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Z-gradations of Lie algebras and infinitesimal generators
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Abstract. In this paper we arrive at explicit formulae for the infinitesi-
mal generators of the action of a complex simple Lie group G on the mani-
fold M = G/P where P is a maximal parabolic subgroup. These formulae
are obtained by assuming that local coordinates on M are furnished by the
nilpotent subalgebra n complementary to the maximal parabolic subalgebra
p corresponding to P . For the classical isogeny classes Ar , Br , Cr , and Dr ,
the components of the infinitesimal generators are never worse than quartic
polynomials in the coordinate functions, but for the exceptional cases, G2 ,
F4 , and Er , higher-degree polynomials frequently occur.

1. Introduction

This note explains a table (at the end of this paper) of expressions I obtained and
outlines my solution to a problem associated with infinitesimal actions: Suppose G
is a complex simple Lie group and P is a maximal parabolic subgroup. The group
G acts transitively on the homogeneous space M = G/P by translation of right
cosets. We are interested in giving an infinitesimal version of this action explicitly.
That is, we know that, given local coordinates on the manifold M , we can write
down the infinitesimal generators of this action by giving a realization of the Lie
algebra g by vector fields where the isotropy subalgebra is the Lie subalgebra for
P . We wish to find explicit formulae for the components of these generators. It
turns out that this has a purely algebraic solution, (not surprisingly since this is a
local problem), but the algebra gets somewhat intractable in some cases; in fact,
new complications arise in the computations only when we want to consider the five
exceptional simple Lie algebras. The algebraic solution involves the construction
of various “tensor”-polynomials, denoted by F i

j , which are constructed using
the elementary Schur polynomials. It is interesting that the tensors F i

j can be
constructed in a universal way, independent of the choice of g. Thus it is the
author’s belief that it may be possible to extend these results to the more general
case when g is an indecomposable Kac-Moody-Lie algebra.

I first encountered this problem when studying primitive actions in con-
nection with quasi-exactly solvable systems, [3]. (Recall that a transitive action
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of a Lie group G on a manifold M is primitive if the action admits no invariant
foliations.) According to a result of Golubitsky [2], on the local level, if g is
simple and the isotropy subalgebra p of the primitive action is not reductive, then
p is necessarily maximal parabolic. In the quasi-exact-solvability picture, it is
useful to have infinitesimal realizations of these actions by spaces of vector fields,
and thus the current problem presents itself. Using these actions, it is possible
to construct, for each maximal parabolic subalgebra, a series of finite-dimensional
representations of the Lie algebra g, confirming a conjecture by the authors of
[3] concerning “quantization of cohomology”. For these actions, however, this is a
somewhat trivial result beyond the scope of the current problem, so we will not
address this here.

2. Notation and Standard Results

First we need to make some well-known [1, 6, 9] comments about simple Lie
algebras and Z-gradations thereof. Suppose g is a complex simple Lie algebra. As
usual, g has associated with it a Cartan subalgebra h, a set ∆ ⊂ h∗ of roots, and
a set {Xα : α ∈ ∆} of root vectors. Choosing a hyperplane Ω ⊂ h∗ not containing
any roots partitions ∆ into sets ∆+ and ∆− of positive roots and negative roots
respectively. There is a maximal Z+ -spanning set Σ+ for ∆+ known as the set of
simple roots. The corresponding set for ∆− is Σ− , which happens to be the same
as −Σ+ . The cardinality r of Σ+ is known as the rank of g and this is also equal
to the dimension of the Cartan subalgebra h. Given a positive root α ∈ ∆+ , there
is a unique way to express

α =
∑

niαi

as a sum of the simple roots αi . The sum l(α) =
∑
ni is known as the level of α ,

and there is a unique highest root with maximal level. Similarly, the lowest root
has the lowest level, and it is the negative of the highest root.

Having chosen a Cartan subalgebra h and a hyperplane Ω ⊂ h∗ not con-
taining any roots, there are some important subalgebras known as parabolic sub-
algebras. To identify these we first form the Borel subalgebra b as the sum of
h and all of the root vectors Xα with α ∈ ∆+ . A subalgebra p is parabolic if
it contains b. It is not difficult to see that the parabolic subalgebras correspond
exactly with subsets of Σ− . That is, suppose Σ′ ⊂ Σ− . Then there is a parabolic
subalgebra which contains all of the root vectors Xα with α ∈ Σ′ . Thus, the
parabolic subalgebras comprise a lattice with 2r vertices, partially ordered by in-
clusion. The r parabolic subalgebras directly beneath g by the partial ordering are
known as maximal parabolic subalgebras. Evidently, we can construct a maximal
parabolic subalgebra by first choosing a simple root, say α0 ∈ Σ− , and forming the
parabolic subalgebra which contains the root vectors for all simple roots except
α0 . The maximal parabolic subalgebras are interesting because each one of them
induces a Z-gradation of g:

Theorem 2.1. Let g be a complex simple Lie algebra and p be a maximal
parabolic subalgebra. Then g has a decomposition

g =
⊕

j∈Z
Vj
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where (a) V1 6= 0, (b) p is the sum of all Vj with j ≥ 0, (c) [Vi, Vj] ⊂ Vi+j , (in
particular, V0 acts on each Vj via the adjoint action), (d) V0 = g0⊕CE where E
acts trivially on g0 , and (e) this decomposition has exactly 2n0 +1 non-zero terms
Vj , where n0 is the coefficient of α0 in the highest root.

Proof. Parts (a)-(d) are shown in [2], so we will prove only part (e). Notice
that corresponding to this decomposition is a partition of the root system

∆ =
⋃

j∈Z
∆j,

where α ∈ ∆j iff Xα ∈ Vj . Thus, showing that there are 2n0 + 1 non-zero
terms Vj is equivalent to showing that there are 2n0 + 1 non-trivial subsets ∆j .
Assume the simple roots are Σ+ = {α0, ..., αr} (so that g has rank r + 1) and
that p is the maximal parabolic subalgebra obtained by not including −α0 in ∆0 .
Suppose n0α0 + · · ·nrαr is the highest root. Then for every integer j ∈ [−n0, n0] ,
∆ contains a root of the form jα0 + α for some α ∈ ∆0 . This shows that each
such ∆j is non-trivial and if |j| > n0 , then ∆j is trivial. Thus there are exactly
2n0 + 1 non-trivial subsets ∆j .

Later, we will also need the following notation: We use ∆± to denote
the union

⋃
j>0 ∆±j . Thus, ∆0 ∪ ∆+ is the set of roots corresponding to the

maximal parabolic subalgebra p and ∆− is the set of roots corresponding to the
complementary nilpotent subalgebra n.

3. Infinitesimal Actions on Homogeneous Spaces

We are interested in giving a realization of g in terms of vector fields on some
manifold where p, a maximal parabolic subalgebra, is the isotropy subalgebra for
the action. This means we must locally parameterize the manifold G/P with some
neighborhood of the origin in Cd for some d. There is a natural choice for this
space, namely the complementary nilpotent subalgebra n. Notice that we have a
local diffeomorphism [5]

n→ N → G/P,

where the first arrow is the exponential map and the second is the natural pro-
jection onto right cosets σ 7→ Pσ . Let v ∈ g. In order to find the corresponding
infinitesimal generator of the right-translation action on G/P , we differentiate the
action of the one-parameter subgroup g = exp(tv) on n and evaluate at t = 0.
We have a basis for n, namely the set of root vectors Xα for α ∈ ∆− . Thus, we
assume local coordinates are furnished by prescribing that

Z =
∑

α∈∆−

xαXα

be an arbitrary point in n. The corresponding point in N is σ = exp(Z). Assume
that the one-parameter subgroup translates Z to

W = Z · exp(tv) = Z + tF + o(t2),
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where
F =

∑

α∈∆−

fαXα

is another element of n, the functions fα being smooth functions in the coordinate
functions xα , α ∈ ∆− . The corresponding infinitesimal generator is then

v̂ =
∑

α∈∆−

fα
∂

∂xα
.

We know that we have a local diffeomorphism, so we can assert that a
unique F exists for each v . We are now interested in determining F explicitly.
Suppose the element in N corresponding to W is τ = exp(W ). The group G acts
on G/P by right-translation of cosets, so we must impose the condition that σg
and τ correspond to the same right coset. That is,

σg ∼ τ iff Pσg = Pτ
iff σgτ−1 ∈ P.

This is precisely the constraint we need on τ to determine F . We can now state:

Proposition 3.1. Let z(v) = adZ(v) = [Z,v]. For sufficiently small Z ∈ n−

and sufficiently small t, exp(Z) exp(tv) exp(−Z − tF + o(t2)) is an element of P
iff

ez − 1

z
(F ) = ez(v)|n (1)

and F ∈ n.

Remark 3.2. Looking at this constraint, we can see that for any v ∈ g,
the functions fα are always polynomials, so it may be useful to introduce a
little notation. The space n has a vector-space dual n∗ , which is spanned by
the coordinate functions xα for α ∈ ∆− . Let us denote the ring Sym(n∗) of
polynomials in the coordinate functions by C [xα]. Given v ∈ g, we construct the
infinitesimal generator v̂ in two steps. First we determine F (v) as some element
of the space C [xα]⊗n. Then we identify the space n with the dual of the space n∗

in order to write down a vector field in differential-operator form. The infinitesimal
generator v̂ should therefore be considered (as usual) as lying in the space

Hom(n∗,C [xα])

of derivations on n∗ . Notice that we have two isomorphic vector spaces with
drastically differing Lie-algebra structures. The first, C [xα] ⊗ n is nilpotent, and
the second Hom(n∗,C [xα]) contains a faithful image of g.

Proof. As before, set σ = exp(Z), g = exp(tv) = I + tv + o(t2), and
τ = exp(Z + tF + o(t2)). We must show that the constraint is equivalent to
having σgτ−1 ∈ P . Notice that one may write

τ−1 = exp(−Z − tF + o(t2))
= I − (Z + tF ) + 1

2
[Z2 + t(FZ + ZF )] + · · ·+ o(t2)

= I − Z + 1
2
Z2 − · · · − tG + o(t2)

= exp(−Z)− tG + o(t2)
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where, for brevity, G = F − 1
2
(FZ + ZF ) + 1

6
(FZ2 + ZFZ + Z2F ) + · · ·. Now

write
σgτ−1 = exp(Z) exp(tv) exp(−Z − tF + o(t2))

= exp(Z)(I + tv) [exp(−Z)− tG] + o(t2)
= [exp(Z) + t exp(Z)v] [exp(−Z)− tG] + o(t2)
= I + t [− exp(Z)G+ exp(Z)v exp(−Z)] + o(t2).

Now it should be clear, since we want σgτ−1 ∈ P , that we must have

exp(Z)G = exp(Z)v exp(−Z)|n .

One will quickly see that

exp(Z)G =
ez − 1

z
(F )

and
exp(Z)v exp(−Z) = ez(v),

and these are the terms which appear in the proposition.

4. The Algebraic Solution

The constraint (1) developed in the preceeding section shows that there is a well-
defined function F : g→ C [xα]⊗ n which, after we identify n with differentiation
operators, imbeds g as a set of local vector fields. We now wish to learn more
about the nature of this function F . It turns out that F is much easier to study
if we restrict it to the subspaces Vj in our Z-gradation of g. To see this, we will
need a bit of algebra.

First, let A be the vector space of finite linear combinations of the symbols
{zi : i = 1, 2, 3, ...} and let T (A) =

⊗
A be the tensor algebra generated by A.

We define a Lie bracket on T (A) by writing

[u, v] = u⊗ v − v ⊗ u,

for u, v ∈ T (A). We can construct a representation of T (A) on C [xα] ⊗ g as
follows. Notice that we have projections πi : C [xα] ⊗ g → C [xα] ⊗ Vi . Suppose
we set Zi = π−i(Z) where Z is defined as before. Evidently we have

Zi =
∑

α∈∆−i

xαXα.

For a generator zi in A and a vector v ∈ C [xα]⊗ g, we set

zi(v) = [Zi,v] ,

and for a decomposable tensor v1 ⊗ · · · ⊗ vn ∈ T (A), set

v1 ⊗ · · · ⊗ vn(v) = v1(· · · (vn(v)) · · ·).

Linearly extending this gives our action of T (A) on C [xα]⊗ g. By construction,
this action preserves Lie brackets. Obviously, since zi maps C [xα]⊗Vj → C [xα]⊗
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Vj−i , this action restricts to the subspace C [xα]⊗n. Finally, the Lie algebra T (A)
has a Z-gradation

T (A) =
∑

i>0

T i(A),

where T i(A) is spanned by all decomposable tensors whose subscripts sum to i.
Notice that if u lies in T i(A), then u(C [xα]⊗ Vj) ⊂ C [xα]⊗ Vj−i . Let us use ρi

to denote the natural projections T (A)→ T i(A).

For later convenience, we will need elements Ri , Si , and Ti of T (A) defined
as follows. Write z =

∑
i>0 zi and ez = 1 + z + 1

2
z ⊗ z + · · ·, and set

Ri = Si = Ti = 0 if i < 0,

and

Si = ρi (ez) ,

Ri = ρi
(

z

ez − 1

)
,

and

Ti = ρi
(
ez − 1

z

)

for i ≥ 0. Notice that if we imbed the ring of polynomials Sym(A) in the tensor
algebra T (A) in the natural way, then the Si defined here are identified with the
usual Schur polynomials defined by

∑

i∈Z
Si(z)x

i = exp
∑

i>0

zix
i.

Suppose v ∈ g and recall the algebraic criterion that F (v) be an infinites-
imal generator:

ez − 1

z
(F (v)) = ez(v)|n .

Given an arbitrary v ∈ g, it is not so easy to find the element F ∈ C [xα] ⊗ n

which satisfies this constraint. However, under this algebraic framework, we do
have the following:

Theorem 4.1. If v ∈ Vj , then there is an element Fj ∈ T (A) such that

(
ez − 1

z
⊗ Fj

)
(v) = ez(v)|n ,

and Fj(v) satisfies the constraint (1). The element Fj ∈ T (A) is given by

Fj =
∑

i>0

F i
j ,

where

F i
j =

i−1∑

k=0

Rk ⊗ Si+j−k. (2)
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Proof. Suppose v ∈ Vj . First of all, notice that since v ∈ Vj , we have
Fj(v) ∈ C [xα] ⊗ n. We can also show that Fj(v) is the solution to (1): Notice
that R0 = T0 = 1, so we can write

i−1∑

k=0

Tk ⊗ F i−k
j = Si+j,

simply inverting the linear system (2). Now, notice that for i > 0,

π−i
(
ez−1
z

(Fj(v))
)

=
(
ρi+j

(
ez−1
z
⊗ Fj

))
(v)

=
(∑i−1

k=0 Tk ⊗ F i−k
j

)
(v),

and, because v ∈ Vj ,

π−i(ez(v)|n) = π−i(ez(v))
= (ρi+j(ez))(v)
= Si+j(v).

Since π−i
(
ez−1
z

(Fj(v))
)

and π−i(ez(v)|n) agree for all i > 0, we have

ez − 1

z
(Fj(v)) = ez(v)|n .

This theorem gives us an algorithm for obtaining the infinitesimal generators
of the right-multiplication action of G on G/P where P is a maximal parabolic
subgroup. Start with a complex simple Lie algebra g and a maximal parabolic
subalgebra p. Then for each piece Vj in the induced Z-gradation, apply the
appropriate tensor Fj to each element v of a spanning set for Vj . The number
of different tensors Fj we need to do this is identical to the number of non-zero
terms Vj in our Z-gradation, so this is a task reasonable enough to ask, say,
Mathematica to perform. Also, if we know more about the structure of g, we
can simplify our computations somewhat.

As a first specialization, consider the case when the choice of p induces a
gradation with at most five non-zero terms. For example, this always occurs when
g lies in one of the classical families {a, b, c, d} of complex simple Lie algebras.
For these cases, (a) zi always acts trivially when i > 2, and (b) the actions of z1

and z2 commute (since [Z1, Z2] = 0). Condition (a) says that when writing down
our solutions, we can set zi = 0 when i > 2 and condition (b) says that we don’t
have to pay attention to the order in which z1 and z2 are written; that is, z1⊗ z2

acts in a manner identical to that of z2⊗ z1 , so we write z1⊗ z2 = z2⊗ z1 = z1z2 .
Thus we have

Proposition 4.2. If g is a complex simple Lie algebra and p is a maximal
parabolic subalgebra inducing a Z-gradation with at most five non-zero terms Vj ,
then the formulae for the infinitesimal generators Fj(v) for v ∈ Vj are given in
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the following table:

j Fj(v)
−2 v
−1 (1 + 1

2
z1)(v)

0 (z1 + z2)(v)
1 (z2 + 1

2
z2

1 + 1
2
z1z2 − 1

12
z3

1)(v)
2 (z1z2 + 1

6
z3

1 + 1
2
z2

2 − 1
24
z4

1)(v)

(The solutions as elements F i
j of T (A) may be found in the table at the end of

this paper, if the reader is interested.)

Frequently the Z-gradation has exactly three non-zero terms. In this case,
z2 acts trivially and z = z1 + z2 + · · · acts just like z1 . Thus, restricting the
preceeding case, we have

Proposition 4.3. Suppose g = V−1⊕V0⊕V1 is a Z-gradation and p = V0⊕V1

is maximal, parabolic. Then (a) if v ∈ V−1 then F (v) = v , (b) if v ∈ V0 , then
F (v) = z(v), and (c) if v ∈ V1 , then F (v) = 1

2
z2(v).

These formulae yield the familiar realization

sl2C ∼=
{
∂

∂x
, 2x

∂

∂x
,−x2 ∂

∂x

}
,

the differentiated action of SL2C on CP 1 . The cases with three non-zero terms are
interesting also because these cases coincide with the classification of irreducible
Hermitian symmetric spaces [5].

5. An Example

We now wish to illustrate the application of these formulae to the case when g is
the Lie algebra b2 and the choice of a maximal parabolic subalgebra p induces
a Z-gradation with exactly five non-zero terms Vj . Suppose g has the basis
{X1, X2, X3, X4, Y1, Y2, Y3, Y4, H2, H4} where H2 and H4 span a Cartan subalgebra
and the remaining eight vectors are root vectors for this Cartan subalgebra. In
order to perform any computations, we need to know the commutation relations
among the elements of the basis. To determine these structural constants, assume
the commutation relations are in accordance with choosing g as spanned by the
following set of 4-by-4 matrices:

X1 = E21 − E34, Y1 = E12 − E43,
X2 = E31, Y2 = E13,
X3 = E41 + E32, Y3 = E14 + E23,
X4 = E42, Y4 = E24,
H2 = −E11 + E33, H4 = −E22 + E44.
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(This is quite arbitrary; all we need to know are the structural constants, so we
will get by with any faithful representation of b2 .) Set

V−2 = span{Y2},
V−1 = span{Y1, Y3},
V0 = span{H2, H4, X4, Y4},
V1 = span{X1, X3},
V2 = span{X2}.

It is easy to check that p = V0 ⊕ V1 ⊕ V2 is a maximal parabolic subalgebra and
that this defines a Z-gradation of g.

We now wish to apply our formulae to obtain a realization of g by vector
fields. First we write

Z = Z1 + Z2

where Z1 = x1Y1 + x3Y3 ∈ C [x1, x2, x3]⊗ V1 and Z2 = x2Y2 ∈ C [x1, x2, x3]⊗ V2 .
By definition, zi(v) = [Zi,v] for i = 1, 2, and, since [Z1, Z2] = 0, we do not
need to pay any attention to the order in which the zi are applied to any vector
in C [x1, x2, x3] ⊗ g. Let us determine the infinitesimal generator corresponding
to X1 . Since X1 ∈ V1 , we must apply the tensors F i

1 to obtain the infinitesimal
generator. According to the table,

F (X1) = F 1
1 (X1) + F 2

1 (X1)
= (z2 + 1

2
z2

1 + 1
2
z1z2 − 1

12
z3

1)(X1)
= [Z2, X1] + 1

2
[Z1, [Z1, X1]] + 1

2
[Z1, [Z2, X1]]− 1

12
[Z1[Z1[Z1, X1]]]

= −x2
1Y1 − x1x2Y2 − (x2 + x1x3)Y3.

Thus the infinitesimal generator corresponding to X1 is

X̂1 = −x2
1

∂

∂x1
− x1x2

∂

∂x2
− (x2 + x1x3)

∂

∂x3
.

Collecting the results when we apply the appropriate tensor to each element of our
basis, we have

X̂1 = −x2
1p1 − x1x2p2 − (x2 + x1x3)p3 Ŷ1 = p1 − x3p2

X̂2 = −x1x2p1 − x2
2p2 − x2x3p3 Ŷ2 = p2

X̂3 = (x2 − x1x3)p1 − x2x3p3 − x2
3p3 Ŷ3 = x1p2 + p3

X̂4 = x3p1 Ŷ4 = x1p3

Ĥ2 = x1p1 + 2x2p2 + x3p3 Ĥ4 = −x1p1 + x3p3

where, for brevity, we have written pi in place of ∂
∂xi

. (Note: Lie gave this

realization of b2 in his classification of transitive actions on C3 [8].)

6. Conclusion

As a concluding remark, it may be interesting to note that the associated spaces
C [xα] carry a natural generalization of “degree”. Notice that in our example we
obtained the operator

Ĥ2 = x1p1 + 2x2p2 + x3p3.
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If we assign the monomial x2 a degree of 2 and the monomials x1 , x3 each degree
1, (as our Z-gradation suggests), then Ĥ2 resembles Euler’s degree operator on
homogeneous polynomials:

Ĥ2(f) = deg(f) · f,

where f lives in C [x1, x2, x3]. Actually, this occurs in general. Recall that V0 is
the sum of a semisimple ideal g0 with a central element E . By properly scaling
E , it is not hard to show that the corresponding infinitesimal generator is

Ê =
∑

j>0

∑

α∈∆−j

jxα
∂

∂xα
,

which, operating on C [xα] , generalizes the usual degree operator.

Table 1.
j F 1

j F 2
j

−2 0 1
−1 1 1

2
z1

0 z1 z2

1 z2 + 1
2
z2

1
1
2
z1z2 − 1

12
z3

1

2 z1z2 + 1
6
z3

1
1
2
z2

2 − 1
24
z4

1
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