
Journal of Lie Theory
Volume 9 (1999) 285–291
c© 1999 Heldermann Verlag Berlin

Characterizing weakly symmetric spaces as Gelfand pairs

Hiêú Nguyêñ

Communicated by J. Faraut

Abstract. Let (M,G, µ) be a Riemannian weakly symmetric space. Fix
a base point x0 ∈ M and denote by H to be the compact isotropy subgroup
of G at x0 . It is proven that L1(H \G/H) is commutative, i.e. (G,H) is a
Gelfand pair. This extends É. Cartan’s result for Riemannian symmetric spaces.
Conversely, if (G,H) is a Riemannian weakly symmetric pair, then M = G/H
can be made to be Riemannian weakly symmetric. An application of this result
is presented.

1. Introduction

In this paper, we characterize Riemannian weakly symmetric spaces as a special
class of Gelfand pairs. The notion of a weakly symmetric space was introduced by
A. Selberg in [8] as a generalization to that of a symmetric space. He also con-
structed examples of weakly symmetric (but not symmetric) spaces by endowing
the total space of principal S1 -bundles over the Siegel half-space with a twisted
action by the group Sp(n,R)× S1 (cf. [6]). The topic has recently gained much
interest with discoveries of many new examples, especially by J. Berndt and L. Van-
hecke in [1], who found an alternative characterization of weak symmetry based
on the reversal of geodesics, and by W. Ziller in [12], who replaced geodesics with
tangent vectors. Recently, the author in [7] was able to extend Selberg’s results to
hermitian symmetric spaces based on Ziller’s infinitesimal characterization.

Let M be a Riemannian manifold, G a locally compact transitive Lie group
of isometries of M , and µ a fixed isometry of M (not necessarily in G) such that
(M,G, µ) is a Riemannian weakly symmetric space. Fix a base point x0 ∈M and
let H be the compact isotropy subgroup of G at x0 . Selberg was able to prove in
[8] that D(G/H), the space of G-invariant differential operators on M = G/H ,
is commutative. If we further assume that G is connected, then a result of E.G.F.
Thomas [9] says that commutativity of D(G/H) is equivalent to commutativity
of L1(H \G/H), the space of integrable functions on G bi-invariant under H .
Therefore, under this additional assumption, it follows that if (M = G/H,G, µ)
is weakly symmetric, then (G,H) is a Gelfand pair. In this paper, we remove
the restriction that G must be connected and give a simple direct proof of this
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result as stated in the following theorem, which extends É. Cartan’s result for
Riemannian symmetric spaces (cf. [10], Cor. 2.7).

Theorem 1.1. If (M,G, µ) is a Riemannian weakly symmetric space and H
is the compact isotropy subgroup of G at a base point of M , then L1(H\G/H) is
commutative, i.e. (G,H) is a Gelfand pair.

Our argument proceeds as follows. We first define a Riemannian weakly
symmetric space (M,G, µ) and demonstrate that it is better characterized as a
homogeneous weakly symmetric space G/H . We then establish an equivalence
between G/H with weakly symmetric pairs (G,H). Our theorem will follow by
showing that when H is compact, these weakly symmetric pairs (G,H) are in fact
Gelfand pairs. We also prove as a converse that a Riemannian weakly symmetric
pair (G,H) produces a Riemannian weakly symmetric space M = G/H and go
on to apply this result in an example.

2. Proof of Theorem

Let us begin with some preliminaries. We shall always assume in this paper that
G is a locally compact Lie group, H a closed subgroup of G and e the identity
element in G. We also denote by InnH(G) to be the subgroup of Aut(G) consisting
of inner automorphisms of the form Ih : g 7→ hgh−1 , where h ∈ H and g ∈ G.

Definition 2.1. (Selberg [8]) The triple (M,G, µ) is called a Riemannian
weakly symmetric space if the following properties are satisfied:

(i) M is a Riemannian manifold, G is a locally compact transitive Lie group of
isometries of M , and µ is a fixed isometry of M (not necessarily in G) satisfying
µGµ−1 = G and µ2 ∈ G,

(ii) Given any two points x and y in M , there exists an element g ∈ G such that

gx = µy and gy = µx. (1)

Unfortunately, this definition of Selberg does not make any reference to the
isotropy subgroups of G with respect to its action on M . Since such a subgroup
of G must be specified in order to make the connection with Gelfand pairs, we
revise his definition to better fit this framework.

Definition 2.2. G/H is called a homogeneous weakly symmetric space if there
exists an analytic diffeomorphism µ of the homogeneous manifold M = G/H such
that

(i) µGµ−1 = G, µ(eH) = eH and µ2 ∈ H ,

(ii) Given any two points x and y in M , there exists an element g ∈ G such that

gx = µy and gy = µx. (2)

The following lemma shows that indeed Selberg’s definition is compatible
with ours.
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Lemma 2.3. Let (M,G, µ) be a Riemannian weakly symmetric space. Fix any
base point x0 ∈ M and let H be the compact isotropy subgroup of G at x0 . Then
there exists an isometry µ̃ of M = G/H which makes G/H a homogeneous weakly
symmetric space.

Proof. Set y0 = µx0 . By transitivity of G, there exists an element g̃ ∈ G such
that g̃y0 = x0 . Define µ̃ = g̃µ. Then µ̃ fixes x0 and satisfies µ̃Gµ̃−1 = G. We
next identify M with the homogeneous space G/H and the point x0 with the
coset eH so that µ̃(eH) = eH and µ̃2 ∈ H . By assumption, given any two points
x and y of M , there exists an element g ∈ G such that gx = µy and gy = µx.
It follows that g̃gx = µ̃y and g̃gy = µ̃x. Hence, G/H is a homogeneous weakly
symmetric space with respect to µ̃.

We next establish an equivalence between homogeneous weakly symmetric
spaces and weakly symmetric pairs. These pairs possess special symmetry condi-
tions that will ensure that they are Gelfand pairs.

Definition 2.4. (G,H) is called a weakly symmetric pair if there exists an
automorphism θ of G such that

(i) θ(H) ⊆ H and θ2 ∈ InnH(G),

(ii) Hθ(g)H = Hg−1H for all g ∈ G.

Furthermore, (G,H) is called a Riemannian weakly symmetric pair if AdG(H) is
compact.

Lemma 2.5. (G,H) is a weakly symmetric pair if and only if G/H is a
homogeneous weakly symmetric space.

Proof. Let (G,H) be a weakly symmetric pair and θ the corresponding au-
tomorphism of G. We define a map µ of the homogeneous manifold M = G/H
by

µ(gH) = θ(g)H, gH ∈ G/H.
Then µ is an analytic diffeomorphism since θ is an automorphism. It is also clear
that µ(eH) = θ(e)H = eH and µ2 ∈ H since θ2 ∈ InnH(G). This proves property
(i) of a homogeneous weakly symmetric space.

To prove property (ii), we will first show that it holds for any point x0 ∈M
and the origin eH . Since G is transitive on M , there exists an element g1 ∈ G such
that g1x0 = g1g0H = eH . Also, by assumption, we have Hθ(g0)H = Hg−1

0 H .
This allows us to write h0θ(g0)H = g−1

0 H for some element h0 ∈ H . Setting
g̃ = h−1

0 g−1
0 , it follows that

g̃(eH) = h−1
0 (g−1

0 H) = h−1
0 h0θ(g0)H = µx0, (3)

and

g̃x0 = h−1
0 g−1

0 (g0H) = eH = µ(eH). (4)

For the arbitrary case, fix x and y to be any two points of M and let g0

be the element of G which maps y to eH . Denote by x0 the image of x under
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g0 . By our previous work, there exists an element g̃ which satisfies (3) and (4) for
the two points x0 and eH . Setting g = θ(g−1

0 )g̃g0 , it follows that

gx = µy and gy = µx.

Hence, G/H is a homogeneous weakly symmetric space with respect to µ.

Conversely, let G/H be a homogeneous weakly symmetric space and µ the
corresponding analytic diffeomorphism of G/H . We define a homomorphism θ of
G by

θ(g) = µgµ−1, g ∈ G.
Then θ is an automorphism of G since µ is an analytic diffeomorphism and
µGµ−1 = G. It is clear that θ(H) ⊆ H and θ2 ∈ InnH(G) since µ fixes the
point x0 = eH and µ2 ∈ H . This proves property (i) of a weakly symmetric pair.
Furthermore, we have

µ(gH) = µgµ−1(eH) = θ(g)(eH) = θ(g)H, gH ∈ G/H.

To prove property (ii), fix any element g0 ∈ G and denote x0 = g0H . By
assumption, there exists an element g ∈ G such that g(eH) = µx0 = θ(g0)H and
gx0 = gg0H = θ(e)H = eH . It follows that HgH = Hθ(g0)H and Hgg0H =
HeH . This allows us to write h1gg0h2 = e, for some h1, h2 ∈ H . In other words,
h1g = h−1

2 g−1
0 or HgH = Hg−1

0 H . Hence, Hg−1
0 H = Hθ(g0)H and (G,H) is a

weakly symmetric pair with respect to θ .

We are now ready to make the connection between Riemannian weakly
symmetric spaces with Gelfand pairs.

Definition 2.6. Let H be a compact subgroup of G. Then (G,H) is called
a Gelfand pair if the algebra L1(H\G/H) is commutative under the convolution
product.

Lemma 2.7. If (G,H) is a weakly symmetric pair and H is compact, then
(G,H) is a Gelfand pair.

Remark 2.8. We mention that this lemma is a minor extension of a result due
to J. Faraut [2], Prop. I.2., which in turn is an extension of the following classical
result due to I.M. Gelfand [4]:

Theorem 2.9. ([4]) Let θ be an involutive automorphism of G = KP where
K is compact, θ(k) = k for all k ∈ K and θ(p) = p−1 for all p ∈ P . Then (G,K)
is a Gelfand pair.

Proof. (of Lemma 2.7) We follow the argument used in [2], Prop. I.2. Let
f ∈ Cc(G), the space of continuous functions on G with compact support, and
define

f θ(g) = f(θ(g)) and f ](g) = f(g−1).

Let dg be the Haar measure on G. The maps

f 7→
∫

G

f(g)dg and f 7→
∫

G

f θ(g)dg
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are left-invariant positive Radon measures on G. But it is well known that such
a Radon measure is unique up to a constant factor. It follows that there exists a
positive constant c such that

∫

G

f θ(g)dg = c

∫

G

f(g)dg. (5)

Now, choose any f ∈ Cc(H \G/H), the space of functions in Cc(G) bi-invariant
under H , such that

∫
G
f(g)dg 6= 0. Since θ(H) ⊆ H and θ2 ∈ InnH(G) for

a weakly symmetric pair, we must have (f θ)θ = f . This implies c2 = 1 or
c = 1 because of (5). It follows that (f1 ∗ f2)θ = f θ1 ∗ f θ2 for any two functions
f1, f2 ∈ Cc(G).

Next, we notice that property (ii) of a weakly symmetric pair implies
f θ = f ] for any f ∈ Cc(H\G/H). It follows that

∫

G

f(g−1)dg =

∫

G

f(θ(g))dg =

∫

G

f(g)dg

and shows G is unimodular (cf. [2], Prop. I.1). Since ] is an anti-automorphism,
it follows that (f1 ∗ f2)] = f ]2 ∗ f ]1 for any two functions f1, f2 ∈ Cc(H \G/H).
Hence, f1 ∗ f2 = f2 ∗ f1 and Cc(H\G/H) is commutative. According to [9], Prop.
2, this is equivalent to commutativity of L1(H\G/H).

Proof. (of Theorem 1.1) Apply Lemmas 2.3, 2.5 and 2.7 in the order listed and
use the fact that H is compact.

3. Criterion for Weak Symmetry

Notice that Lemma 2.5 also lets us state conditions as to when a pair (G,H)
produces a Riemannian weakly symmetric space M = G/H .

Lemma 3.1. If (G,H) is Riemannian weakly symmetric pair, then M = G/H
can be made to be Riemannian weakly symmetric.

Proof. Because of Lemma 2.5, G/H is a homogeneous weakly symmetric space
with respect to the analytic diffeomorphism µ induced from θ . The argument now
copies that used in the classical situation where (G,H) is a Riemannian symmetric
pair (cf. [5], Ch. IV, §3, Prop. 3.4). Since AdG(H) is compact, there exists a
Riemannian structure Q on the homogeneous manifold M = G/H such that it
is invariant under the action of G by left-translation of cosets. Let N consist of
those elements n ∈ G such that n acts as the identity mapping on M . Then there
exists a closed Lie subgroup G̃ ⊂ I(M), the full isometry group of M , such that

G̃ is isomorphic to G/N . Furthermore, it is clear that µ is an isometry of M since

θ is an automorphism of G. Hence, (M, G̃, µ) is Riemannian weakly symmetric.

As an application, we shall use Lemma 3.1 to find examples of Riemannian
weakly symmetric spaces. Following [3] and [7], we let (g, σ) be an orthogonal
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symmetric Lie algebra of hermitian compact or non-compact type. Then g is real
semisimple. Decompose g = k + p into its ±1-eigenspaces. Then k is a compact
Lie algebra and k = ks + zk , where ks = [k, k] is the semisimple part and z is the
center of k. Let a be a maximal abelian subalgebra of p. Let G be a connected
real Lie group with Lie algebra g and denote by K , Ks , ZK and A be the analytic
subgroups of G corresponding to k, ks , zk and a. Here, Ks is compact and K
and ZK are compact if and only if G has finite center.

According to [3], Prop. 2.1, there exists an involutive automorphism γ of g,
which we shall assume lifts to G, such that γ(Ks) = Ks , γ(a) = a−1 for all a ∈ A
and γ(k) = k−1 for all k ∈ ZK . This gives the following result, which is implied
in [3], Theorem 3.1, and independently proven by J.A. Wolf and A. Korányi in an
unpublished work [11] using a similar argument. We mention that both of these
papers also go on to prove that (G,Ks) is a Gelfand pair.

Lemma 3.2. If the hermitian symmetric space G/K contains no irreducible
factors of tube type, then (G,Ks) is a Riemannian weakly symmetric pair with
respect to θ = γ .

Proof. It is clear that (G,Ks) satisfies property (i) of a weakly symmetric pair.
As for property (ii), Theorem 3.3 of [3] says that if G/K contains no irreducible
factors of tube type, then it is equivalent to the following property:

Kskgk
−1Ks = KsgKs for all k ∈ ZK and g ∈ G. (6)

Now, G has the well-known decomposition G = KAK . Also, K = KsZK .
It is now easy to check using these two decompositions and (6) that

Ksθ(g)Ks = Ksg
−1Ks for all g ∈ G. (7)

This proves property (ii).

As a result, it follows that there exists an isometry group G̃ ∼= G/N such

that (M = G/Ks, G̃, µ) is Riemannian weakly symmetric because of Lemma 3.1,
where µ is the isometry of M induced from θ .

Remark 3.3. The author has already proven in [7] that M = G/Ks is weakly
symmetric, but with respect to an isometry group larger than G, namely G1 :=
G×ZK . More precisely, it was proven that (M, G̃1, µ) is Riemannian weakly sym-
metric and proven without the restriction that G/K not contain any irreducible
factors of tube type. It is in this sense that our result here that M is weakly
symmetric with respect to G̃ is new. Furthermore, it was also proven in [7] that
M is not Riemannian symmetric with respect to a special one-parameter family
of Riemannian metrics in the case where G/K is a classical irreducible bounded
symmetric domain.
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