Large automorphism groups of 16-dimensional planes are Lie groups, II

Helmut Salzmann
Communicated by K. H. Hofmann

Abstract

Let \mathcal{P} be a compact, 16 -dimensional projective plane. If the group Σ of all continuous collineations of \mathcal{P} is taken with the compact-open topology, then Σ is a locally compact group with a countable basis. The following theorem is proved: If the topological dimension $\operatorname{dim} \Sigma$ is at least 29 , then Σ is a Lie group.

The automorphism group Σ of a projective plane \mathcal{P} with compact, 16-dimensional point space P is a locally compact transformation group of P, and Σ has a countable basis [9, 44.3]. It is an open problem whether or not Σ is always a Lie group. If the topological dimension $\operatorname{dim} \Sigma$ is sufficiently large and if Σ is a Lie group, then the structure theory for Lie groups can be exploited to determine all possible planes. This has successfully been done in several cases, cp. [9, Chap. $8]$ and [8]. Therefore, the following criterion is useful:

Theorem. If $\operatorname{dim} \Sigma \geq 29$, then Σ is a Lie group.
In order to conclude that the connected component Σ^{1} of Σ is a Lie group, a weaker hypothesis suffices [7]:

If $\operatorname{dim} \Sigma \geq 27$, then Σ^{1} is a Lie group.
A theorem of Bödi [1], Proposition G in [7], and [9, 53.2] imply
(\square) If Σ is not a Lie group, and if the subgroup \wedge of Σ fixes a quadrangle, then $\operatorname{dim} \Lambda \leq 11$. Moreover, $\operatorname{dim} x^{\Sigma}=\operatorname{dim} \Sigma / \Sigma_{x}<16$ for each point x.

The next result has been stated in [7, (a)] for connected subgroups of Σ, but the proof does not use connectedness:

Proposition. If Δ leaves some proper closed subplane invariant, then $\operatorname{dim} \Delta \leq$ 25 or Δ is a Lie group.

All large semi-simple groups on a 16 -dimensional plane \mathcal{P} are known [5], [6]:
If $\operatorname{dim} \Delta>28$ and if Δ^{1} is semi-simple, then either \mathcal{P} is a Hughes plane (including the classical Moufang plane), or $\Delta^{1} \cong \operatorname{Spin}_{9}(\mathbb{R}, r)$ with $r \leq 1$.

The full group of a Hughes plane is a Lie group [9, 86.12 and 53.2] or [9, 86.35]. The groups $\operatorname{Spin}_{9}(\mathbb{R}, r)$ contain the 28 -dimensional compact group $\operatorname{Spin}_{8} \mathbb{R}$ (which fixes a triangle), and Σ is a Lie group by (\square):
Corollary. If $\operatorname{dim} \Delta>28$ and if Δ^{1} is semi-simple, then Σ is a Lie group.
The proof of the theorem uses the approximation theorem [9, 93.8] for locally compact groups: there is an open subgroup Δ of Σ and an arbitrarily small compact, 0 -dimensional normal subgroup $\Theta \triangleleft \Delta$ such that Δ / Θ is a Lie group. According to [9, 93.18], the connected component $\Delta^{1}=\Sigma^{1}$ and the group Θ centralize each other, and Δ_{a}^{1} acts trivially on the orbit a^{Θ}. A group三 is called straight if each point orbit $x^{\bar{\Xi}}$ is contained in a line, and a well-known
 form an 8 -dimensional subplane \mathcal{F}_{\equiv}), or \equiv is contained in a group $\Sigma_{[z]}$ of collineations with common center z, see [7, Th.B].

Assume now that $\operatorname{dim} \Sigma \geq 29$ and that Σ is not a Lie group, and choose Δ and Θ as above. Then Θ is not a Lie group, and the Proposition shows that Θ cannot be planar. By Baer's Theorem, there remain two possibilities: either Θ is not straight and some orbit a^{Θ} contains a triangle, or Θ consists of axial collineations with a common center. Note that Δ^{1} is not semi-simple by the above Corollary.
(i) If a^{Θ} consists of more than 3 non-collinear points, then a^{Θ} generates a subplane, and (\square) implies $\operatorname{dim} \Delta_{a}^{1} \leq 11, \operatorname{dim} \Delta \leq 26$. If a^{Θ} is just a triangle, however, and if the same is true for all orbits b^{Θ} with b near a, then $a^{\Theta} \cup b^{\Theta}=C$ generates a subplane, Θ induces on C a finite group Θ / Λ, the kernel Λ is not a Lie group, $\Lambda \neq \mathbb{1}$, and \mathcal{F}_{Λ} would be a $\Delta^{1} \Lambda$-invariant proper closed subplane. This contradicts the Proposition. Hence Θ must be straight.
(ii) Because all arguments can be dualized, the elements of Θ also have a common axis W, and Θ is contained either in a group $\Sigma_{[a, W]}$ of homologies $(a \notin W)$, or in a group $\Sigma_{[v, W]}$ of elations with center $v \in W$. The case that Θ consists of homologies and that Δ is connected has been treated in [7]. A contradiction is obtained by studying the possible actions of the Lie group Δ / Θ on the axis W. The reasoning remains valid, if instead of the center Z of Δ the centralizer of Δ^{1} in Δ is used throughout. In the remaining case $\Theta \leq \Sigma_{[v, W]}$, the situation is different; it is the only one, in which the stronger hypothesis $\operatorname{dim} \Sigma \geq 29$ is needed. If Δ is connected, a theorem of Löwen [3] implies that Δ is a Lie group regardless of its dimension, cp. [4, (2.7)]. There seems to be no way, however, to extend Löwen's proof to non-connected groups. In the general case, a proof can be based on a careful analysis of a point stabilizer.
(1) Suppose again that $\Theta \leq \Sigma_{[v, W]}$ with $v \in W$. Choose any point $a \notin W$, and consider the connected component Γ of Δ_{a}. Because $\Gamma \cap \Theta=\mathbb{1}$, there is an embedding of Γ into the Lie group Δ / Θ. Hence Γ is itself a Lie group, and Γ has a minimal commutative, connected normal subgroup $\bar{\Xi}$, or Γ is semisimple. As has been noted before, Γ fixes the (infinite) orbit a^{\ominus} pointwise. The dimension formula $[9,96.10]$ and (\square) imply $14 \leq g=\operatorname{dim} \Gamma \leq 26$. Moreover, Γ acts effectively on W, and there is at most one point $u \in W \backslash\{v\}$ such that $u^{\ulcorner }=u$, compare [7, Prop. G]
(2) Let $\mathcal{E}=\left\langle a^{\Theta}, z^{\Gamma}\right\rangle$ denote the smallest closed subplane containing the orbits a^{\ominus} and $z^{\ulcorner }$. If $z \in W \backslash\{v\}$ and $z \neq u$, then $z^{\ulcorner }$is a non-trivial connected set, and \mathcal{E} has dimension $d \in\{2,4,8,16\}$, see [9, 54.11]. Remember that $z^{\Theta}=z$ and that Γ and Θ commute. Consequently, $\mathcal{E}^{\Theta}=\mathcal{E}$. As a group of elations, Θ acts effectively on \mathcal{E}. Since each automorphism group of a plane of dimension $d \leq 4$ is a Lie group [9, 32.21 and 71.2], it follows that \mathcal{E} is a Baer subplane or the plane \mathcal{P} itself, for short, $\mathcal{E} \leq \cdot \mathcal{P}$.
(3) Similarly, if Π is a one-parameter subgroup of Γ and if $z^{\Pi} \neq z$, then $\left\langle a^{\Theta}, z^{\Pi}\right\rangle \leq \cdot \mathcal{P}$. Let Ψ denote the connected component of the centralizer of Π in Γ. The Lie group Ψ_{z} acts trivially on $\left\langle a^{\Theta}, z^{\Pi}\right\rangle$, and $\Psi_{z}{ }^{1}$ is isomorphic to a subgroup of $\mathrm{SU}_{2} \mathbb{C}$ by $[9,83.22]$. In particular, $\operatorname{dim} \Psi_{z} \leq 3, \operatorname{dim} \psi \leq 11$. Note that $\operatorname{Cs} \Pi=\operatorname{Cs} \varrho=\Gamma_{\varrho}$ for any $\varrho \in \Pi \backslash\{\mathbb{1}\}$. The dimension formula [9, 96.10] gives $g-8 \leq \operatorname{dim} \Gamma_{z} \leq \operatorname{dim} \varrho^{\Gamma_{z}}+3$.
(4) Because a compact, commutative normal subgroup of Γ is contained in the center, it follows from (1) and (3) that either Γ is semi-simple, or Γ has a minimal normal subgroup $\equiv \cong \mathbb{R}^{t}$ with $t \geq g-11$, compare [9, 94.26]. The semi-simple case will be discussed later.
(5) Assume that $\mathbb{R}^{t} \cong \Xi \triangleleft \Gamma$, and let $z^{\Gamma} \neq z \in W \backslash\{v\}$. If $z^{\equiv}=z$, then \equiv induces the identity on $\mathcal{E} \leq \cdot \mathcal{P}$, and \equiv would be compact by [9, 83.6]. Consequently, $z^{\equiv} \neq z$, and $\left\langle a^{\Theta}, z^{\bar{\Xi}}\right\rangle \leq \bullet \mathcal{P}$ by the arguments of (2). Since $\bar{\Xi}_{z}$ fixes each point of $\left\langle a^{\Theta}, z^{\bar{\Xi}}\right\rangle$, it follows that $\bar{\Xi}_{z}$ is compact, and then $\bar{\Xi}_{z}=\mathbb{1}$. Therefore, $\overline{\text {. }}$ acts freely on $W \backslash\{u, v\}$ or on $W \backslash\{v\}$, and $t \leq 8, g \leq 19$. In particular, $\operatorname{dim} a^{\Delta} \geq 10$, and the line $a v$ is not fixed by Δ.
(6) If $g=19$, and if $\mathbb{1} \neq \varrho \in \equiv$, then (3) implies $\operatorname{dim} \Gamma_{z}=11, \operatorname{dim} \varrho^{\Gamma_{z}}=8$, and $\varrho^{\Gamma_{z}}$ is open in \equiv by $[9,92.14$ or $96.11(\mathrm{a})]$. Hence Γ_{z} is transitive on $\equiv \backslash\{\mathbb{1}\}$, and a maximal compact, connected subgroup is transitive on the 7 -sphere of the rays in $\equiv \cong \mathbb{R}^{8}$, see $[9,96.19]$. With $[9,96.20-22]$ it follows that $\Gamma_{z}{ }^{\prime} \cong \mathrm{U}_{2} \mathbb{H}$. The central involution $\sigma \in \Gamma_{z}$ inverts each element of $\overline{\text {, and }} z$ is an isolated fixed point of σ on W. Therefore, σ is a reflection with center z and axis $a v$. This contradicts the following Lemma on involutions, which will be needed repeatedly:
(*) Let α, β, and $\alpha \beta$ be pairwise commuting involutions in Γ. If Θ is not a Lie group, then exactly one of the 3 involutions is a reflection, and the torus rank $\mathrm{rk} \Gamma \leq 2$. Each reflection in Γ has axis av and some center $z \in W$. Moreover, Γ has no subgroup $\Phi \cong \mathrm{SO}_{3} \mathbb{R}$, and $\operatorname{dim} z^{\ulcorner } \leq 6$.
Proof. Any involution is either a reflection, or it is planar [9, 55.29]. If all 3 involutions α, β, and $\alpha \beta$ are planar, then the common fixed elements of α and β form a 4 -dimensional subplane \mathcal{F}, see $[9,55.39(\mathrm{a})]$. By definition, Γ is connected, Γ and Θ centralize each other, and $\mathcal{F}^{\Theta}=\mathcal{F}$. Because Θ consists of elations, Θ acts effectively on \mathcal{F}, and Θ would be a Lie group by [9, 71.2]. Hence we may assume that α is a reflection. Because 「 fixes the orbit a^{\ominus} pointwise, each reflection in Γ has axis $a v$, its center z lies on the fixed line W. Since the center of one of two commuting reflections is on the axis of the other [9, 55.35], the involutions β and $\alpha \beta$ are planar. If $\mathrm{SO}_{3} \mathbb{R} \cong \Phi \leq \Gamma$, and if α and β are chosen in Φ, then α and β are conjugate in Φ and therefore would be of the same kind, a contradiction. If $\operatorname{dim} z^{\ulcorner }=k>0$, then $\alpha^{\ulcorner } \alpha$ is a k-dimensional set in
the connected component E of the elation group $\Delta_{[v, a v]}$, compare $[9,61.19(\mathrm{~b})]$. The last statement in (5) implies that E is commutative, in fact, $\mathrm{E} \cong \mathbb{R}^{k}$. The connected group 「 induces linear maps of positive determinant on E. In particular, $\operatorname{det} \alpha=1$. On the other hand, the reflection α inverts each element in E , and $\left.\alpha\right|_{\mathrm{E}}=-\mathbb{1}$. Consequently, k is even. If $k=8$, then $\Delta_{[v, v]}$ is transitive, and Θ would be contained in the Lie group $\Delta_{[v, W]} \cong \mathbb{R}^{8}$. This completes the proof of Lemma ($*$).
(7) Now let $14 \leq g \leq 18$, and put $\Omega=\Gamma_{z}{ }^{1}$. Then $\operatorname{dim} \Omega \geq 6$, and for each $\varrho \in \equiv \backslash\{\mathbb{1}\}$ the last assertion in (3) gives $\operatorname{dim} \varrho^{\Omega} \geq 3$. Hence any minimal Ω invariant subspace $\Upsilon \leq \equiv$ has dimension $s \geq 3$. If $s=3$, then Ω is transitive on $\Upsilon \backslash\{\mathbb{1}\}$, and $\Omega_{\varrho} \cong \mathrm{SU}_{2} \mathbb{C}$ by (3). Because Ω_{ϱ} fixes a subspace of Υ, the representation of Ω_{ϱ} on Υ is trivial. Consequently, $\Omega / \Omega_{\varrho}$ would act sharply transitive on $\Upsilon \backslash\{\mathbb{1}\} \cong \mathbb{R}^{3} \backslash\{0\}$, but such a group does not exist.
(8) Similarly, the case $s=4$ leads to a contradiction: because $\mathrm{SU}_{2} \mathbb{C}$ has no 2 -dimensional subgroup, one has again $\Omega_{\varrho} \cong \mathrm{SU}_{2} \mathbb{C}$ for each $\varrho \in \Upsilon \backslash\{\mathbb{1}\}$. Being compact, Ω_{ϱ} acts on Υ as an orthogonal group, in fact as a subgroup of $\mathrm{SO}_{3} \mathbb{R}$. Hence the central involution ω of Ω_{ϱ} is planar, the Baer subplane of its fixed elements is $\mathcal{F}_{\omega}=\left\langle a^{\Theta}, z^{\Upsilon}\right\rangle$. Either Ω_{ϱ} acts trivially on \mathcal{F}_{ω}, or Ω_{ϱ} induces on \mathcal{F}_{ω} a group $\Phi=\Omega_{\varrho} /\langle\omega\rangle \cong \mathrm{SO}_{3} \mathbb{R}$. In the latter case, Φ fixes a quadrangle in \mathcal{F}_{ω} by its very definition. It follows that the fixed elements of Φ in \mathcal{F}_{ω} form a 2 -dimensional subplane (use [9, 96.34]). Acting faithfully on this subplane, Θ would be a Lie group by $[9,32.21]$. Therefore, Ω_{ϱ} is the kernel of the irreducible action of Ω on Υ, and $\left(\Omega / \Omega_{\varrho}\right)^{\prime}$ is a non-trivial semi-simple linear group. Consequently, Ω^{\prime} contains a 2 -torus. Lemma (*) implies $\operatorname{dim} z^{\ulcorner } \leq 6$, but then $14 \leq g \leq \operatorname{dim} z^{\ulcorner }+\operatorname{dim} \Omega \leq 6+s+3=13$. This contradiction shows that $s>4$.
(9) By the last assertion, $\Omega=\Gamma_{z}{ }^{1}$ acts faithfully and irreducibly on $\Upsilon \cong \mathbb{R}^{s}$, and the semi-simple commutator subgroup satisfies $\operatorname{dim} \Omega^{\prime}>3$, hence $\operatorname{dim} \Omega^{\prime} \geq 6$, see [9, 95.6]. If $s \in\{5,7\}$, then $\Gamma_{z}{ }^{\prime}$ is almost simple and irreducible on Υ by Clifford's Lemma [9, 95.5]. Inspection of a list of irreducible representations [9, $95.10]$ shows that either $s=5$ and $\operatorname{dim} \Gamma_{z}{ }^{\prime} \geq 10$, or $s=7$ and $\operatorname{dim} \Gamma_{z}{ }^{\prime} \geq 14$, but $\operatorname{dim} \Gamma_{z} \leq s+3$. Hence $s \in\{6,8\}$.
(10) Suppose that $s=6=\operatorname{dim} \Omega^{\prime}$. Lemma ($*$) implies $\operatorname{rk} \Omega=1$, or $\mathrm{rk} \Omega=2$ and $\operatorname{dim} z^{\ulcorner } \leq 6$. In the second case, $\operatorname{dim} \Omega=8$, and the center of Ω is isomorphic to \mathbb{C}^{\times}. Consequently, $\mathrm{rk} \Omega^{\prime}=1$ and Ω^{\prime} is almost simple and locally isomorphic to $\mathrm{SL}_{2} \mathbb{C}$. From $[9,95.6(\mathrm{~b})$ and 95.10$]$ it follows that Ω^{\prime} acts irreducibly on Υ and $\Omega^{\prime} \cong \mathrm{SO}_{3} \mathbb{C}>\mathrm{SO}_{3} \mathbb{R}$. This contradicts $(*)$.
(11) If $s=6$ and $\operatorname{dim} \Omega^{\prime}=8$, then Ω^{\prime} is isomorphic to a group $\mathrm{SU}_{3}(\mathbb{C}, r)$ or to $\mathrm{SL}_{3} \mathbb{R}$. None of these groups contains a central involution. Consequently, each involution in Ω^{\prime} has a positive eigenspace in Υ and hence is planar. Moreover, there are 3 pairwise commuting involutions in Ω^{\prime}. This is excluded by ($*$).
(12) The case $s=6$ and $\operatorname{dim} \Omega^{\prime}=9$ leads to a contradiction as follows: a 9 -dimensional semi-simple group is not almost simple and has at least one 3dimensional factor. On the other hand, the arguments of (6) show that Ω^{\prime} acts
transitively on $\Upsilon \backslash\{\mathbb{1}\}$ and hence on the 5 -sphere consisting of the rays in $\Upsilon \cong \mathbb{R}^{6}$. Therefore, Ω^{\prime} contains an 8 -dimensional almost simple factor $\mathrm{SU}_{3} \mathbb{C}$.
(13) From (7-12), it follows that $\Upsilon=\equiv \cong \mathbb{R}^{8}$. If $z \in W \backslash\{v\}, z \neq u$, then $z^{\equiv} \approx \mathbb{R}^{8}$ by step (5), and z^{\equiv} is open in W by $[9,53.1(\mathrm{a})]$. Hence W is a manifold, and $W \approx \mathbb{S}_{8}$ according to $[9,52.3]$. Since $W \backslash\{u, v\} \not \approx \mathbb{R}^{8}$, the group三 is sharply transitive on $W \backslash\{v\}$. Remember that Γ_{z} acts effectively on $\overline{\text {. }}$
(14) Combination of (13) and (*) shows that the group $\Omega=\Gamma_{z}$ does not contain any reflection. The semi-simple commutator subgroup Ω^{\prime} has dimension at least 6 . Because of $(*)$, its torus rank is 1 , and Ω^{\prime} is even almost simple. The only groups satisfying these conditions and having a faithful linear representation are $\mathrm{SL}_{2} \mathbb{C}, \mathrm{SO}_{3} \mathbb{C}$, and $\mathrm{SL}_{3} \mathbb{R}$, see $[9,95.10]$. In the first case, the central involution would be a reflection. The latter two groups have a subgroup $\mathrm{SO}_{3} \mathbb{R}$ and hence are excluded by $(*)$. Together, steps ($4-14$) imply that Γ is semi-simple.
(15) If Γ has two or more factors, choose an almost simple factor B of maximal dimension and let A denote the product of the other factors, so that A and B commute elementwise. Consider $z \in W$ with $z^{\ulcorner } \neq z$ and $\left\langle a^{\Theta}, z^{\Gamma}\right\rangle=\mathcal{E} \leq \cdot \mathcal{P}$ as in (2). Assume first that $z^{\mathrm{A}}=z$. Then A acts trivially on \mathcal{E} and \mathcal{E} is a Baer subplane, moreover, $A \cong \mathrm{SU}_{2} \mathbb{C}$ by [9, 83.22]. Therefore, $\operatorname{dim} \mathrm{B} \geq 11$. Since B is almost simple, $\operatorname{dim} B \geq 14$ and B acts almost effectively (i.e. with discrete kernel) on \mathcal{E}. But B fixes a^{Θ}, and the stiffness theorem [9, 83.17] gives $\operatorname{dim} \mathrm{B} \leq 7+4$, a contradiction. Similarly, $z^{\mathrm{B}}=z$ implies $\operatorname{dim} \mathrm{B}=3$, and A is a product of 3 -dimensional groups by the maximality of B. Hence $\operatorname{dim} A \geq 12$. The kernel K of the action of Γ on \mathcal{E} contains B , and $\operatorname{dim} \mathrm{K}=3$ by [9, 83.22]. Consequently, A acts almost effectively on \mathcal{E}. Again, the stiffness theorem shows $\operatorname{dim} \mathrm{A} \leq 11$. Thus, $\left\langle a^{\Theta}, z^{\mathrm{A}}\right\rangle=\mathcal{A} \leq \cdot \mathcal{P}$ and $\left\langle a^{\Theta}, z^{\mathrm{B}}\right\rangle=\mathcal{B} \leq \cdot \mathcal{P}$.
(16) As in step (3), the last part of (15) implies $\operatorname{dim} \mathrm{A}_{z} \leq 3$ and $\operatorname{dim} \mathrm{A} \leq 11$. If $\operatorname{dim} B \leq 6$, then $\operatorname{dim} A \equiv 0 \bmod 3$ and $\operatorname{dim} A=9$. Therefore, $\operatorname{dim} z^{A} \geq 6$ and $\mathcal{A}=\mathcal{P}$. Consequently, $\mathrm{B}_{z}=\mathbb{1}, \operatorname{dim} \mathrm{B}=6$, and $\mathcal{B}=\mathcal{P}$. Now $\mathrm{A}_{z}=\mathbb{1}$ and $\operatorname{dim} A \leq 8$, a contradiction. Since also $\operatorname{dim} B \leq 11$ and B is almost simple, it follows that $\operatorname{dim} B \in\{8,10\}$ and $\operatorname{dim} z^{B}>4$. Hence $\mathcal{B}=\mathcal{P}$ and again $A_{z}=\mathbb{1}$. Because $\operatorname{dim} \Gamma \geq 14$, the semi-simple group A has dimension at least 6 , and $\mathcal{A}=\mathcal{P}$, so that $\mathrm{B}_{z}=\mathbb{1}$ and $\operatorname{dim} \mathrm{B}=8$.
(17) $\mathrm{By}[9,53.1(\mathrm{a})]$, the orbit z^{B} is open in W whenever $z^{\ulcorner } \neq z$, and this is true for each point $z \in W \backslash\{v\}$ with at most one exception u, see step (1). Hence B is sharply transitive on $W \backslash\{v\} \approx \mathbb{R}^{8}$ or on $W \backslash\{u, v\} \approx e^{\mathbb{R}} \times \mathbb{S}_{7}$. In both cases, the homotopy group $\pi_{3} B$ vanishes, but every almost simple Lie group X satisfies $\pi_{3} X \cong \mathbb{Z}$, see [2] or [9, 94.36]. Therefore, Γ is almost simple.
(18) If the center Z of Γ is not trivial, and if $z^{Z} \neq z \in W$, then Γ_{z} fixes each point of $\left\langle a^{\Theta}, z^{\mathrm{Z}}\right\rangle$, and (\square) implies $\operatorname{dim} \Gamma_{z} \leq 11$, $\operatorname{dim} \Gamma<20$. Therefore, Γ is of type G_{2}, or Γ is locally isomorphic to one of the groups $\mathrm{SU}_{4}(\mathbb{C}, r), \mathrm{SL}_{2} \mathbb{H}$, $\mathrm{SL}_{4} \mathbb{R}, \mathrm{SL}_{3} \mathbb{C}$, or $\operatorname{dim} \Gamma \geq 20$ and Γ is even simple in the strict sence, cp. [9, $94.21]$. In any case, Γ has a compact subgroup Φ which is locally isomorphic to $\mathrm{SU}_{3} \mathbb{C}$ or to $\left(\mathrm{SU}_{2} \mathbb{C}\right)^{2}$. Note that $\mathrm{SO}_{3} \mathbb{R}<\mathrm{SU}_{3} \mathbb{C}$. Hence Φ contains a subgroup $\mathrm{SO}_{3} \mathbb{R}$ or $\Phi=A \times B$ with $A \cong B \cong \mathrm{SU}_{2} \mathbb{C}$. The first possibility is excluded by Lemma (*).
(19) Finally, consider the alternative $\Gamma>\Phi=A \times B$ of the last step, and let $\alpha \in \mathrm{A}$ and $\beta \in \mathrm{B}$ be the central involutions of the two factors. Assume that β is not a reflection $(*)$. Then the fixed elements of β form a $\Phi \Theta$-invariant Baer subplane \mathcal{B}, and $a^{\Theta} \subseteq K=a v \cap \mathcal{B}$. Lemma (*) implies that α acts on \mathcal{B} as a reflection with axis K and some center $z \in W$. Because a compact group of (z, K)-homologies of \mathcal{B} has dimension at most 3 , the group Φ acts non-trivially on K. Since Φ fixes each point of a^{Θ}, it follows from Richardson's theorem [9, 96.34] that Φ induces on K a group $\mathrm{SO}_{3} \mathbb{R}$, and that the fixed points of Φ on K form a circle S. The group Θ acts effectively on S and hence would be a Lie group. This contradiction completes the proof of the theorem.

References

[1] Bödi, R., On the dimensions of automorphism groups of eight-dimensional ternary fields I, J. Geom. 52 (1995), 30-40.
[2] Bott, R., An application of the Morse Theory to the topology of Liegroups, Bull. Soc. Math. France 84 (1956), 251-281.
[3] Löwen, R., Locally compact connected groups acting on euclidean space with Lie isotropy groups are Lie, Geom. Dedicata 5 (1976), 171-174.
[4] Löwen, R., and H. Salzmann, Collineation groups of compact connected projective planes, Arch. Math. 38 (1982), 368-373.
[5] Priwitzer, B., Large semisimple groups on 16-dimensional compact projective planes are almost simple, Arch. Math. 68 (1997), 430-440.
[6] -, Large almost simple groups acting on 16-dimensional compact projective planes, Monatsh. Math., to appear.
[7] Priwitzer, B., and H. Salzmann, Large automorphism groups of 16dimensional planes are Lie groups, J. Lie Theory 8 (1998), 83-93.
[8] Salzmann, H., Characterization of 16-dimensional Hughes planes, Arch. d. Math., 71 (1998), 249-256.
[9] Salzmann, H., D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, and M. Stroppel, "Compact projective planes," W. de Gruyter, Berlin-New York, 1995.

Mathematisches Institut
Auf der Morgenstelle 10
D - 72076 Tübingen
e-mail: helmut.salzmann@uni-tuebingen.de

Received July 10, 1998
and in final form October 12, 1998

