Transformations Groups of the Andersson-Perlman Cone

Erhard Neher*
Communicated by J. Faraut

Abstract

An Andersson-Perlman cone is a certain subcone $\Omega(\mathcal{K})$ of the symmetric cone Ω of a Euclidean Jordan algebra. We exhibit a subgroup of the automorphism group of Ω which operates transitively on $\Omega(\mathcal{K})$ and show that $\Omega(\mathcal{K})$ is a simply-connected submanifold of Ω.

1. Introduction.

Andersson-Perlman cones in the setting of Euclidean Jordan algebras (henceforth abbreviated as AP cones) were introduced by H. Massam and the author in [MN] as a generalization of certain cones defined by the statisticians S. A. Andersson and M. D. Perlman for real symmetric matrices [AP]. All mathematical results in $[\mathrm{AP}]$ were generalized in $[\mathrm{MN}]$ to the setting of Euclidean Jordan algebras, except the existence of transitive transformation groups which play a predominant role in the development in [AP]. In fact, the paper [MN] stresses a different, perhaps more direct approach to the description of Andersson-Perlman cones by employing Peirce decompositions and Frobenius transformations.

In this note we show that one can also generalize the results of [AP] on transitive groups to the framework of Andersson-Perlman cones in Euclidean Jordan algebras. Our interest in these groups is explained in the following remarks. An Andersson-Perlman cone is a subcone $\Omega(\mathcal{K})$ of the cone Ω of an Euclidean Jordan algebra V defined in terms of a complete orthogonal system $\mathcal{E}=\left(e_{1}, \ldots, e_{n}\right)$ of idempotents of V and a ring \mathcal{K} of subsets of $I=\{1, \ldots, n\}$, see $\mathbf{6}$. If Ω_{i} denotes the symmetric cone of the Peirce-1-space $V\left(e_{i}, 1\right)$ of e_{i} then always

$$
\Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{n} \subset \Omega(\mathcal{K}) \subset \Omega,
$$

and both upper and lower bounds can be obtained by varying \mathcal{K}. Thus, one may consider $\Omega(\mathcal{K})$ as an interpolation between Ω and $\Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{n}$. In the

[^0]same spirit, the transitive transformation group T (denoted $T_{\mathcal{E}, \preceq}$ in the paper) of $\Omega(\mathcal{K})$ interpolates various well-known subgroups of the automorphism group $G(\Omega)=\{g \in \mathrm{GL}(V) ; g \Omega=\Omega\}$ of Ω. In general, T is a semidirect product of a unipotent subgroup N of $G(\Omega)$ (denoted $N_{\mathcal{E}, \prec}$ in the paper) and the real reductive group
\[

$$
\begin{equation*}
M_{\mathcal{E}}=\left\{g \in G(\Omega) ; g \Omega_{i}=\Omega_{i}\right\}=P\left(\Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{n}\right) \cdot K_{\mathcal{E}} \tag{1}
\end{equation*}
$$

\]

where $K_{\mathcal{E}}=\left\{f \in \operatorname{Aut} V ; f e_{i}=e_{i}\right.$ for $\left.1 \leq i \leq n\right\}$. Observe that (1) is the Cartan decomposition of $M_{\mathcal{E}}$. We always have

$$
\begin{equation*}
M_{\mathcal{E}} \subset T=M_{\mathcal{E}} \cdot N \subset G(\Omega) \tag{2}
\end{equation*}
$$

and both bounds are attained. For example, if $\Omega(\mathcal{K})=\Omega$ and \mathcal{E} is a Jordan frame then N is the so-called strict triangular subgroup [FK], while if $\mathcal{E}=\{e\}(n=1)$ then also $\Omega(\mathcal{K})=\Omega, N=\{\operatorname{Id}\}$ and $M_{\mathcal{E}}=G(\Omega)$. In this case, (1) is just the standard Cartan decomposition of $G(\Omega)$.

2. Notation and review.

Our basic reference for Jordan algebras is [FK]. Some of the results and notations used are summarized below.

Throughout, V denotes a Euclidean Jordan algebra with identity element e, left multiplication $L(u)$ defined by $L(u) v=u v(u, v \in V)$ and quadratic representation P given by $P(u) v=2 u(u v)-u^{2} v$. The linearization of P is

$$
\begin{aligned}
\{u v w\} & :=P(u, w) v:=P(u+w) v-P(u) v-P(w) v \\
& =2 u(v w)+2 w(u v)-2(u w) v
\end{aligned}
$$

for $(u, v, w \in V)$. The Jordan triple system left multiplication $L(u, v)$ (denoted $u \square v$ in $[\mathrm{FK}])$ is given by $L(u, v)=2(L(u v)+[L(u), L(v)])$ and hence $L(u, v) w=$ $P(u, w) v$. For any endomorphism φ of V, φ^{*} is the adjoint of φ with respect to the positive definite trace form of V.

We will use the term "Lie group" and "Lie subgroup" as defined in $[B]$. In particular, any Lie subgroup of a Lie group is closed and has the induced topology. Closed subgroups of a Lie group are always Lie subgroups in a unique way.

We denote the symmetric cone of V by $\Omega=\Omega(V)$. This is an open convex cone which is homogeneous with respect to the group $G(\Omega)=\{g \in$ $\mathrm{GL}(V) ; g \Omega=\Omega\}$, the automorphism group of Ω. The group $G(\Omega)$ is a Lie subgroup of $\mathrm{GL}_{\mathbb{R}}(V)$. Its identity component will be denoted by G. Moreover, $G(\Omega)$ is an open subgroup of the structure group of V, defined as the group of all invertible endomorphisms g of V with the property

$$
\begin{equation*}
P(g x)=g P(x) g^{*} \tag{1}
\end{equation*}
$$

for all $x \in V$, or, equivalently,

$$
g L(u, v) g^{-1}=L\left(g u, g^{*-1} v\right)
$$

for all $u, v \in V$ ([FK; III. 5 and VIII.2]). The Lie algebra $\mathfrak{g}(V)$ of the structure group of V coincides with the Lie algebra of $G(\Omega)$. It consists of all endomorphisms X of V satisfying for all $u, v \in V$

$$
\begin{equation*}
[X, L(u, v)]=L(X u, v)-L\left(u, X^{*} v\right) \tag{2}
\end{equation*}
$$

([FK; VIII.2.6]). The group of automorphisms of V will be denoted Aut V. For any $g \in G(\Omega)$ one knows ([FK; III.5] and [FK; VIII.2.4]):

$$
\begin{equation*}
g e=e \Leftrightarrow g g^{*}=I d \Leftrightarrow g \in \operatorname{Aut} V \tag{3}
\end{equation*}
$$

In particular, Aut V is a maximal compact subgroup of $G(\Omega)$.
Following [FK] we denote the Peirce spaces of an idempotent $c \in V$ by $V(c, i)=\{v \in V ; c v=i v\}, i \in\left\{0, \frac{1}{2}, 1\right\}$. The Peirce decomposition of an arbitrary $y \in V$ is written in the form $y=y_{1}+y_{12}+y_{0}$ where $y_{i} \in V(c, i)$ for $i=0,1$ and $y_{12} \in V\left(c, \frac{1}{2}\right)$. The symmetric cone of the Euclidean Jordan algebra $V(c, 1)$ will be denoted Ω_{c}. For an idempotent c and $z \in V\left(c, \frac{1}{2}\right)$ the Frobenius transformation on V is defined as $\left.\tau_{c}(z)=\exp (L(z, c))\right) \in G$. It is straightforward to check that $\tau_{c}: V\left(c, \frac{1}{2}\right) \rightarrow G$ is a homomorphism, thus $\tau_{c}\left(z+z^{\prime}\right)=\tau_{c}(z) \tau_{c}\left(z^{\prime}\right)$ and $\tau_{c}(-z)=\tau_{c}(z)^{-1}$. If $x=x_{1}+x_{12}+x_{0}$ is the Peirce decomposition of $x \in V$ with respect to c then

$$
\begin{align*}
\tau_{c}(z) x & =x_{1} \oplus 2 z x_{1}+x_{12} \oplus 2(e-c)\left[z\left(z x_{1}\right)+z x_{12}\right]+x_{0} \tag{4}\\
& =x_{1} \oplus 2 z x_{1}+x_{12} \oplus P(z) x_{1}+2(e-c)\left(z x_{12}\right)+x_{0} .
\end{align*}
$$

The adjoint of the Frobenius transformation operates as follows [MN; 2.7]:

$$
\begin{equation*}
\tau_{c}(z)^{*} x=\left(x_{1}+2 c\left(z x_{12}\right)+P(z) x_{0}\right) \oplus\left(x_{12}+2 z x_{0}\right) \oplus x_{0} \tag{5}
\end{equation*}
$$

3. Frobenius transformations with respect to an orthogonal system.

Throughout, we fix a complete orthogonal system $\mathcal{E}=\left(e_{1}, \ldots, e_{n}\right)$ of (arbitrary) idempotents of V. Thus, $e_{i} e_{j}=\delta_{i j} e_{i}$ and $e_{1}+\cdots+e_{n}=e$. We denote by $V_{i j}, 1 \leq i, j \leq n$, the Peirce spaces of \mathcal{E} [FK IV.2] and define, for $1 \leq i<n$, subspaces

$$
V^{(i)}:=\oplus_{k=i+1}^{n} V_{i k}=V\left(e_{i}, \frac{1}{2}\right) \cap V\left(e_{i+1}+\ldots+e_{n}, \frac{1}{2}\right)
$$

For $x \in V$ we let $x=\sum_{i \leq j} x_{i j}, x_{i j} \in V_{i j}$, be the Peirce decomposition of $x \in V$. We abbreviate $\tau_{i}=\tau_{e_{i}}$ and $\Omega_{i}=\Omega_{e_{i}}=\Omega\left(V_{i i}\right), 1 \leq i \leq n$. By [MN; 2.8] the map

$$
F: V^{(1)} \times \cdots \times V^{(n-1)} \times \Omega_{1} \times \cdots \times \Omega_{n} \quad \rightarrow \quad \Omega
$$

given by

$$
\begin{array}{r}
F\left(z_{1}, \cdots, z_{n-1}, y_{1}, \cdots y_{n}\right):=\tau_{1}\left(z_{1}\right) \cdots \tau_{n-1}\left(z_{n-1}\right)\left(y_{1} \oplus \cdots \oplus y_{n}\right) \\
=\tau_{1}\left(z_{1}\right) y_{1}+\tau_{2}\left(z_{2}\right) y_{2}+\cdots+\tau_{n-1}\left(z_{n-1}\right) y_{n-1}+y_{n}
\end{array}
$$

is a bijection. Even more, we have:

Proposition 3. The map F is a diffeomorphism.
Proof. It follows from the definition of the Frobenius transformation that F is differentiable. Since both manifolds have the same dimension, it suffices to show that the tangent map $T_{\zeta} F$ of F in a point $\zeta=\left(z_{1}, \cdots, z_{n-1}, y_{1}, \cdots y_{n}\right) \in$ $M:=V^{(1)} \times \cdots \times V^{(n-1)} \times \Omega_{1} \times \cdots \times \Omega_{n}$ is injective. For $n=2$ and $\left(u_{1}, v_{1}, v_{2}\right) \in$ $V_{12} \times V_{11} \times V_{22}=T_{\zeta} M$, the tangent space of M at ζ, we have

$$
T_{\zeta} F\left(u_{1}, v_{1}, v_{2}\right)=v_{1} \oplus 2\left(u_{1} y_{1}+z_{1} v_{1}\right) \oplus P\left(z_{1}\right) v_{1}+\left\{z_{1} y_{1} u_{1}\right\}+v_{2} .
$$

Hence, if $T_{\zeta} F\left(u_{1}, v_{1}, v_{2}\right)=0$ we obtain $v_{1}=0$, then $u_{1}=0$ because $4 y_{1}^{-1}\left(y_{1} u_{1}\right)$ $=u_{1}$ by $[\mathrm{MN} ;(2.6 .7)]$ and finally $v_{2}=0$. In general, if $w=\left(u_{1}, \cdots, u_{n-1}\right.$, $\left.v_{1}, \cdots v_{n}\right) \in V^{(1)} \times \cdots \times V^{(n-1)} \times V_{11} \times \cdots \times V_{n n}=T_{\zeta} M$ lies in the kernel of $T_{\zeta} F$ then, since $\tau_{2}\left(z_{2}\right) y_{2}+\cdots+\tau_{n-1}\left(z_{n-1}\right) y_{n-1}+y_{n} \in V\left(e_{1}, 0\right)$, it follows by considering the V_{11} - and $V^{(1)}$-component of $T_{\zeta} F w$ that $v_{1}=0=u_{1}$, but then $w=0$ by induction.

Lemma 4. (a) For $z_{i j} \in V_{i j}, i \neq j$, and $x_{m n} \in V_{m n}$ the Frobenius transformation $\tau_{i}\left(z_{i j}\right)$ operates as follows

$$
\begin{align*}
& \tau_{i}\left(z_{i j}\right)\left(x_{m n}\right) \tag{1}\\
& =x_{m n}+ \begin{cases}2 x_{i i} z_{i j} \oplus P\left(z_{i j}\right) x_{i i} \in V_{i j} \oplus V_{j j} & m=n=i \\
2 e_{j}\left(z_{i j} x_{i j}\right) \in V_{j j} & \{m, n\}=\{i, j\} \\
2 z_{i j} x_{i k} \in V_{j k} & \{m, n\}=\{i, k\}, i, j, k \neq \\
0 & i \notin\{m, n\}\end{cases}
\end{align*}
$$

(b) For $z_{i j} \in V_{i j}$ and $z_{k l} \in V_{k l}$ we have the following commutation formulas:

$$
\begin{align*}
& \tau_{i}\left(z_{i j}\right) \tau_{k}\left(z_{k l}\right)=\tau_{k}\left(z_{k l}\right) \tau_{i}\left(z_{i j}\right) \quad i \notin\{j, k, l\} \quad \text { and } k \notin\{l, i, j\}, \tag{2}\\
& \tau_{i}\left(z_{i j}\right) \tau_{k}\left(z_{k i}\right)=\tau_{k}\left(z_{k i}+2 z_{i j} z_{k i}\right) \tau_{i}\left(z_{i j}\right) \quad|\{i, j, k\}|=3, \tag{3}\\
& \tau_{i}\left(z_{i j}\right) \tau_{j}\left(z_{j l}\right)=\tau_{j}\left(z_{j l}\right) \tau_{i}\left(z_{i j}-2 z_{i j} z_{j l}\right) \quad|\{i, j, l\}|=3 . \tag{4}
\end{align*}
$$

Proof. (a) is immediate from (2.4). The formulas in (b) can be checked by using (1) and a case-by-case analysis. An alternative proof for (2) and (3) goes as follows. Since $\tau_{c}(z)=\exp (L(z, c))$ we have for any invertible endomorphism g of V

$$
\begin{equation*}
g \tau_{k}\left(z_{k l}\right) g^{-1}=\exp \left(g L\left(z_{k l}, e_{k}\right) g^{-1}\right) . \tag{5}
\end{equation*}
$$

By (2.1 $)$

$$
\tau_{i}\left(z_{i j}\right) L\left(z_{k l}, e_{k}\right) \tau_{i}^{-1}\left(z_{i j}\right)=L\left(\tau_{i}\left(z_{i j}\right) z_{k l}, \tau_{i}^{*-1}\left(z_{i j}\right) e_{k}\right)
$$

where $\tau_{i}\left(z_{i j}\right) z_{k l}=z_{k l}+\delta_{l i} 2 z_{i j} z_{k l}$ by (1) and $\tau_{i}\left(z_{i j}\right)^{*-1} e_{k}=\tau_{i}\left(-z_{i j}\right)^{*} e_{k}=e_{k}$ by (2.5). This, together with (5) for $g=\tau_{i}\left(z_{i j}\right)$ implies (2) and (3). One can prove (4) in a similar fashion:

$$
\tau_{j}\left(z_{j l}\right)^{-1} \tau_{i}\left(z_{i j}\right) \tau_{j}\left(z_{i j}\right)=\exp L\left(\tau_{j}\left(-z_{j l}\right) z_{i j}, \tau_{j}\left(z_{j l}\right)^{*} e_{i}\right)=\exp L\left(z_{i j}-2 z_{i j} z_{j l}, e_{i}\right)
$$

4. Transformation groups of Ω defined by \mathcal{E}.

We define

$$
\begin{aligned}
\Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{n} & \left.=\omega_{1}+2+\cdots+\omega_{n} ; \omega_{i} \in \Omega_{i}, 1 \leq i \leq n\right\} \subset \Omega \\
A_{\mathcal{E}} & =P\left(\Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{n}\right)=\exp L\left(V_{11} \oplus V_{22} \oplus \cdots \oplus V_{n n}\right), \\
K_{\mathcal{E}} & =\left\{f \in \operatorname{Aut} V ; f e_{i}=e_{i}, 1 \leq i \leq n\right\}, \\
M_{\mathcal{E}} & =\left\{m \in G(\Omega) ; m V_{i i} \subset V_{i i}, 1 \leq i \leq n\right\} .
\end{aligned}
$$

The second equality in the definition of $A_{\mathcal{E}}$ follows from $P(\exp x)=\exp L(2 x)$, see [FK; II.3.4], and $\Omega=\exp V$, see the proof of [FK; III.2.1]. Clearly, $K_{\mathcal{E}}$ and $M_{\mathcal{E}}$ are Lie subgroups of $G(\Omega)$.

Theorem 5. (a) $M_{\mathcal{E}}=\left\{g \in G(\Omega) ; g V_{i j}=V_{i j}\right.$ for all $\left.i, j\right\}=\{g \in$ $G(\Omega) ; g L\left(e_{i}\right) g^{-1}=L\left(e_{i}\right)$ for $\left.1 \leq i \leq n\right\}$.
(b) $M_{\mathcal{E}}$ operates transitively on $\Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{n} \subset \Omega$. More precisely, $A_{\mathcal{E}} \subset M_{\mathcal{E}}$ and for every $\omega \in \Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{n}$ there exists a unique $a \in A_{\mathcal{E}}$ such that $\omega=a(e)$.
(c) $K_{\mathcal{E}}$ is a subgroup of $M_{\mathcal{E}}$ satisfying

$$
\begin{equation*}
K_{\mathcal{E}}=M_{\mathcal{E}} \cap \text { Aut } V=\left\{m \in M ; m m^{*}=\mathrm{Id}\right\} . \tag{1}
\end{equation*}
$$

(d) Any $m \in M_{\mathcal{E}}$ can be uniquely written in the form $m=a k$ where $a \in A_{\mathcal{E}}$ and $k \in K_{\mathcal{E}}$. Thus, we have a decomposition

$$
\begin{equation*}
M_{\mathcal{E}}=A_{\mathcal{E}} \cdot K_{\mathcal{E}} \approx\left(V_{11} \oplus V_{22} \oplus \cdots \oplus V_{n n}\right) \times K_{\mathcal{E}} \quad \text { (diffeomorphism) } \tag{2}
\end{equation*}
$$

Proof. We abbreviate $A=A_{\mathcal{E}}, K=K_{\mathcal{E}}$ and $M=M_{\mathcal{E}}$.
(a) Let $m \in M$. Since m is invertible, we have $m V_{i i}=V_{i i}$. For $i \neq j$ and $z_{i j} \in V_{i j}$ we have $z_{i j}=\left\{e_{i} z_{i j} e_{j}\right\}$ and hence, by (2.2') and the Peirce multiplication rules,

$$
m z_{i j}=m\left\{e_{i} z_{i j} e_{j}\right\}=\left\{m e_{i} m^{*-1} z_{i j} m e_{j}\right\} \in\left\{V_{i i} V V_{j j}\right\} \subset V_{i j},
$$

whence the first equality in a). The second is then immediate since the Peirce spaces $V_{i j}$ are the joint eigenspaces of the commuting endomorphisms $L\left(e_{i}\right), 1 \leq$ $i \leq n$.
(b) Let $\omega=\omega_{1} \oplus \cdots \oplus \omega_{n} \in \Omega_{1} \oplus \cdots \oplus \Omega_{n}$. Then, by the Peirce multiplication rules, $P(\omega) V_{i i}=P\left(\omega_{i}\right) V_{i i} \subset V_{i i}$ and hence $A \subset M$. Let $\sqrt{\omega}=\sqrt{\omega_{1}} \oplus \cdots \sqrt{\omega_{n}}$ where $\sqrt{\omega_{i}} \in \Omega_{i}$ is the unique square root in Ω_{i} of ω_{i}. Then $P(\sqrt{\omega}) \in A$ and $P(\sqrt{\omega}) e=\omega$. If there exist $a, a^{\prime} \in A$ with $a e=a^{\prime} e$ and $a=P(x), a^{\prime}=P\left(x^{\prime}\right)$ for $x, x^{\prime} \in \Omega_{1} \oplus \cdots \oplus \Omega_{n}$ we get $x^{2}=P(x) e=P(y) e=y^{2}$, thus $x=y$ by the uniqueness of the square root on Ω, and $a=a^{\prime}$. Since $g \bar{\Omega}=\bar{\Omega}$ for any $g \in G(\Omega)$, we have $m \Omega_{i}=m\left(\bar{\Omega} \cap V_{i i}\right) \subset \bar{\Omega} \cap V_{i i}=\Omega_{i}$ for every $m \in M$. Therefore $M\left(\Omega_{1} \oplus \cdots \oplus \Omega_{n}\right) \subset \Omega_{1} \oplus \cdots \oplus \Omega_{n}$.
(c) For any $m \in M \cap$ Aut V we have $m \mid V_{i i} \in$ Aut $V_{i i}$ and hence $m e_{i}=e_{i}$. Conversely, any $f \in K \subset$ Aut $V \subset G(\Omega)$ has the property $f V_{i i}=f V\left(e_{i}, 1\right)=$ $V\left(f e_{i}, 1\right)=V_{i i}$ and thus lies in $M \cap$ Aut V. The equality $M_{\mathcal{E}} \cap$ Aut $V=\{m \in$ $\left.M ; m m^{*}=I d\right\}$ then follows from (2.3).
(d) For $m \in M$ there exists a unique $a \in A$ such that $m e=a e$, i.e., $k=a^{-1} m \in$ Aut $V \cap M=K$ in view of (2.3) and c). (2) follows from the fact that exp is a diffeomorphism.

Remarks 6. 1) Let $\operatorname{Str}(V)$ be the structure group of V. Since $\operatorname{Str}(V)=$ $\operatorname{Str}(V)^{*}$, it is the group of real points of a reductive algebraic group, and $G(\Omega) \subset$ $\operatorname{Str}(V)$ is a finite covering of the (topological) identity component $\operatorname{Str}(V)^{0}$. More generally, $\operatorname{Str}(V)_{\mathcal{E}}:=\left\{g \in \operatorname{Str}(V) ; m V_{i j}=V_{i j}\right.$ for all $\left.i, j\right\}$ is invariant under * and hence the group of real points of a reductive algebraic group. Since $\operatorname{Str}(V)_{\mathcal{E}}^{0} \subset M_{\mathcal{E}} \subset \operatorname{Str}(V)_{\mathcal{E}}$ it follows that $M_{\mathcal{E}}$ is a real reductive group in the sense of [W; 2.1]. The decomposition (2) is the Cartan decomposition of $M_{\mathcal{E}}$ in the sense of $[\mathrm{W} ; 2.1 .8]$. In particular, $K_{\mathcal{E}}$ is a maximal compact subgroup of $M_{\mathcal{E}}$.
2) If $\mathcal{E}=\{e\}$ then (2) specializes to the well-known Cartan decomposition $G(\Omega)=P(\Omega) \cdot$ Aut V ([BK; XI Satz 4.5]). The corresponding decomposition of the Lie algebra $\operatorname{Lie} G(\Omega)=\mathfrak{g}(V)$ is the Cartan decomposition $\mathfrak{g}(V)=L(V) \oplus \operatorname{Der} V$. If \mathcal{E} is a Jordan frame, i.e., every e_{i} is primitive: $V_{i i}=\mathbb{R} e_{i}, A_{\mathcal{E}}$ is an abelian group and coincides with the group A of [FK; VI.3, p. 112]. In this case $\mathfrak{a}=L\left(V_{11} \oplus V_{22} \oplus \cdots \oplus V_{n n}\right)$ is a maximal abelian subspace of $L(V) \subset \mathfrak{g}(V)$ so that $M_{\mathcal{E}}$ coincides with the group M of [W; 2.2.4].

5. Transformation groups of Ω defined by \mathcal{E} and a partial order.

We let \preceq be a partial order on $I=\{1, \ldots, n\}$ which is weaker than the canonical order: $i \preceq j \Rightarrow i \leq j$. We put $i \prec j \Leftrightarrow i \preceq j, i \neq j$ and define

$$
\begin{aligned}
e_{\langle i\rangle} & =\sum_{k \prec i} e_{k}, & \tau_{\langle i\rangle} & =\tau_{e_{\langle i\rangle}}, \\
V_{\langle i]} & =\oplus_{k \prec i} V_{k i}=V\left(e_{\langle i\rangle}, \frac{1}{2}\right) \cap V\left(e_{i}, \frac{1}{2}\right), & V^{(i \prec)} & =\oplus_{i \prec j} V_{i j} \\
V_{i j \prec} & =\left(\oplus_{j \prec l} V_{i l}\right) \oplus\left(\oplus_{i<k \leq l} V_{k l}\right),(1 \leq i \leq j \leq n), & V_{i j \preceq} & =V_{i j} \oplus V_{i j \prec} .
\end{aligned}
$$

Thus, $V^{(i \prec)}=V^{(i)}$ in case \preceq coincides with the canonical order. We will consider the following subgroups of $G(\Omega)$:

$$
\begin{aligned}
N_{\mathcal{E}, \prec} & =\left\{u \in G(\Omega) ;(u-\mathrm{Id}) V_{i j} \subset V_{i j \prec} \text { for all } i \leq j\right\}, \\
T_{\mathcal{E}, \preceq} & =\left\{t \in G(\Omega) ; t V_{i j} \subset V_{i j \preceq} \text { for all } i \leq j\right\} .
\end{aligned}
$$

Theorem 7. (a) The group $N_{\mathcal{E}, \prec}$ is a unipotent simply-connected Lie subgroup of $T_{\mathcal{E}, \preceq}$ and has the descriptions

$$
\begin{align*}
N_{\mathcal{E}, \prec} & =\left\{\tau_{1}\left(z_{1}\right) \cdots \tau_{n-1}\left(z_{n-1}\right) ; z_{i} \in V^{(i \prec)}, 1 \leq i<n\right\} \tag{1}\\
& =\left\{\tau_{\langle n\rangle}\left(z_{n}\right) \cdots \tau_{\langle 2\rangle}\left(z_{2}\right) ; z_{i} \in V_{\langle i]}, 1<i \leq n\right\} . \tag{2}
\end{align*}
$$

The Lie algebra of $N_{\mathcal{E}, \prec}$ is

$$
\mathfrak{n}_{\mathcal{E}, \prec}=\oplus_{i=1}^{n-1}\left\{L\left(z_{i}, e_{i}\right) ; z_{i} \in V^{(i \prec)}\right\}=\oplus_{i \prec j} L\left(V_{i j}, e_{i}\right) .
$$

(b) The group $M_{\mathcal{E}} \subset T_{\mathcal{E}, \preceq}$ normalizes $N_{\mathcal{E}, \prec}$, and $T_{\mathcal{E}, \preceq}$ is a semidirect product: $T_{\mathcal{E}, \preceq}=M_{\mathcal{E}} \cdot N_{\mathcal{E}, \prec}$.
(c) $K_{\mathcal{E}}=T_{\mathcal{E}} \cap$ Aut $V=\left\{g \in T_{\mathcal{E}} ; g e=e\right\}=\left\{g \in T_{\mathcal{E}} ; g g^{*}=\mathrm{Id}\right\}$.

Proof. For easier notation we abbreviate $K=K_{\mathcal{E}}, M=M_{\mathcal{E}}, N=N_{\mathcal{E}, \prec}$ and $T=T_{\mathcal{E}, \underline{2}}$.
(a) Any $u \in N$ is of the form $u=\mathrm{Id}+n$ with n nilpotent, i.e., u is unipotent. Transitivity of \prec implies that $\mathfrak{n}=\left\{n \in \operatorname{End} V ; n V_{i j} \subset V_{i j \prec}\right.$ for all $\left.i \leq j\right\}$ is a nilpotent subalgebra of End V. Therefore, $u^{-1}=\operatorname{Id}+\sum_{i>1}(-n)^{i}$ shows that N is closed under taking inverses. Similarly, N is also closed under products and therefore a subgroup of $G(\Omega)$. It is a closed subgroup of $G(\Omega)$ and therefore a Lie subgroup of $G(\Omega)$. It follows from (1) that N is simply-connected (This is not so surprising since, by $[\mathrm{B} ; \S 9.5$, Cor. 2 of Prop. 18], any unipotent group is simply-connected.) We are therefore left with proving (1) and (2).

Proof of (1): For any $i \prec j$ we have $\tau_{i}\left(z_{i j}\right) \in N$ by Lemma 4.a. Since $\tau_{i}\left(\sum_{j \succ i} z_{i j}\right)=\prod_{j \succ i} \tau_{i}\left(z_{i j}\right)$, we also have $\left\{\tau_{1}\left(z_{1}\right) \cdots \tau_{n-1}\left(z_{n-1}\right) ; z_{i} \in V^{(i \prec)}\right\} \subset$ N. Conversely, let $u \in N$. By definition, there exist unique $z_{1} \in V^{(1 \prec)}$ and $v_{0} \in V\left(e_{1}, 0\right)$ such that $u e_{1}=e_{1}+z_{1}+v_{0}$. Observe that $u^{*} x_{11}=x_{11}$ for all $x_{11} \in V_{11}$ since $(u-\mathrm{Id}) V \subset V_{11}^{\perp}$. Hence, by (2.4) and the Peirce multiplication rules,

$$
\begin{aligned}
& u x_{11}=u P\left(e_{1}\right) x_{11}=P\left(u e_{1}\right) u^{*-1} x_{11} \\
&=P\left(e_{1}+z_{1}+v_{0}\right) x_{11} \\
&=x_{11} \oplus\left\{e_{1} x_{11} z_{1}\right\} \oplus P\left(z_{1}\right) x_{11}=x_{11} \oplus 2 x_{11} z_{1} \oplus P\left(z_{1}\right) x_{11} .
\end{aligned}
$$

In view of (2.4) this shows $u x_{11}=\tau_{1}\left(z_{1}\right) x_{11}$. Let $\tilde{u}=\tau_{1}\left(z_{1}\right)^{-1} u \in N$ and put $c=e-e_{1}$. Since $V^{\prime}:=V(c, 1)=V\left(e_{1}, 0\right)=\oplus_{2 \leq k \leq l \leq n} V_{k l}$ it follows that \tilde{u} leaves V^{\prime} invariant. Because $\tilde{u} \bar{\Omega}=\bar{\Omega}$ and $\Omega_{c}=\bar{\Omega} \cap V(c, 1)$ we see that $\tilde{u} \mid V^{\prime}$ lies in the corresponding subgroup N^{\prime} of $G\left(\Omega_{c}\right)$ defined with respect to $\mathcal{E} \cap V(c, 1)=\left(e_{2}, \ldots, e_{n}\right)$ and the restriction of \preceq to $\{2, \ldots, n\}$. By induction, $\tilde{u}\left|V^{\prime}=\tau_{2}\left(z_{2}\right) \cdots \tau_{n-1}\left(z_{n-1}\right)\right| V^{\prime}$ for suitable $z_{i} \in V^{(i<)} \quad(=\mathrm{Id}$ if $n=2)$. Then

$$
\widehat{u}:=\left(\tau_{2}\left(z_{2}\right) \cdots \tau_{n-1}\left(z_{n-1}\right)\right)^{-1} \tilde{u}=\tau_{n-1}\left(-z_{n-1}\right) \cdots \tau_{2}\left(-z_{2}\right) \tilde{u} \in N
$$

has the property $\widehat{u} x_{i i}=x_{i i}$ for all $1 \leq i \leq n$. Thus, $\widehat{u}=M \cap N=\{I d\}$.
Proof of (2): We have for $k \prec i$

$$
\begin{equation*}
\tau_{\langle i\rangle}\left(z_{k i}\right)=\exp L\left(z_{k i}, e_{\langle i\rangle}\right)=\exp L\left(z_{k i}, e_{k}\right)=\tau_{k}\left(z_{k i}\right), \tag{4}
\end{equation*}
$$

and hence for $z_{i} \in V_{\langle i]}$

$$
\tau_{\langle i\rangle}\left(z_{i}\right)=\prod_{k \prec i} \tau_{\langle i\rangle}\left(z_{k i}\right)=\prod_{k \prec i} \tau_{k}\left(z_{k i}\right) .
$$

This shows that

$$
N^{\prime}:=\left\{\tau_{\langle n\rangle}\left(z_{n}\right) \cdots \tau_{\langle 2\rangle}\left(z_{2}\right) ; z_{i} \in V_{\langle i]}, 1<i \leq n\right\} \subset N .
$$

By (4), N^{\prime} contains the canonical generators of N. Hence $N^{\prime}=N$ if N^{\prime} is a subgroup of N. To prove this, it suffices to show that for $j<l$ and $i \prec j, k \prec l$ we have $\tau_{\langle j\rangle}\left(z_{i j}\right) \tau_{\langle l\rangle}\left(z_{k l}\right) \in N^{\prime}$. Since $|\{i, j, l\}|=3$ and $\tau_{\langle j\rangle}\left(z_{i j}\right) \tau_{\langle l\rangle}\left(z_{k l}\right)=$ $\tau_{i}\left(z_{i j}\right) \tau_{k}\left(z_{k l}\right)$ there are two cases to be considered: if $k=i$ or $k \notin\{i, j, l\}$ then, by Lemma 4.b, $\tau_{i}\left(z_{i j}\right) \tau_{k}\left(z_{k l}\right)=\tau_{k}\left(z_{k l}\right) \tau_{i}\left(z_{i j}\right)=\tau_{\langle l\rangle}\left(z_{k l}\right) \tau_{\langle j\rangle}\left(z_{i j}\right) \in N^{\prime}$, while for $k=j$ we have, by Lemma 4.b and (4)

$$
\begin{aligned}
\tau_{i}\left(z_{i j}\right) \tau_{j}\left(z_{j l}\right) & =\tau_{j}\left(z_{j l}\right) \tau_{i}\left(z_{i j}-2 z_{i j} z_{j l}\right)=\tau_{\langle l\rangle}\left(z_{j l}\right) \tau_{\langle l\rangle}\left(-2 z_{i j} z_{j l}\right) \tau_{\langle j\rangle}\left(z_{i j}\right) \\
& =\tau_{\langle l\rangle}\left(z_{j l}-2 z_{i j} z_{j l}\right) \tau_{\langle j\rangle}\left(z_{i j}\right) \in N^{\prime}
\end{aligned}
$$

This finishes the proof of (2).

$$
\text { Since } \tau_{i}\left(z_{i}\right)=\exp L\left(z_{i}, e_{i}\right) \text { we have } \mathfrak{n}^{\prime}:=\sum_{i=1}^{n} L\left(V^{(i \prec)}, e_{i}\right) \subset \mathfrak{n}:=
$$

Lie $N_{\mathcal{E}, \prec}$ by (1). That the sum is direct follows from $L\left(z_{i}, e_{i}\right) e_{j}=\delta_{i j} z_{i}$. To conclude $\mathfrak{n}^{\prime}=\mathfrak{n}$ it is sufficient to prove that \mathfrak{n}^{\prime} is a subalgebra. Indeed, the Lie subgroup N^{\prime} of N corresponding to \mathfrak{n}^{\prime} contains $\tau_{i}\left(V^{(i \prec)}\right)$, hence $N^{\prime}=N$ by (1) and therefore $\mathfrak{n}^{\prime}=\mathfrak{n}$. That \mathfrak{n}^{\prime} is a subalgebra of \mathfrak{n} follows from the following calculations. Let $z_{i} \in V^{(i)}, w_{j} \in V^{(j)}$. If $i=j$ then, by (2.2),

$$
\left[L\left(z_{i}, e_{i}\right), L\left(w_{i}, e_{i}\right)\right]=L\left(\left\{z_{i} e_{i} w_{i}\right\}, e_{i}\right)-L\left(w_{i},\left\{e_{i} z_{i} e_{i}\right\}\right)=0
$$

since $\left\{e_{i} z_{i} e_{i}\right\}=0,\left\{z_{i} e_{i} w_{i}\right\} \in V\left(e_{i}, 0\right)$ and $L\left(V\left(e_{i}, 0\right), V\left(e_{i}, 1\right)\right)=0$. If $i<j$ then $w_{j} \in V\left(e_{i}, 0\right)$ and so $\left\{z_{i} e_{i} w_{j}\right\}=0$. Hence, (2.2) shows

$$
\left[L\left(z_{i}, e_{i}\right), L\left(w_{j}, e_{j}\right)\right]=-L\left(w_{j},\left\{e_{i} z_{i} e_{j}\right\}\right)
$$

Here $\left\{e_{i} z_{i} e_{j}\right\}=z_{i j} \in V_{i j}$ and so $\left\{e_{i} e_{i} z_{i j}\right\}=z_{i j}$. A second application of (2.2) then yields

$$
-L\left(w_{j}, z_{i j}\right)=\left[L\left(e_{i}, e_{i}\right), L\left(w_{j}, z_{i j}\right)\right]=-\left[L\left(w_{j}, z_{i j}\right), L\left(e_{i}, e_{i}\right)\right]=-L\left(\left\{w_{j} z_{i j} e_{i}\right\}, e_{i}\right)
$$

where $\left\{w_{j} z_{i j} e_{i}\right\}=\sum_{j \prec k}\left\{w_{j k} z_{i j} e_{i}\right\}$. Each term $\left\{w_{j k} z_{i j} e_{i}\right\} \in V_{i k}$ with $i \prec j \prec$ k since $z_{i j}=0$ unless $i \prec j$. This proves $\left[L\left(z_{i}, e_{i}\right), L\left(w_{j}, e_{j}\right)\right] \in L\left(V^{(i \prec)}, e_{i}\right)$.
(b) It follows from Theorem 5.a that $M \subset T$. Moreover, M normalizes N since for $m \in M$ and $u \in N$ we have

$$
\left(m u m^{-1}-\mathrm{Id}\right) V_{i j}=m(u-\mathrm{Id}) m^{-1} V_{i j}=m(u-\mathrm{Id}) V_{i j} \subset m V_{i j \prec}=V_{i j \prec .}
$$

Because $M \cap N=\{\operatorname{Id}\}$ it is clear that $M N=\{m n ; m \in M, n \in N\} \subset T$ is a semidirect product. To prove the other inclusion, let $t \in T$. We will construct inductively an $n \in N$ such that $n t \in M$. Assuming that $t V_{j j}=V_{j j}$ for $1 \leq j<i$ we will find $n_{i} \in N$ such that $n_{i} t V_{j j}=V_{j j}$ for $1 \leq j \leq i$. Let $t e_{i}=x_{i i}+x_{i \prec}+b$ where b is an element of

$$
B=\oplus_{i<k \leq l \leq n} V_{k l}=V\left(e_{i+1}+\cdots+e_{n}, 1\right) \subset V\left(e_{i}, 0\right) .
$$

We claim that $x_{i i} \in \Omega_{i}$. Indeed, $t e=t e_{1}+\cdots+t e_{i}+\cdots+t e_{n}=x_{11}+\cdots+x_{i i}+$ $x_{i \prec}+\tilde{b}$ for suitable $x_{j j} \in V_{j j}$ and $\tilde{b} \in B$, and therefore $x_{i i}=P\left(e_{i}\right) t e \in P\left(e_{i}\right) \Omega=$ Ω_{i} by [MN; 3.2]. For any $z \in V^{(i \prec)}$ we have $\tau_{i}(z) t e_{i}=x_{i i} \oplus 2 z x_{i i}+x_{i \prec} \oplus b^{\prime}$ for a
suitable $b^{\prime} \in B$. Since $x_{i i} \in \Omega_{i}$ is invertible in $V_{i i}$, we can find $z^{\prime} \in V^{(i \prec)}$ such that $2 z^{\prime} x_{i i}+x_{i \prec}=0$. Thus, replacing t by $\tau_{i}\left(z^{\prime}\right) t$, we can assume $t e_{i}=x_{i i}+b^{\prime}$ and, by (2.4), still have $t V_{j j} \subset V_{j j}$ for $j<i$. Let

$$
C=\left(\oplus_{i<l \leq n} V_{i l}\right) \oplus\left(\oplus_{i<k \leq l} V_{k l}\right)=\left(\oplus_{i<l \leq n} V_{i l}\right) \oplus B .
$$

Since $t^{-1} C \subset C$ we have $t^{*-1} V_{i i} \subset D:=C^{\perp}=V_{i i} \oplus\left(\oplus_{1 \leq k<i, k \leq l} V_{k l}\right)$, the orthogonal complement of C with respect to the trace form. Because of $P(B) D=0=\left\{V_{i i} D B\right\}$ it now follows for arbitrary $v_{i i} \in V_{i i}$

$$
\begin{aligned}
t v_{i i} & =t P\left(e_{i}\right) v_{i i}=P\left(t e_{i}\right) t^{*-1} v_{i i} \in P\left(x_{i i}+b^{\prime}\right) D \\
& =P\left(x_{i i}\right) D+P\left(b^{\prime}\right) D+\left\{x_{i i} D b^{\prime}\right\}=P\left(x_{i i}\right) D=V_{i i},
\end{aligned}
$$

which completes the induction process.
(c) With respect to a suitable orthonormal basis of V, any $g \in T$ is represented by an upper triangular block matrix whose block structure is determined by the Peirce spaces $V_{i j}$. If such a g is also orthogonal, the matrix is in fact a diagonal block matrix. It follows that $g e_{i} \in V_{i i}$ is an idempotent of the same rank as e_{i} and hence $g e_{i}=e_{i}$. Thus $T \cap$ Aut $V \subset K$, and the other inclusion is obvious. The remaining equalities then follow from (2.3).

Remarks 8. 1) Since $N_{\mathcal{E}, \prec}$ is unipotent it does not contain any non-trivial compact subgroup, and thus $K_{\mathcal{E}}$ is also a maximal compact subgroup of $T_{\mathcal{E}, \preceq}$, see Remark 6(1).
2) The map

$$
V^{(1 \prec)} \times \cdots \times V^{(n-1 \prec)} \rightarrow N_{\mathcal{E}}:\left(z_{1}, \ldots, z_{n-1}\right) \mapsto \tau_{1}\left(z_{1}\right) \cdots \tau_{n-1}\left(z_{n-1}\right)
$$

is in fact a diffeomorphism. Indeed, that the map is a bijection follows from (1) and Proposition 3. As a product of exponentials, it is obviously differentiable. That its inverse is differentiable too, can be shown inductively, following the method of the proof of (1). Of course, since N is nilpotent this is also a special case of a general result on canonical coordinates of solvable Lie groups ($[\mathrm{B} ; \S 9.6$, Prop. 20]).
3) If \preceq is the minimal order, i.e., $i \preceq j \Leftrightarrow i=j$, we have $N_{\mathcal{E}, \prec}=\{\mathrm{Id}\}$ and $T_{\mathcal{E}, \preceq}=M_{\mathcal{E}}$. For example, this is the case if $\mathcal{E}=\{e\}$. On the other extreme, if \mathcal{E} is a Jordan frame and \preceq is the canonical order, the group $N_{\mathcal{E}, \prec}$ coincides with the so-called strict triangular subgroup N of [FK; VI.3]. By (3) it is also the group N of [W; 2.1.8]. In this case, $A_{\mathcal{E}} \cdot N_{\mathcal{E}, \prec}$ is a subgroup of $T_{\mathcal{E}, \prec}$, the so-called triangular subgroup T of [FK; VI.3].

6. The AP cone ([MN]).

An AP cone $\Omega(\mathcal{K}) \subset \Omega$ is defined in terms of an orthogonal system $\left(c_{1}, \ldots, c_{s}\right)$ of primitive idempotents $c_{i} \in V$ and a unital ring \mathcal{K}, i.e., a set of subsets of $\{1, \ldots, s\}$ which is closed under union and intersection: $K, L \in \mathcal{K} \Rightarrow K \cup L \in \mathcal{K}$
and $K \cap L \in \mathcal{K}$, and which moreover has the property that $\varnothing \in \mathcal{K}$ and $\{1, \ldots, s\} \in \mathcal{K}$. To describe $\Omega(\mathcal{K})$ we need the following notations. For any $K \subset\{1, \ldots, s\}$ and $x \in V$ we put $c_{K}=\sum_{k \in K} c_{k}$ and $x_{K}=P\left(c_{K}\right) x$, the $V\left(c_{K}, 1\right)$-component of x. If $x \in \Omega$ and $K \neq \emptyset$ then $x_{K} \in P\left(c_{K}\right) \Omega$, and one knows that this is the symmetric cone of the Euclidean Jordan algebra $V\left(c_{K}, 1\right)$. In particular, x_{K} is invertible in $V\left(c_{K}, 1\right)$. We denote by x_{K}^{-1} the inverse of x_{K} in $V\left(c_{K}, 1\right)$ and view x_{K}^{-1} as an element of V. We note that in general $x_{K}^{-1} \neq P\left(c_{K}\right)\left(x^{-1}\right)$. For $K=\emptyset$ we put $c_{\emptyset}=0$ and $x_{K}^{-1}=0^{-1}=0$. The $A P$ cone $\Omega(\mathcal{K})$ is then defined as the set of all $x \in \Omega$ satisfying

$$
x_{K \cup L}^{-1}+x_{K \cap L}^{-1}=x_{K}^{-1}+x_{L}^{-1}
$$

for all $K, L \in \mathcal{K}$. Equivalent characterizations of $\Omega(\mathcal{K})$ are given in [MN; Thm. 2.4].

The link with the results obtained so far in this paper is property (1) below. To explain it, we recall that $\emptyset \neq K \in \mathcal{K}$ is join-irreducible if K is not a union of proper subsets of K belonging to \mathcal{K}. Thus, if we put $\langle K\rangle:=\cup\left\{K^{\prime} \in\right.$ $\left.\mathcal{K} ; K^{\prime} \subsetneq K\right\}$ and $[K]:=K \backslash\langle K\rangle$ then K is join-irreducible if and only if $[K] \neq$ \emptyset. We denote by $\mathcal{J}(\mathcal{K})$ the set of all join-irreducible sets in \mathcal{K}. One knows [AP; 2.1] that any $K \in \mathcal{K}$ is partitioned by $\{[L] ; L \in \mathcal{J}(\mathcal{K})$ and $L \subset K\}$. Moreover, by [AP; 2.7], one can always find a never-decreasing listing of $\mathcal{J}(\mathcal{K})$, i.e., an enumeration $\mathcal{J}(\mathcal{K})=\left(K_{1}, \ldots, K_{n}\right)$ with the property $i<j \Rightarrow K_{j} \not \subset K_{i}$. We fix such a listing and define a partial order \preceq on $\{1, \ldots, n\}$ by $i \preceq j \Leftrightarrow\left[K_{i}\right] \subset K_{j}$. For $1 \leq j \leq s$ we put $e_{j}=\sum_{i \preceq j} c_{i}$ and obtain in this way an orthogonal system $\mathcal{E}=\left(e_{1}, \ldots, e_{n}\right)$. After renumbering, we may assume that \preceq is weaker than the canonical order, so that we are in the setting of $\mathbf{6}$. Then, by [MN; 2.14], the map

$$
F_{\mathcal{K}}: V^{(1 \prec)} \times \cdots \times V^{(n-1 \prec)} \times \Omega_{1} \times \cdots \times \Omega_{n} \rightarrow \Omega(\mathcal{K})
$$

given by

$$
F_{\mathcal{K}}\left(z_{1}, \cdots, z_{n-1}, y_{1}, \cdots, y_{n}\right)=\tau_{1}\left(z_{1}\right) \cdots \tau_{n-1}\left(z_{n-1}\right)\left(y_{1} \oplus \cdots \oplus y_{n}\right)
$$

is a bijection. Thus,

$$
\begin{equation*}
\Omega(\mathcal{K})=N_{\mathcal{E}, \prec}\left(\Omega_{1} \oplus \cdots \oplus \Omega_{n}\right) \tag{1}
\end{equation*}
$$

We transport the obvious manifold structure of $V^{(1 \prec)} \times \cdots \times V^{(n-1 \prec)} \times \Omega_{1} \times \cdots \times$ Ω_{n} to $\Omega(\mathcal{K})$ via $F_{\mathcal{K}}$. By Proposition $3, \Omega(\mathcal{K})$ is then a simply-connected closed submanifold of Ω (with the induced topology). Also, Proposition 3 implies,

$$
\begin{align*}
\Omega(\mathcal{K})=\Omega \Leftrightarrow & \text { a the canonical order. } \tag{2}\\
\Omega(\mathcal{K})=\Omega_{1} \oplus \cdots \oplus \Omega_{n} \Leftrightarrow \preceq & \text { is the minimal order. } \tag{3}
\end{align*}
$$

Theorem 9. $\quad T_{\mathcal{E}, \preceq}$ is a transitive Lie transformation group of $\Omega(\mathcal{K})$. For this operation, the isotropy group of $e \in \Omega(\mathcal{K})$ is $K_{\mathcal{E}}$, and we have an isomorphism of manifolds

$$
\Omega(\mathcal{K}) \approx T_{\mathcal{E}, \preceq} / K_{\mathcal{E}} .
$$

Proof. For easier notation we abbreviate $K=K_{\mathcal{E}}, M=M_{\mathcal{E}}, N=N_{\mathcal{E}, \prec}$ and $T=T_{\mathcal{E}, \preceq}$. By Theorem 5.b, we know that M operates transitively on $\Omega_{1} \oplus \cdots \oplus \Omega_{n}$. Thus, by (7.1), $\Omega(\mathcal{K})=N M e$. But this implies that both M and N leave $\Omega(\mathcal{K})$ invariant: $N \Omega(\mathcal{K})=N N M e=\Omega(\mathcal{K})$ and, since M normalizes $N, M \Omega(\mathcal{K})=M N M e=N M M e=\Omega(\mathcal{K})$. Therefore, T operates transitively on $\Omega(\mathcal{K})$. By Theorem 6.c), the isotropy group of e in T is $K_{\mathcal{E}}$, and hence the isomorphism follows from ([B; §1.7 Prop. 14]).

References

[AP] Andersson, S. A., and M. D. Perlman, Lattice Models for Conditional Independence in a Multivariate Normal Distribution, Ann. Statist. 21 (1993), 1318-1358.
[B] Bourbaki, N., "Groupes et Algèbres de Lie," Chap. III, Hermann Paris 1972.
[BK] Braun, H., und M. Koecher, „Jordan-Algebren ", Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 128, Springer-Verlag, Berlin Heidelberg 1965.
[FK] Faraut, J., and A. Koranyi, "Analysis on Symmetric cones," Clarendon Press, Oxford 1994.
[MN] Massam, H., and E. Neher, Estimation and testing for lattice conditional independence models on Euclidean Jordan algebras, Ann. Statist., to appear.
[W] Wallach, N., "Real reductive groups I," Pure and Applied Mathematics 132, Academic Press 1988.

Department of Mathematics and Statistics
University of Ottawa
Ottawa, Ontario K1N 6N5
CANADA
neher@uottawa.ca

Received March 4, 1998
and in final form May 19, 1998

[^0]: * Research partially supported by a research grant from NSERC (Canada)

