbb{N}$. One can choose $\hat{\alpha}$ such that $\mathfrak{G}_{\hat{\alpha}+k\delta}v = 0, \ 0 < k < N$.

By Lemma 3.3 we have that S is an annihilating v_1 -set. Moreover, we can enlarge S to an annihilating v_1 -set S_1 by elements $\hat{\alpha} + k\delta$, 0 < k < N, $N\delta$ and thus by $\mu - \lambda + kN\delta$, $k \in \mathbb{N}$. Applying \mathfrak{G}_{δ} to v_1 we can find an element $0 \neq v_2 \in V_{\mu+N_1\delta}$ such that $S_2 = \{\delta\} \cup \{\mu - \lambda + k\delta \mid k \in \mathbb{N}\}$ is an annihilating v_2 -set.

Since v_2 is not semi-primitive, using Lemma 3.2 and the same procedure as above one can find an element $\alpha \in \Delta_{\Re}^+$ and $g_1 \in \mathfrak{G}_{\alpha}$ such that $v_3 = g_1 v_2 \neq 0$. Suppose that $\alpha = \mu - \lambda + k\delta$ for some $k \in \mathbb{Z}$ and it is impossible to choose α that is not of this form. Then $\Delta_{\Re}^+ \setminus \{\mu - \lambda + k\delta \mid k \in (\mathbb{Z} \setminus \mathbb{N})\}$ is an annihilating v_3 -set. Applying to v_3 any non-zero element x from \mathfrak{G}_{β} where $\beta \in \Delta_{\mathfrak{F}}$ such that β and δ are linearly independent we immediately obtain that either v_3 or $xv_3 \neq 0$ is semi-primitive.

Thus we can choose α such that $\alpha \neq \mu - \lambda + k\delta$ for all $k \in \mathbb{Z}$. Let α_1 be the weight of v_3 . In this case an additive closure T of $\{\mu - \lambda + k\delta \mid k \in \mathbb{N}\} \cup \{\mu - \alpha_1\}$ is an annihilating v_3 -set by Lemma 2.1 and Lemma 3.3. Moreover, one can see that α can be chosen such that it would be possible to find simple $\beta_1, \beta_2 \in \Delta_{\mathfrak{R}}$ and $\gamma^{\pm} \in \Delta_{\mathfrak{R}}^{\pm}$ such that T contains all $\gamma^{\pm} + s_1\beta_1 + s_2\beta_2$ for $s, s_2 \in \mathbb{Z}_+$.

Applying the same procedure to v_3 with the use of elements from Δ_{\Re}^- and then again from Δ_{\Re}^+ and so on, one can construct a bounded element $0 \neq w \in V$ of type β_1, \ldots, β_n for some simple linearly independent $\beta_i \in \Delta_{\Im}, 1 \leq i \leq n$. Thus, any element of V should be bounded of type β_1, \ldots, β_n by Lemma 3.4. By Lemma 3.5 we also obtain that $\mu + s_1\beta_1 + \cdots + s_n\beta_n \in s(V)$ for $s_i \in \mathbb{N}, 1 \leq i \leq n$.

Now, using Lemma 3.4 and the same arguments as in the preceding paragraph it is easy to see that there exists a non-trivial order $\leq_{\mathfrak{F}}$ on $\Delta_{\mathfrak{F}}$ and $\xi \in (\mu + \Delta_{\mathfrak{F}}) \cup \{\mu\}$ such that $\xi + P_{\mathfrak{F}}^+ \subset s(V)$, where $P_{\mathfrak{F}}^+ = \{\alpha \in \Delta_{\mathfrak{F}} \mid \alpha \not\leq_{\mathfrak{F}} 0, 0 \leq_{\mathfrak{F}} \alpha\}$. Indeed, fixing the support of V and assuming that this statement is false it follows with the same arguments as above that s(V) can be enlarged. Clearly, we can choose ξ minimal with respect to \leq .

The last observation together with Lemma 3.4 immediately implies the following: if $\mu' \in \text{supp } V$ and $\alpha \in \Delta_{\mathfrak{F}}$ such that $\mu' + \alpha \in s(V)$ then there exists minimal $\xi' \in \mu' + \Delta_{\mathfrak{F}}$ such that $\xi' + P_{\mathfrak{F}}^+ \subset s(V)$. Otherwise, one can easy find $0 \neq v \in V$ such that $\mathfrak{G}v = 0$.

Consider the subsets \mathcal{H}_{\pm} of \mathcal{H}_{μ} defined as follows: $\mathcal{H}_{\pm} = \mu + \Delta_{\Re}^{\pm}$. Suppose that $\mathcal{H}_{-} \subset \operatorname{supp} V$ ($\mathcal{H}_{+} \subset \operatorname{supp} V$). Then $\mathcal{H}_{+} \subset s(V)$ ($\mathcal{H}_{-} \subset s(V)$) by Lemma 3.7 and we obtain that V contains a semi-primitive element. Hence we can fix elements $\xi' \in \mathcal{H}_{-}$ and ξ as above. Set $\beta = \xi - \xi' \in \Delta_{\Re}^{+}$.

Consider the non-trivial order \leq on Δ (and thus on P) such that $\Delta_+^{\leq} = P_{\Im}^+ \cup \pm \beta + P_{\Im}^+$. Now Lemma 3.7 guarantees that $\xi + P_+^{\leq} \subset s(V)$ which completes the proof of the theorem.

5. Examples

Example of cut \mathfrak{G} -modules with semi-primitive elements can easily be constructed as the unique simple quotients of Verma modules using partitions of Δ as it was done for example in [4, 8]. At the same time, examples of dense modules also can be constructed by using the standard technique. Unlike the classical case of affine Kac-Moody Lie algebras we can not state that any cut \mathfrak{G} -module contains a semi-primitive element. The aim of this section is to construct an example of a simple cut module without semi-primitive elements.

Let $P_{\Im} = \mathbb{Z}\Delta_{\Im}$ and consider an order \leq on P_{\Im} that satisfies the following condition: for any $0 \leq x \leq y$, $x, y \in P_{\Im}$ there exists $k \in \mathbb{N}$ such that $y \leq kx$. Let P_+ denote the set $\{x \in P_{\Im} \mid 0 \leq x, x \leq 0\}$. Fix $\alpha \in \Delta_{\Re}^+$ and set $\Delta_+ = P_+ \cup \{\alpha\} \cup \alpha + P_+ \cup -\alpha + P_+, \Delta_- = -\Delta_+$. Let $\mathfrak{G} = \mathfrak{G}_+ \oplus \mathfrak{H} \oplus \mathfrak{G}_-$ be the corresponding decomposition of \mathfrak{G} . Consider \mathbb{C} as the trivial $\mathfrak{G}_+ \oplus \mathfrak{H}$ -module and form a module M as follows:

$$M = U(\mathfrak{G}) \bigotimes_{U(\mathfrak{G}_+ \oplus \mathfrak{H})} \mathbb{C}.$$

Let P(-) be the semigroup generated by $\Delta_{-} \cup \{0\}$. Clearly, M is a weight module and supp M = P(-). Let N be the subspace of M generated by all M_{λ} , $\lambda \neq 0$.

Proposition 5.1. 1. N is a \mathfrak{G} -submodule of M.

- 2. N is simple.
- 3. N contains no semi-primitive elements.

Proof. The first statement follows from the fact that N is the kernel of the canonical epimorphism of M onto trivial \mathfrak{G} -module. The last one follows from the second and the description of supp N. Thus we only need to prove the second statement.

Let v denote a canonical generator of M. First we note that it is enough to show that for any $w \in N$ the module $N_w = U(\mathfrak{G})w$ contains an element of the form $X_{\beta}v$ for some $\beta \in \Delta_-$. Fix a non-trivial w. The order \leq trivially induces an order on Δ_- which we will also denote by \leq . Thus by PBW theorem w can be written as a linear combination of the monomials and, moreover, each monomial is a product of X_{β} for $\beta \in \Delta_-$. By the length of a monomial we will mean the number of multiplicands occurring in it.

Fix the set S(w) of monomials of maximal length in w and choose the smallest β_1 that occurs as a multiplicand in these monomials. Applying the elements X_{β_2} to w such that $-\beta_2$ is smaller than arbitrary multiplicand of a monomial from S(w) but β_1 one can easily show that $\sup N_w = \sup N$ and, moreover, that N_w contains an element w_1 such that $|S(w_1)| = 1$. Thus we can assume that |S(w)| = 1.

Now we can consider the sets $S_1 = \{-\beta_1 + \mathbb{Z}\alpha\} \cap \Delta$, $S_2 = S_1 + \beta$ for some $\beta \in \Delta_+$ small enough and $S_3 = S_1 \cup S_2$. Consider the elements $X_{\gamma}w$, $\gamma \in S_3$. One can see that β can be chosen in such way that at least one of the elements $X_{\gamma}w$ is non-zero. Now it is easy to obtain that any monomial occurring in this non-zero element has length smaller than |S(w)|. Trivial induction completes our proof.

6. Acknowledgments

The author would like to thank Professor V. Futorny for stimulating discussions and to CRDF (grant UM1-327) for financial support.

References

- [1] Cylke, A., and V. Futorny, S. Ovsienko, On the support of irreducible weight modules, Preprint 96-011, Bielefeld University.
- [2] Dimitrov, I., and O. Mathieu, I. Penkov, On the structure of weight modules, to appear in Transactions of the Amer. Math. Soc.
- [3] Fabbri, M. A., and R. V. Moody, *Irreducible representations of Virasoro-Toroidal Lie algebras*, Commun. Math. Phys. **159** (1994), 1–13.

366

Mazorchuk

- [4] Futorny, V., Irreducible non-dense $A_1^{(1)}$ -modules, Pac. J. Math., **172** (1996), 83–99.
- [5] Kassel, C., Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra 34 (1985), 265–275.
- [6] Mazorchuk, V., Futorny theorem for generalized Witt algebras of rank 2, Comm. Alg. **25** (1997), 533–541.
- [7] —, On the support of simple Harish-Chandra modules over higher rank Virasoro algebra, to appear.
- [8] —, Verma modules over generalized Witt algebras, to appear in Compositio Math.

Mechanics and Mathematics Kyiv Taras Shevchenko University 64, Volodymyrska st. 252033 Kyiv Ukraine e-mail: mazorchu@uni-alg.kiev.ua

Received May 1, 1998 and in final form August 14, 1998