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Transformations Groups of the Andersson-Perlman Cone

Erhard Neher*

Communicated by J. Faraut

Abstract. An Andersson-Perlman cone is a certain subcone Q(K) of the
symmetric cone Q of a Euclidean Jordan algebra. We exhibit a subgroup
of the automorphism group of © which operates transitively on Q(K) and
show that Q(K) is a simply-connected submanifold of Q.

1. Introduction.

Andersson-Perlman cones in the setting of Euclidean Jordan algebras (henceforth
abbreviated as AP cones) were introduced by H. Massam and the author in [MN]
as a generalization of certain cones defined by the statisticians S. A. Andersson
and M. D. Perlman for real symmetric matrices [AP]. All mathematical results
in [AP] were generalized in [MN] to the setting of Euclidean Jordan algebras,
except the existence of transitive transformation groups which play a predomi-
nant role in the development in [AP]. In fact, the paper [MN] stresses a different,
perhaps more direct approach to the description of Andersson-Perlman cones by
employing Peirce decompositions and Frobenius transformations.

In this note we show that one can also generalize the results of [AP] on
transitive groups to the framework of Andersson-Perlman cones in Euclidean
Jordan algebras. Our interest in these groups is explained in the following
remarks. An Andersson-Perlman cone is a subcone (K) of the cone Q of an
Euclidean Jordan algebra V' defined in terms of a complete orthogonal system
&= (e, ...,e,) of idempotents of V' and a ring K of subsets of I = {1, ... ,n},
see 6.. If €; denotes the symmetric cone of the Peirce-1-space V(e;, 1) of e; then
always

Qo0 -0, CQK) CQ,

and both upper and lower bounds can be obtained by varying K. Thus, one may
consider Q(K) as an interpolation between 2 and Q1 & Qo @ -+ O Q,,. In the
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same spirit, the transitive transformation group 7' (denoted T¢ < in the paper)
of Q(K) interpolates various well-known subgroups of the automorphism group
G(Q2) = {g € GL(V);9Q2 = Q} of Q. In general, T is a semidirect product
of a unipotent subgroup N of G(£2) (denoted Ng < in the paper) and the real
reductive group

Me={g€GQ);92=U}=PQ1®N0D - ®N,) - K¢ (1)

where K¢ = {f € AutV; fe; =¢; for 1 <i <n}. Observe that (1) is the Cartan
decomposition of Mg. We always have

Mg CT=Me-NCG(Q), (2)

and both bounds are attained. For example, if Q(K) = Q and € is a Jordan frame
then N is the so-called strict triangular subgroup [FK], while if £ = {e}(n =1)
then also Q(K) = Q, N = {Id} and Mg = G(2). In this case, (1) is just the
standard Cartan decomposition of G(£2).

2. Notation and review.

Our basic reference for Jordan algebras is [FK]. Some of the results and notations
used are summarized below.

Throughout, V' denotes a Euclidean Jordan algebra with identity ele-
ment e, left multiplication L(u) defined by L(u)v = uv(u,v € V') and quadratic
representation P given by P(u)v = 2u(uv) — u?v. The linearization of P is

{uvw} : = P(u,w)v := P(u+ w)v — P(u)v — P(w)v
= 2u(vw) + 2w(uv) — 2(vw)v

for (u,v,w € V). The Jordan triple system left multiplication L(u,v) (denoted
uOv in [FK]) is given by L(u,v) = 2(L(uv)+[L(u), L(v)]) and hence L(u,v)w =
P(u,w)v. For any endomorphism ¢ of V', ¢* is the adjoint of ¢ with respect
to the positive definite trace form of V.

We will use the term “Lie group” and “Lie subgroup” as defined in [B].
In particular, any Lie subgroup of a Lie group is closed and has the induced
topology. Closed subgroups of a Lie group are always Lie subgroups in a unique
way.

We denote the symmetric cone of V' by © = Q(V). This is an open
convex cone which is homogeneous with respect to the group G(Q2) = {g €
GL(V);9Q2 = Q}, the automorphism group of . The group G(2) is a Lie
subgroup of GLg(V'). Its identity component will be denoted by G. Moreover,
G(Q) is an open subgroup of the structure group of V', defined as the group of
all invertible endomorphisms g of V' with the property

P(gr) = gP(r)g" (1)
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for all x € V', or, equivalently,

gL(u,v)g~" = L(gu, g*"v) (1)

for all u,v € V ([FK; II1.5 and VIII.2]). The Lie algebra g(V') of the structure
group of V' coincides with the Lie algebra of G(2). It consists of all endomor-
phisms X of V satisfying for all u,v € V

[X,L(u,v)] :L(XU,U)—L(U,X*U) (2)
([FK; VIIL.2.6]). The group of automorphisms of V' will be denoted AutV'. For
any g € G(Q) one knows ([FK; II1.5] and [FK; VIII.2.4)):

ge=e & gg*=1d & ge AuwtV (3)

In particular, Aut V' is a maximal compact subgroup of G(12).

Following [FK] we denote the Peirce spaces of an idempotent ¢ € V
by V(c,i) = {v € V;cv = iv},i € {0,1,1}. The Peirce decomposition of an
arbitrary y € V is written in the form y = y; + y12 + yo where y; € V(c,1)
for i = 0,1 and y12 € Ve, %) The symmetric cone of the Euclidean Jordan
algebra V(c,1) will be denoted Q.. For an idempotent ¢ and z € V(c, 1) the
Frobenius transformation on V' is defined as 7.(z) = exp (L(z,¢))) € G. It is
straightforward to check that 7. : V(c,%) — G is a homomorphism, thus
Te(z+2") = 7(2)7:(2') and 7.(—2) = 7e(2) 7. If 2 = 21 + 212 + 20 is the Peirce
decomposition of z € V' with respect to ¢ then

Te(2)r = 21 @ 2221 + 212 B 2(e — ¢)[2(zx1) + 2x12] + 20 (4)
=11 ®2zx1 + 212 ® P(2)x1 + 2(e — ¢)(2212) + 0.
The adjoint of the Frobenius transformation operates as follows [MN; 2.7]:

Te(2)*x = (21 + 2¢(2212) + P(2)20) & (12 + 2220) B 0. (5)

3. Frobenius transformations with respect to an orthogonal system.

Throughout, we fix a complete orthogonal system £ = (eq, ... ,e,) of (arbitrary)
idempotents of V. Thus, e;e; = d;5¢; and e; + ---+ e, = e. We denote by
Vij, 1 <1i,5 < n, the Peirce spaces of £ [FK IV.2] and define, for 1 < i < n,
subspaces

VO = @p Ve = Vien 2) NV (eip1 + ... +eny 3).

For x € V we let x = Z,Kj Zij,Tij € Vj;, be the Peirce decomposition of
x € V. We abbreviate 7; = 7., and Q; = Q,, = Q(V;;), 1 <1 < n. By [MN;
2.8] the map

F:VOx. ooxvVr Dy x--xQ, — Q
given by
F(z1, o zn—1.91, - yn) = 11(21) - Tnm1(20—1) (11 © - D yn)
=71(21)y1 + 72(22)y2 + -+ 4 Ta—1(2n-1)Yn—1 + Yn

is a bijection. Even more, we have:
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Proposition 3.  The map F is a diffeomorphism.

Proof. It follows from the definition of the Frobenius transformation that F
is differentiable. Since both manifolds have the same dimension, it suffices to
show that the tangent map T¢F' of F in a point { = (21, -+, 2n—1,Y1, *** Yn) €
M :=V®x...x Ve 50 x---xQ, is injective. For n =2 and (uy,v1,vs) €
Via X Vi1 x Vag =T¢ M , the tangent space of M at ¢, we have

TeF(ur,v1,v2) = v1 @ 2(uayr + z1v1) ® P(z1)v1 + {21 y1 w1} + va.

Hence, if T¢ F(u1,v1,v2) = 0 we obtain v = 0, then u; = 0 because 4y1_1(y1u1)
= wu; by [MN; (2.6.7)] and finally vo = 0. In general, if w = (uy, -+, Up_1,
vy, - Up) € VO x oo x VD) 5 Vi x oo X Vi, = T¢M lies in the kernel of
T¢ F then, since 12(22)y2 + -+ + Th—1(2n—1)Yn—1 + Yn € V(e1,0), it follows by
considering the Vi1- and V() -component of T¢Fw that v1 = 0 = uy, but then
w = 0 by induction. [ ]

Lemma 4. (a) For z; € Vij,i # j, and Ty € Viyy the Frobenius transfor-
mation T;(z;;) operates as follows

7i(2i5)(Zmn) (1)
22425 © Pzij)ri € Vi ©Vy; m=n=i
_ oo ] 2e(zijzg) € Vi {m,n} ={i,j}
" 2z € Vig {m,n} ={i,k}, i,5,k #
0 i & {m,n}

b) For z;; € Vi; and zy; € Vi we have the following commutation formulas:
J J

Ti(2ij)Th(2h1) = T (2wa) Til2i5) @ € {4, k, 1} and k & {1,4, 5}, (2)
Ti(2ij) T (2hi) = T(2hi + 2255200 Ti(25) - {1, 5, k} = 3, (3)
Ti(zij>7_j(zjl) = Tj(zjl) Ti(zij — QZiijl> |{’i,j, l}| = 3. (4)

Proof. (a) is immediate from (2.4). The formulas in (b) can be checked by
using (1) and a case-by-case analysis. An alternative proof for (2) and (3) goes
as follows. Since 7.(z) = exp(L(z,c)) we have for any invertible endomorphism

gof V
97e(zi1)g ™" = exp(9L(zri, ex)g ™). (5)
By (2.1")
7i(2i5) Lz, ex) 7 (2i5) = L(7i(zi5) 20, 70 (2i5)er)
where Ti(zij>zkl = 2kl +5li22ijzkl by (1) and Ti(zij>*_16k = Ti(_zij>*6k = e by

(2.5). This, together with (5) for g = 7;(z;;) implies (2) and (3). One can prove
(4) in a similar fashion:

75(zj0) " i(2i5) 7 (2i5) = exp L(75(—2j1) 255, 75 (20) “e:) = exp L(zij — 2zi5251, €;).
[ |
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4. Transformation groups of () defined by £.
We define

NPED DY, =w) F2+ Fwyw; €Q,1<i<n}CQ,
Ae =P Q& - &Qy,) =expL(Vi1 ® Va2 & -+ © Viy),
Ke={f e AtV ; fe;=¢;,1 <i<n},
Mg ={m € G(Q);mV;; C Vi;,1 <i<n}.

The second equality in the definition of Ag follows from P(expz) = exp L(2x),
see [FK; 11.3.4], and 2 = exp V', see the proof of [FK; II1.2.1]. Clearly, K¢ and
Mg are Lie subgroups of G(12).

Theorem 5. (a) Mg = {9 € G(Q);9Vi; = Vij for all i,j} = {g €
G(Q); gL(ei)g~" = L(e;) for 1<i<n}.

(b) Mg operates transitively on Q1 GQo®- - -, C Q. More precisely, Ag C Mg
and for every w € 0y @ Qo @ --- D Q,, there exists a unique a € Ag such that
w=ale).

(c) Kg is a subgroup of Mg satisfying

Ke=McNAwtV ={m e M;mm* = 1d}. (1)

(d) Any m € Mg can be uniquely written in the form m = ak where a € Ag
and k € K¢ . Thus, we have a decomposition

Mg =Ag - Ke= (V11 ® Voo @ ---® V) X Kg  (diffeomorphism).  (2)

Proof. We abbreviate A = Ag, K = K¢ and M = Mg.

(a) Let m € M. Since m is invertible, we have mV;; = V;;. For ¢ # j
and z;; € Vi; we have z;; = {e; z;; ¢;} and hence, by (2.2") and the Peirce
multiplication rules,

mzi; = mie; zij ej} = {me; m* 1z me;} € {Viy V Vi1 C Vij,

whence the first equality in a). The second is then immediate since the Peirce
spaces V;; are the joint eigenspaces of the commuting endomorphisms L(e;),1 <
1 <n.

(b) Let w=w1 @ - Dw, € U & --- D Q. Then, by the Peirce multiplication
rules, P(w)V;; = P(w;)Vi; CVi; and hence A C M. Let yw = /w1 & --- \J/w,
where /w; € Q; is the unique square root in Q; of w;. Then P(y/w) € A and
P(y/w)e = w. If there exist a,a’ € A with ae = a’e and a = P(x), o’ = P(2')
for z,2’ € Q1 ©--- ®Q, we get 22 = P(z)e = P(y)e = y?, thus = = y by
the uniqueness of the square root on €2, and a = a’. Since ¢gQ) = Q for any
g € G(Q), we have mQ; = m(QnNVy) C QNVy = Q; for every m € M.
Therefore M (2 @ - ® Q) T D -+ D Q.
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(¢) For any m € M N AutV we have m|V;; € AutV;; and hence me; = e;.
Conversely, any f € K C AutV C G(Q2) has the property fVi; = fV(e;,1) =
V(fei,1) = V;; and thus lies in M N Aut V. The equality Mg N AutV = {m €
M;mm* = Id} then follows from (2.3).

(d) For m € M there exists a unique a € A such that me = ae, i.e., k=a"1m €
Aut VN M = K in view of (2.3) and c). (2) follows from the fact that exp is a
diffeomorphism. [ ]

Remarks 6. 1) Let Str(V) be the structure group of V. Since Str(V) =
Str(V)*, it is the group of real points of a reductive algebraic group, and G(Q2) C
Str(V) is a finite covering of the (topological) identity component Str(V)°.
More generally, Str(V)e = {g € Str(V);mV;; = V;; for all 4, j} is invariant
under * and hence the group of real points of a reductive algebraic group. Since
Str(V)e € Mg C Str(V)e it follows that Mg is a real reductive group in the
sense of [W; 2.1]. The decomposition (2) is the Cartan decomposition of Mg in
the sense of [W; 2.1.8]. In particular, K¢ is a maximal compact subgroup of
Mg .

2) If &€ = {e} then (2) specializes to the well-known Cartan decom-
position G(Q2) = P(Q) - AutV ([BK; XI Satz 4.5]). The corresponding de-
composition of the Lie algebra LieG(£2) = g(V) is the Cartan decomposition
g(V) = L(V)@® DerV. If £ is a Jordan frame, i.e., every e; is primitive:
Vii = Re;, Ag is an abelian group and coincides with the group A of [FK;
VL3, p. 112]. In this case a = L(Vi1 & Vaa & --- ® V,,,,) is a maximal abelian
subspace of L(V) C g(V') so that Mg coincides with the group M of [W; 2.2.4].

5. Transformation groups of () defined by £ and a partial order.

We let < be a partial order on I = {1, ... ,n} which is weaker than the canonical
order: 1 X j=1<j. Weput i <j & ¢ <j,i # j and define

€uy = Zk.<i €k, Ty = 7'6“.) s
V(i} = Br~i Vii = V(e<i>7 %) NVi(ei, %) ) V=) = @i<j Vij,
Vij< = (&< Vi) ® (@ick<t Vi), (1 <1 < j <), Vij< = Vij @ Vij<.
Thus, V(<) = V@ in case < coincides with the canonical order. We will

consider the following subgroups of G(2):

Ne o ={ue GQ);(u—-1d)V;; C Vi for all i < j},
Te < ={t € G(Q); tV;; C Vi< for all i < j}.

Theorem 7.  (a) The group Ng < is a unipotent simply-connected Lie subgroup
of Te < and has the descriptions

Ne<={m1(z1) - Tno1(zn-1); 2 € VIS 1 <i < n} (1)
— {7—<n)<2n) ce T<2>(22) 3% € V<ﬂ ,1 <1< n} (2)
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The Lie algebra of Ng - is
ng =& {L(zi, &) ;2 € VI = @2 L(Viy , €).

(b) The group Mg C Te < normalizes Ng <, and Tg < is a semidirect product:
Tg’j = Mg - Ng’_< .

(c) Ke=TeNAutV = {g € Tg;ge = e} = {g € Te; 99" = 1d}.

Proof. For easier notation we abbreviate K = Kg, M = Mg, N = Ng 4
and T'="1Tg <.

(a) Any u € N is of the form u = Id + n with n nilpotent, i.e., uw is unipotent.
Transitivity of < implies that n = {n € EndV;nV;; C V;;< for all i < j} is a
nilpotent subalgebra of End V. Therefore, u=! = 1Id + .., (—n)* shows that
N is closed under taking inverses. Similarly, N is also closed under products
and therefore a subgroup of G(2). It is a closed subgroup of G(2) and therefore
a Lie subgroup of G(92). It follows from (1) that N is simply-connected (This
is not so surprising since, by [B; §9.5, Cor. 2 of Prop. 18], any unipotent group
is simply-connected.) We are therefore left with proving (1) and (2).

Proof of (1): For any ¢ < j we have 7;(%;;) € N by Lemma 4.a. Since
Ti(D_ v #ij) = Il Ti(zi5), we also have {71(21) -+ Tn-1(2n-1); 2 € Vi=} ¢
N. Conversely, let u € N. By definition, there exist unique z; € V=) and
vo € V(e1,0) such that ue; = e; + 21 + vg. Observe that u*x1; = x1; for all
r11 € Vi since (u —1d)V C Vii. Hence, by (2.4) and the Peirce multiplication
rules,

ur11 = uP(el):z:H = P(uel)u*_lxu = P(Gl + Z1 + ’1)0).'1311
=z @ {erzi121} ® P(z1)x11 = 211 © 2x1121 © P(21)x11.

In view of (2.4) this shows uz1; = 71(21)x11. Let @ = 71(21) 'u € N and
put ¢ =e—e;. Since V' :=V(c,1) = V(e1,0) = @a<p<i<n Vi it follows that
@ leaves V' invariant. Because @) = Q and Q. = QN V(c,1) we see that
u|V" lies in the corresponding subgroup N’ of G(Q.) defined with respect to
ENVie1) = (e, ... ,e,) and the restriction of < to {2, ... ,n}. By induction,

a|V' = 7o(22) -+ Th_1(2n_1)|V" for suitable z; € V0= (=1d if n = 2). Then

-1

8= (ma(22) -+ Tt (zn1)) G = Taa(~2a-1) - T2(~z)A € N

has the property ux;; = x;; for all 1 <i<n. Thus, u=M NN = {Id}.
Proof of (2): We have for k < i

Ty (2ki) = exp L(zpi, €(s)) = exp L(zxi, ex) = T (2ki), (4)

and hence for z; € Vi

Ty (2:) = H T4y (2hi) = H Tie(Zki)-

k=<1 k=i

This shows that

N/ e {T<n>(zn) e T<2>(22);Zi - ‘/<7,]7]‘ < 'l/ S n} C N
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By (4), N’ contains the canonical generators of N. Hence N’ = N if N’ is a
subgroup of N. To prove this, it suffices to show that for j <[ and i < j,k <
we have 7 (zi;) Tay(2r) € N'. Since |{i,,1}| = 3 and 7 (2i5) Ty (201) =
7i(#i;) Tk (2k1) there are two cases to be considered: if k =4 or k ¢ {i,7,(} then,
by Lemma 4.b, 7;(2i;) T (2r1) = Tr(20)Ti(2i5) = Ty (281) 75y (255) € N', while for
k = j we have, by Lemma 4.b and (4)

7i(2i5)Ti(20) = 73 (250) 7 (2i5 — 22i5250) = Ty () Ty (2245 20) 75 (245)
= T(l)(zjl — QZiijl> T(j)(Z@‘) - N'.
This finishes the proof of (2).

Since 7;(2;) = exp L(z;,e;) we have n' := Y" | L(V(i®) ¢;) C n =
LieNg < by (1). That the sum is direct follows from L(z;,e;)e; = d;;2;. To
conclude n’ = n it is sufficient to prove that n’ is a subalgebra. Indeed, the Lie
subgroup N’ of N corresponding to n’ contains 7;(V (<)), hence N’ = N by

(1) and therefore n” = n. That n’ is a subalgebra of n follows from the following
calculations. Let z; € V(i),wj € VU If i = j then, by (2.2),

[L(ZZ ,61'>, L(wz y 61>] = L({ZZ €; wi}, 8@) — L(wi, {ei Zi 62}> =0

since {e; zie;} =0, {z;e; w;} € V(e;,0) and L(V(e;,0),V(e;, 1)) =0. If i < j
then w; € V(e;,0) and so {z; e;w;} = 0. Hence, (2.2) shows

[L(zi,ei), L(w; , e5)] = —L(w; , {e; zi ej}).

Here {e; zie;} = z;; € V;; and so {e; e; z;;} = 2;;. A second application of (2.2)
then yields

—L(wj, zij) = [L(ei, €:), L(wy, zi5)] = —[L(wj, zi5), L(es, e;)] = —L({w;zijei}, ;)

where {wjz;je;} =3 . {wjk zij €} Each term {wjk 2z e;} € Vg, with i < j <
k since z;; = 0 unless i < j. This proves [L(z;,e;), L(wj,e;)] € LV e;).
(b) It follows from Theorem 5.a that M C T'. Moreover, M normalizes N since
for m e M and v € N we have

(mum_1 —1d)V;; = m(u — Id)m_lvij =m(u —1d)V;; C mVj< = Vijs.

Because M NN = {Id} it is clear that MN = {mn;m € M,ne N} C T is a
semidirect product. To prove the other inclusion, let t € T'. We will construct
inductively an n € N such that nt € M. Assuming that tV;; =V}, for 1 <j <1
we will find n; € N such that n;tV;; = Vj; for 1 < j <i. Let te; = x4 +x,< +0b
where b is an element of

B = ®icr<i<n Vi = Vieiq1+ - +en, 1) CVie;,0).
We claim that z;; € Q;. Indeed, te =tey +---+te;+---+te, = w11+ -+ oy +

;< +b for suitable z;; € V;; and b € B, and therefore z;; = P(e;)te € P(e;)) =
Q; by [MN; 3.2]. For any z € V=) we have 7;(2)te; = x4 ® 2224+ 1,2 DY for a
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suitable b’ € B. Since x;; € Q; is invertible in Vj; , we can find 2z’ € V=) such
that 22'x;; +x;< = 0. Thus, replacing t by 7;(z')t, we can assume te; = x;; + b’
and, by (2.4), still have tV;; C Vj; for j <i. Let

C = (@ici<n Vit) ® (@ick<i Vi) = (Di<i<n Vi) © B.

Since t7'C ¢ C we have t*" 'V, ¢ D := C+ = V,; & (Br<k<ik<i Vi),
the orthogonal complement of C' with respect to the trace form. Because of
P(B)D =0 ={V;; D B} it now follows for arbitrary v;; € Vi,

tvy,; = tP(Q')’U”' = P(tei)t*_lvii € P(x“ + b/)D
= P(x4)D + P(')D + {xy DV} = P(xy;)D = Vi,

which completes the induction process.

(c) With respect to a suitable orthonormal basis of V', any g € T' is represented
by an upper triangular block matrix whose block structure is determined by the
Peirce spaces V;;. If such a g is also orthogonal, the matrix is in fact a diagonal
block matrix. It follows that ge; € V;; is an idempotent of the same rank as e;
and hence ge; = e;. Thus TN AutV C K, and the other inclusion is obvious.
The remaining equalities then follow from (2.3). [ |

Remarks 8. 1) Since Ng . is unipotent it does not contain any non-trivial
compact subgroup, and thus K¢ is also a maximal compact subgroup of T¢ <,
see Remark 6(1).

2) The map

V<) o 1) Ne : (214 2n_1) — 71(21) -+ Tne1(2n-1)

is in fact a diffeomorphism. Indeed, that the map is a bijection follows from (1)
and Proposition 3. As a product of exponentials, it is obviously differentiable.
That its inverse is differentiable too, can be shown inductively, following the
method of the proof of (1). Of course, since N is nilpotent this is also a special
case of a general result on canonical coordinates of solvable Lie groups ([B; §9.6,
Prop. 20]).

3) If < is the minimal order, ie., i = j < i = j, we have Ng < = {Id}
and Te < = Mg . For example, this is the case if £ = {e}. On the other extreme,
if £ is a Jordan frame and =< is the canonical order, the group Ng - coincides
with the so-called strict triangular subgroup N of [FK; VI.3]. By (3) it is also
the group N of [W; 2.1.8]. In this case, Ag - Ng < is a subgroup of T¢ - , the
so-called triangular subgroup T of [FK; VL.3].

6. The AP cone ([MN]).

An AP cone Q(K) C Q is defined in terms of an orthogonal system (cy,...,cs)
of primitive idempotents ¢; € V and a unital ring IC, i.e., a set of subsets of
{1,...,s} which is closed under union and intersection: K, L € K= KUL € K
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and K N L € K, and which moreover has the property that @ € K and
{1,...,s} € K. To describe Q(K) we need the following notations. For any
K c{l,...,s} and z € V we put cxk = > ,.x ¢ and zxg = P(ck)z, the
V(ck,1)-component of z. If x € Q and K # O then xx € P(ck)Q2, and one
knows that this is the symmetric cone of the Euclidean Jordan algebra V(ck,1).
In particular, zx is invertible in V(ck,1). We denote by xf_(l the inverse of
kg in V(cg,1) and view mf_(l as an element of V. We note that in general
1t # Pleg)(z™). For K =@ we put ¢ =0 and 2 = 07! = 0. The AP
cone (K) is then defined as the set of all z € Q satisfying

-1 . | -
Tpiur T T =T + g

1
for all K, L € K. Equivalent characterizations of Q(K) are given in [MN; Thm.
2.4].

The link with the results obtained so far in this paper is property (1)
below. To explain it, we recall that @ # K € K is join-irreducible if K is not a
union of proper subsets of K belonging to K. Thus, if we put (K) := U{K’ €
K; K' C K} and [K]:= K\ (K) then K is join-irreducible if and only if [K] #
. We denote by J(K) the set of all join-irreducible sets in K. One knows [AP;
2.1] that any K € K is partitioned by {[L]; L € J(K) and L C K}. Moreover,
by [AP; 2.7], one can always find a never-decreasing listing of J(K), i.e., an
enumeration J(K) = (K, ..., K,) with the property i < j = K; ¢ K;. We fix
such a listing and define a partial order < on {1,...,n} by i < j & [K;] C K.
For1<j<sweputej =) _ ; Ci and obtain in this way an orthogonal system
E=(e1,...,e,). After renumbering, we may assume that < is weaker than the
canonical order, so that we are in the setting of 6. Then, by [MN; 2.14], the map

Fie : VOO oo VO 10 500 x - x Q, — Q(K)
given by

Fic(z1, -y 2n—1,Y1, -+ »Yn) =T1(21) *** Tne1(Zn—1)(y1 ® -+ S yn)

is a bijection. Thus,
QL) = Ne c(U @D Q) (1)

We transport the obvious manifold structure of V=) x...x V(n=1=) % Q x--- x
Q,, to Q(K) via Fic. By Proposition 3, Q(K) is then a simply-connected closed
submanifold of Q (with the induced topology). Also, Proposition 3 implies,

Q(K) = Q < =< is the canonical order. (2)
QL) =N &--- B Q, & = is the minimal order. (3)

Theorem 9.  T¢ < is a transitive Lie transformation group of Q(IKC). For this
operation, the isotropy group of e € Q(K) is K¢, and we have an isomorphism
of manifolds

Q(IC) ~ Tng/Kg.
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For easier notation we abbreviate K = K¢, M = Mg, N = Ng -

and T = Tg <. By Theorem 5.b, we know that M operates transitively on
M@ ®Q,. Thus, by (7.1), Q(K) = NMe. But this implies that both M and

N leave

Q(K) invariant: NQ(K) = NNMe = Q(K) and, since M normalizes

N, MQUK) = MNMe = NMMe = Q(K). Therefore, T" operates transitively

on (K). By Theorem 6.c), the isotropy group of e in T" is K¢, and hence the

isomorphism follows from ([B; §1.7 Prop. 14]). n
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