Large automorphism groups of 16-dimensional planes are Lie groups, II

Helmut Salzmann

Communicated by K. H. Hofmann

Abstract. Let \mathcal{P} be a compact, 16-dimensional projective plane. If the group Σ of all continuous collineations of \mathcal{P} is taken with the compact-open topology, then Σ is a locally compact group with a countable basis. The following theorem is proved: If the topological dimension dim Σ is at least 29, then Σ is a Lie group.

The automorphism group Σ of a projective plane \mathcal{P} with compact, 16-dimensional point space P is a locally compact transformation group of P, and Σ has a countable basis [9, 44.3]. It is an open problem whether or not Σ is always a Lie group. If the topological dimension dim Σ is sufficiently large and if Σ is a Lie group, then the structure theory for Lie groups can be exploited to determine all possible planes. This has successfully been done in several cases, cp. [9, Chap. 8] and [8]. Therefore, the following criterion is useful:

Theorem. If dim $\Sigma \geq 29$, then Σ is a Lie group.

In order to conclude that the connected component Σ^1 of Σ is a Lie group, a weaker hypothesis suffices [7]:

If dim $\Sigma \geq 27$, then Σ^1 is a Lie group.

A theorem of Bödi [1], Proposition G in [7], and [9, 53.2] imply

 (\Box) If Σ is not a Lie group, and if the subgroup Λ of Σ fixes a quadrangle, then $\dim \Lambda \leq 11$. Moreover, $\dim x^{\Sigma} = \dim \Sigma / \Sigma_x < 16$ for each point x.

The next result has been stated in [7, (a)] for connected subgroups of Σ , but the proof does not use connectedness:

Proposition. If Δ leaves some proper closed subplane invariant, then dim $\Delta \leq 25$ or Δ is a Lie group.

All large semi-simple groups on a 16-dimensional plane \mathcal{P} are known [5], [6]:

If dim $\Delta > 28$ and if Δ^1 is semi-simple, then either \mathcal{P} is a Hughes plane (including the classical Moufang plane), or $\Delta^1 \cong \text{Spin}_9(\mathbb{R}, r)$ with $r \leq 1$.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

The full group of a Hughes plane is a Lie group [9, 86.12 and 53.2] or [9, 86.35]. The groups $\text{Spin}_9(\mathbb{R}, r)$ contain the 28-dimensional compact group $\text{Spin}_8\mathbb{R}$ (which fixes a triangle), and Σ is a Lie group by (\Box):

Corollary. If dim $\Delta > 28$ and if Δ^1 is semi-simple, then Σ is a Lie group.

The proof of the theorem uses the approximation theorem [9, 93.8] for locally compact groups: there is an open subgroup Δ of Σ and an arbitrarily small compact, 0-dimensional normal subgroup $\Theta \triangleleft \Delta$ such that Δ/Θ is a Lie group. According to [9, 93.18], the connected component $\Delta^1 = \Sigma^1$ and the group Θ centralize each other, and Δ^1_a acts trivially on the orbit a^{Θ} . A group Ξ is called *straight* if each point orbit x^{Ξ} is contained in a line, and a well-known theorem of Baer implies that either Ξ is planar (i.e. the fixed elements of Ξ form an 8-dimensional subplane \mathcal{F}_{Ξ}), or Ξ is contained in a group $\Sigma_{[z]}$ of collineations with common center z, see [7, Th.B].

Assume now that dim $\Sigma \geq 29$ and that Σ is not a Lie group, and choose Δ and Θ as above. Then Θ is not a Lie group, and the Proposition shows that Θ cannot be planar. By Baer's Theorem, there remain two possibilities: either Θ is not straight and some orbit a^{Θ} contains a triangle, or Θ consists of axial collineations with a common center. Note that Δ^1 is not semi-simple by the above Corollary.

(i) If a^{Θ} consists of more than 3 non-collinear points, then a^{Θ} generates a subplane, and (\Box) implies dim $\Delta_a^1 \leq 11$, dim $\Delta \leq 26$. If a^{Θ} is just a triangle, however, and if the same is true for all orbits b^{Θ} with b near a, then $a^{\Theta} \cup b^{\Theta} = C$ generates a subplane, Θ induces on C a finite group Θ/Λ , the kernel Λ is not a Lie group, $\Lambda \neq 1$, and \mathcal{F}_{Λ} would be a $\Delta^1\Lambda$ -invariant proper closed subplane. This contradicts the Proposition. Hence Θ must be straight.

(ii) Because all arguments can be dualized, the elements of Θ also have a common axis W, and Θ is contained either in a group $\Sigma_{[a,W]}$ of homologies $(a \notin W)$, or in a group $\Sigma_{[v,W]}$ of elations with center $v \in W$. The case that Θ consists of homologies and that Δ is connected has been treated in [7]. A contradiction is obtained by studying the possible actions of the Lie group Δ/Θ on the axis W. The reasoning remains valid, if instead of the center Z of Δ the centralizer of Δ^1 in Δ is used throughout. In the remaining case $\Theta \leq \Sigma_{[v,W]}$, the situation is different; it is the only one, in which the stronger hypothesis dim $\Sigma \geq 29$ is needed. If Δ is connected, a theorem of Löwen [3] implies that Δ is a Lie group regardless of its dimension, cp. [4, (2.7)]. There seems to be no way, however, to extend Löwen's proof to non-connected groups. In the general case, a proof can be based on a careful analysis of a point stabilizer.

(1) Suppose again that $\Theta \leq \Sigma_{[v,W]}$ with $v \in W$. Choose any point $a \notin W$, and consider the connected component Γ of Δ_a . Because $\Gamma \cap \Theta = 1$, there is an embedding of Γ into the Lie group Δ/Θ . Hence Γ is itself a Lie group, and Γ has a minimal commutative, connected normal subgroup Ξ , or Γ is semisimple. As has been noted before, Γ fixes the (infinite) orbit a^{Θ} pointwise. The dimension formula [9, 96.10] and (\Box) imply $14 \leq g = \dim \Gamma \leq 26$. Moreover, Γ acts effectively on W, and there is at most one point $u \in W \setminus \{v\}$ such that $u^{\Gamma} = u$, compare [7, Prop. G] (2) Let $\mathcal{E} = \langle a^{\Theta}, z^{\Gamma} \rangle$ denote the smallest closed subplane containing the orbits a^{Θ} and z^{Γ} . If $z \in W \setminus \{v\}$ and $z \neq u$, then z^{Γ} is a non-trivial connected set, and \mathcal{E} has dimension $d \in \{2, 4, 8, 16\}$, see [9, 54.11]. Remember that $z^{\Theta} = z$ and that Γ and Θ commute. Consequently, $\mathcal{E}^{\Theta} = \mathcal{E}$. As a group of elations, Θ acts effectively on \mathcal{E} . Since each automorphism group of a plane of dimension $d \leq 4$ is a Lie group [9, 32.21 and 71.2], it follows that \mathcal{E} is a Baer subplane or the plane \mathcal{P} itself, for short, $\mathcal{E} \leq \mathcal{P}$.

(3) Similarly, if Π is a one-parameter subgroup of Γ and if $z^{\Pi} \neq z$, then $\langle a^{\Theta}, z^{\Pi} \rangle \leq \bullet \mathcal{P}$. Let Ψ denote the connected component of the centralizer of Π in Γ . The Lie group Ψ_z acts trivially on $\langle a^{\Theta}, z^{\Pi} \rangle$, and Ψ_z^{1} is isomorphic to a subgroup of SU₂ \mathbb{C} by [9, 83.22]. In particular, dim $\Psi_z \leq 3$, dim $\Psi \leq 11$. Note that $Cs\Pi = Cs\varrho = \Gamma_{\varrho}$ for any $\varrho \in \Pi \setminus \{1\}$. The dimension formula [9, 96.10] gives $g - 8 \leq \dim \Gamma_z \leq \dim \varrho^{\Gamma_z} + 3$.

(4) Because a compact, commutative normal subgroup of Γ is contained in the center, it follows from (1) and (3) that either Γ is semi-simple, or Γ has a minimal normal subgroup $\Xi \cong \mathbb{R}^t$ with $t \ge g - 11$, compare [9, 94.26]. The semi-simple case will be discussed later.

(5) Assume that $\mathbb{R}^t \cong \Xi \triangleleft \Gamma$, and let $z^{\Gamma} \neq z \in W \setminus \{v\}$. If $z^{\Xi} = z$, then Ξ induces the identity on $\mathcal{E} \leq \bullet \mathcal{P}$, and Ξ would be compact by [9, 83.6]. Consequently, $z^{\Xi} \neq z$, and $\langle a^{\Theta}, z^{\Xi} \rangle \leq \bullet \mathcal{P}$ by the arguments of (2). Since Ξ_z fixes each point of $\langle a^{\Theta}, z^{\Xi} \rangle$, it follows that Ξ_z is compact, and then $\Xi_z = \mathbb{1}$. Therefore, Ξ acts freely on $W \setminus \{u, v\}$ or on $W \setminus \{v\}$, and $t \leq 8$, $g \leq 19$. In particular, dim $a^{\Delta} \geq 10$, and the line av is not fixed by Δ .

(6) If g = 19, and if $\mathbb{1} \neq \rho \in \Xi$, then (3) implies dim $\Gamma_z = 11$, dim $\rho^{\Gamma_z} = 8$, and ρ^{Γ_z} is open in Ξ by [9, 92.14 or 96.11(a)]. Hence Γ_z is transitive on $\Xi \setminus \{\mathbb{1}\}$, and a maximal compact, connected subgroup is transitive on the 7-sphere of the rays in $\Xi \cong \mathbb{R}^8$, see [9, 96.19]. With [9, 96.20–22] it follows that $\Gamma_z' \cong U_2\mathbb{H}$. The central involution $\sigma \in \Gamma_z$ inverts each element of Ξ , and z is an isolated fixed point of σ on W. Therefore, σ is a reflection with center z and axis av. This contradicts the following Lemma on involutions, which will be needed repeatedly:

(*) Let α , β , and $\alpha\beta$ be pairwise commuting involutions in Γ . If Θ is not a Lie group, then exactly one of the 3 involutions is a reflection, and the torus rank $\mathrm{rk}\,\Gamma \leq 2$. Each reflection in Γ has axis av and some center $z \in W$. Moreover, Γ has no subgroup $\Phi \cong \mathrm{SO}_3\mathbb{R}$, and $\dim z^{\Gamma} \leq 6$.

Proof. Any involution is either a reflection, or it is planar [9, 55.29]. If all 3 involutions α , β , and $\alpha\beta$ are planar, then the common fixed elements of α and β form a 4-dimensional subplane \mathcal{F} , see [9, 55.39(a)]. By definition, Γ is connected, Γ and Θ centralize each other, and $\mathcal{F}^{\Theta} = \mathcal{F}$. Because Θ consists of elations, Θ acts effectively on \mathcal{F} , and Θ would be a Lie group by [9, 71.2]. Hence we may assume that α is a reflection. Because Γ fixes the orbit a^{Θ} pointwise, each reflection in Γ has axis av, its center z lies on the fixed line W. Since the center of one of two commuting reflections is on the axis of the other [9, 55.35], the involutions β and $\alpha\beta$ are planar. If $SO_3\mathbb{R} \cong \Phi \leq \Gamma$, and if α and β are chosen in Φ , then α and β are conjugate in Φ and therefore would be of the same kind, a contradiction. If dim $z^{\Gamma} = k > 0$, then $\alpha^{\Gamma} \alpha$ is a k-dimensional set in

SALZMANN

the connected component E of the elation group $\Delta_{[v,av]}$, compare [9,61.19(b)]. The last statement in (5) implies that E is commutative, in fact, $E \cong \mathbb{R}^k$. The connected group Γ induces linear maps of positive determinant on E. In particular, det $\alpha = 1$. On the other hand, the reflection α inverts each element in E, and $\alpha|_{\mathsf{E}} = -1$. Consequently, k is even. If k = 8, then $\Delta_{[v,v]}$ is transitive, and Θ would be contained in the Lie group $\Delta_{[v,W]} \cong \mathbb{R}^8$. This completes the proof of Lemma (*).

(7) Now let $14 \leq g \leq 18$, and put $\Omega = \Gamma_z^{-1}$. Then dim $\Omega \geq 6$, and for each $\varrho \in \Xi \setminus \{1\}$ the last assertion in (3) gives dim $\varrho^{\Omega} \geq 3$. Hence any minimal Ω -invariant subspace $\Upsilon \leq \Xi$ has dimension $s \geq 3$. If s = 3, then Ω is transitive on $\Upsilon \setminus \{1\}$, and $\Omega_{\varrho} \cong SU_2\mathbb{C}$ by (3). Because Ω_{ϱ} fixes a subspace of Υ , the representation of Ω_{ϱ} on Υ is trivial. Consequently, Ω/Ω_{ϱ} would act sharply transitive on $\Upsilon \setminus \{1\} \cong \mathbb{R}^3 \setminus \{0\}$, but such a group does not exist.

(8) Similarly, the case s = 4 leads to a contradiction: because SU₂C has no 2-dimensional subgroup, one has again $\Omega_{\varrho} \cong SU_2\mathbb{C}$ for each $\varrho \in \Upsilon \setminus \{1\}$. Being compact, Ω_{ϱ} acts on Υ as an orthogonal group, in fact as a subgroup of SO₃R. Hence the central involution ω of Ω_{ϱ} is planar, the Baer subplane of its fixed elements is $\mathcal{F}_{\omega} = \langle a^{\Theta}, z^{\Upsilon} \rangle$. Either Ω_{ϱ} acts trivially on \mathcal{F}_{ω} , or Ω_{ϱ} induces on \mathcal{F}_{ω} a group $\Phi = \Omega_{\varrho}/\langle \omega \rangle \cong SO_3\mathbb{R}$. In the latter case, Φ fixes a quadrangle in \mathcal{F}_{ω} by its very definition. It follows that the fixed elements of Φ in \mathcal{F}_{ω} form a 2-dimensional subplane (use [9, 96.34]). Acting faithfully on this subplane, Θ would be a Lie group by [9, 32.21]. Therefore, Ω_{ϱ} is the kernel of the irreducible action of Ω on Υ , and $(\Omega/\Omega_{\varrho})'$ is a non-trivial semi-simple linear group. Consequently, Ω' contains a 2-torus. Lemma (*) implies dim $z^{\Gamma} \leq 6$, but then $14 \leq g \leq \dim z^{\Gamma} + \dim \Omega \leq 6 + s + 3 = 13$. This contradiction shows that s > 4.

(9) By the last assertion, $\Omega = \Gamma_z^{-1}$ acts faithfully and irreducibly on $\Upsilon \cong \mathbb{R}^s$, and the semi-simple commutator subgroup satisfies dim $\Omega' > 3$, hence dim $\Omega' \ge 6$, see [9, 95.6]. If $s \in \{5,7\}$, then Γ_z' is almost simple and irreducible on Υ by Clifford's Lemma [9, 95.5]. Inspection of a list of irreducible representations [9, 95.10] shows that either s = 5 and dim $\Gamma_z' \ge 10$, or s = 7 and dim $\Gamma_z' \ge 14$, but dim $\Gamma_z \le s + 3$. Hence $s \in \{6, 8\}$.

(10) Suppose that $s = 6 = \dim \Omega'$. Lemma (*) implies $\operatorname{rk} \Omega = 1$, or $\operatorname{rk} \Omega = 2$ and $\dim z^{\Gamma} \leq 6$. In the second case, $\dim \Omega = 8$, and the center of Ω is isomorphic to \mathbb{C}^{\times} . Consequently, $\operatorname{rk} \Omega' = 1$ and Ω' is almost simple and locally isomorphic to $\operatorname{SL}_2\mathbb{C}$. From [9, 95.6(b) and 95.10] it follows that Ω' acts irreducibly on Υ and $\Omega' \cong \operatorname{SO}_3\mathbb{C} > \operatorname{SO}_3\mathbb{R}$. This contradicts (*).

(11) If s = 6 and dim $\Omega' = 8$, then Ω' is isomorphic to a group $SU_3(\mathbb{C}, r)$ or to $SL_3\mathbb{R}$. None of these groups contains a central involution. Consequently, each involution in Ω' has a positive eigenspace in Υ and hence is planar. Moreover, there are 3 pairwise commuting involutions in Ω' . This is excluded by (*).

(12) The case s = 6 and dim $\Omega' = 9$ leads to a contradiction as follows: a 9-dimensional semi-simple group is not almost simple and has at least one 3-dimensional factor. On the other hand, the arguments of (6) show that Ω' acts

transitively on $\Upsilon \setminus \{1\}$ and hence on the 5-sphere consisting of the rays in $\Upsilon \cong \mathbb{R}^6$. Therefore, Ω' contains an 8-dimensional almost simple factor $SU_3\mathbb{C}$.

(13) From (7–12), it follows that $\Upsilon = \Xi \cong \mathbb{R}^8$. If $z \in W \setminus \{v\}, z \neq u$, then $z^{\Xi} \approx \mathbb{R}^8$ by step (5), and z^{Ξ} is open in W by [9, 53.1(a)]. Hence W is a manifold, and $W \approx \mathbb{S}_8$ according to [9, 52.3]. Since $W \setminus \{u, v\} \not\approx \mathbb{R}^8$, the group Ξ is sharply transitive on $W \setminus \{v\}$. Remember that Γ_z acts effectively on Ξ .

(14) Combination of (13) and (*) shows that the group $\Omega = \Gamma_z$ does not contain any reflection. The semi-simple commutator subgroup Ω' has dimension at least 6. Because of (*), its torus rank is 1, and Ω' is even almost simple. The only groups satisfying these conditions and having a faithful linear representation are $SL_2\mathbb{C}$, $SO_3\mathbb{C}$, and $SL_3\mathbb{R}$, see [9, 95.10]. In the first case, the central involution would be a reflection. The latter two groups have a subgroup $SO_3\mathbb{R}$ and hence are excluded by (*). Together, steps (4–14) imply that Γ is semi-simple.

(15) If Γ has two or more factors, choose an almost simple factor B of maximal dimension and let A denote the product of the other factors, so that A and B commute elementwise. Consider $z \in W$ with $z^{\Gamma} \neq z$ and $\langle a^{\Theta}, z^{\Gamma} \rangle = \mathcal{E} \leq \bullet \mathcal{P}$ as in (2). Assume first that $z^{A} = z$. Then A acts trivially on \mathcal{E} and \mathcal{E} is a Baer subplane, moreover, $A \cong SU_2\mathbb{C}$ by [9, 83.22]. Therefore, dim $B \geq 11$. Since B is almost simple, dim $B \geq 14$ and B acts almost effectively (i.e. with discrete kernel) on \mathcal{E} . But B fixes a^{Θ} , and the stiffness theorem [9, 83.17] gives dim $B \leq 7 + 4$, a contradiction. Similarly, $z^{B} = z$ implies dim B = 3, and A is a product of 3-dimensional groups by the maximality of B. Hence dim $A \geq 12$. The kernel K of the action of Γ on \mathcal{E} contains B, and dim K = 3 by [9, 83.22]. Consequently, A acts almost effectively on \mathcal{E} . Again, the stiffness theorem shows dim $A \leq 11$. Thus, $\langle a^{\Theta}, z^{A} \rangle = \mathcal{A} \leq \bullet \mathcal{P}$ and $\langle a^{\Theta}, z^{B} \rangle = \mathcal{B} \leq \bullet \mathcal{P}$.

(16) As in step (3), the last part of (15) implies dim $A_z \leq 3$ and dim $A \leq 11$. If dim $B \leq 6$, then dim $A \equiv 0 \mod 3$ and dim A = 9. Therefore, dim $z^A \geq 6$ and $\mathcal{A} = \mathcal{P}$. Consequently, $B_z = \mathbb{1}$, dim B = 6, and $\mathcal{B} = \mathcal{P}$. Now $A_z = \mathbb{1}$ and dim $A \leq 8$, a contradiction. Since also dim $B \leq 11$ and B is almost simple, it follows that dim $B \in \{8, 10\}$ and dim $z^B > 4$. Hence $\mathcal{B} = \mathcal{P}$ and again $A_z = \mathbb{1}$. Because dim $\Gamma \geq 14$, the semi-simple group A has dimension at least 6, and $\mathcal{A} = \mathcal{P}$, so that $B_z = \mathbb{1}$ and dim B = 8.

(17) By [9, 53.1(a)], the orbit z^{B} is open in W whenever $z^{\mathsf{\Gamma}} \neq z$, and this is true for each point $z \in W \setminus \{v\}$ with at most one exception u, see step (1). Hence B is sharply transitive on $W \setminus \{v\} \approx \mathbb{R}^8$ or on $W \setminus \{u, v\} \approx e^{\mathbb{R}} \times \mathbb{S}_7$. In both cases, the homotopy group $\pi_3 \mathsf{B}$ vanishes, but every almost simple Lie group X satisfies $\pi_3 \mathsf{X} \cong \mathbb{Z}$, see [2] or [9, 94.36]. Therefore, $\mathsf{\Gamma}$ is almost simple.

(18) If the center Z of Γ is not trivial, and if $z^{Z} \neq z \in W$, then Γ_{z} fixes each point of $\langle a^{\Theta}, z^{Z} \rangle$, and (\Box) implies dim $\Gamma_{z} \leq 11$, dim $\Gamma < 20$. Therefore, Γ is of type G₂, or Γ is locally isomorphic to one of the groups $SU_{4}(\mathbb{C}, r)$, $SL_{2}\mathbb{H}$, $SL_{4}\mathbb{R}$, $SL_{3}\mathbb{C}$, or dim $\Gamma \geq 20$ and Γ is even simple in the strict sence, cp. [9, 94.21]. In any case, Γ has a compact subgroup Φ which is locally isomorphic to $SU_{3}\mathbb{C}$ or to $(SU_{2}\mathbb{C})^{2}$. Note that $SO_{3}\mathbb{R} < SU_{3}\mathbb{C}$. Hence Φ contains a subgroup $SO_{3}\mathbb{R}$ or $\Phi = A \times B$ with $A \cong B \cong SU_{2}\mathbb{C}$. The first possibility is excluded by Lemma (*). (19) Finally, consider the alternative $\Gamma > \Phi = A \times B$ of the last step, and let $\alpha \in A$ and $\beta \in B$ be the central involutions of the two factors. Assume that β is not a reflection (*). Then the fixed elements of β form a $\Phi\Theta$ -invariant Baer subplane \mathcal{B} , and $a^{\Theta} \subseteq K = av \cap \mathcal{B}$. Lemma (*) implies that α acts on \mathcal{B} as a reflection with axis K and some center $z \in W$. Because a compact group of (z, K)-homologies of \mathcal{B} has dimension at most 3, the group Φ acts non-trivially on K. Since Φ fixes each point of a^{Θ} , it follows from Richardson's theorem [9, 96.34] that Φ induces on K a group Θ acts effectively on S and hence would be a Lie group. This contradiction completes the proof of the theorem.

References

- [1] Bödi, R., On the dimensions of automorphism groups of eight-dimensional ternary fields I, J. Geom. **52** (1995), 30–40.
- [2] Bott, R., An application of the Morse Theory to the topology of Liegroups, Bull. Soc. Math. France 84 (1956), 251–281.
- [3] Löwen, R., Locally compact connected groups acting on euclidean space with Lie isotropy groups are Lie, Geom. Dedicata 5 (1976), 171–174.
- [4] Löwen, R., and H. Salzmann, Collineation groups of compact connected projective planes, Arch. Math. **38** (1982), 368–373.
- [5] Priwitzer, B., Large semisimple groups on 16-dimensional compact projective planes are almost simple, Arch. Math. **68** (1997), 430–440.
- [6] —, Large almost simple groups acting on 16-dimensional compact projective planes, Monatsh. Math., to appear.
- [7] Priwitzer, B., and H. Salzmann, Large automorphism groups of 16dimensional planes are Lie groups, J. Lie Theory 8 (1998), 83–93.
- [8] Salzmann, H., Characterization of 16-dimensional Hughes planes, Arch. d. Math., **71** (1998), 249–256.
- [9] Salzmann, H., D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, and M. Stroppel, "Compact projective planes," W. de Gruyter, Berlin-New York, 1995.

Mathematisches Institut Auf der Morgenstelle 10 D – 72076 Tübingen e-mail: helmut.salzmann@uni-tuebingen.de

Received July 10, 1998 and in final form October 12, 1998

486