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Large automorphism groups

of 16-dimensional planes are Lie groups, II
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Abstract. Let P be a compact, 16-dimensional projective plane. If the

group Σ of all continuous collineations of P is taken with the compact-open

topology, then Σ is a locally compact group with a countable basis. The
following theorem is proved: If the topological dimension dim Σ is at least

29 , then Σ is a Lie group.

The automorphism group Σ of a projective plane P with compact, 16-dimen-
sional point space P is a locally compact transformation group of P , and Σ has
a countable basis [9, 44.3]. It is an open problem whether or not Σ is always a
Lie group. If the topological dimension dim Σ is sufficiently large and if Σ is a
Lie group, then the structure theory for Lie groups can be exploited to determine
all possible planes. This has successfully been done in several cases, cp. [9, Chap.
8] and [8]. Therefore, the following criterion is useful:

Theorem. If dim Σ ≥ 29 , then Σ is a Lie group.

In order to conclude that the connected component Σ1 of Σ is a Lie
group, a weaker hypothesis suffices [7]:

If dim Σ ≥ 27 , then Σ1 is a Lie group.

A theorem of Bödi [1], Proposition G in [7], and [9, 53.2] imply

(�) If Σ is not a Lie group, and if the subgroup Λ of Σ fixes a quadrangle, then
dim Λ ≤ 11 . Moreover, dimxΣ = dim Σ/Σx < 16 for each point x .

The next result has been stated in [7, (a)] for connected subgroups of Σ ,
but the proof does not use connectedness:

Proposition. If ∆ leaves some proper closed subplane invariant, then dim ∆ ≤
25 or ∆ is a Lie group.

All large semi-simple groups on a 16-dimensional plane P are known [5], [6]:

If dim ∆ > 28 and if ∆1 is semi-simple, then either P is a Hughes plane
(including the classical Moufang plane), or ∆1 ∼= Spin9(R, r) with r ≤ 1 .
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The full group of a Hughes plane is a Lie group [9, 86.12 and 53.2] or
[9, 86.35]. The groups Spin9(R, r) contain the 28-dimensional compact group
Spin8R (which fixes a triangle), and Σ is a Lie group by (�):

Corollary. If dim ∆ > 28 and if ∆1 is semi-simple, then Σ is a Lie group.

The proof of the theorem uses the approximation theorem [9, 93.8] for
locally compact groups: there is an open subgroup ∆ of Σ and an arbitrarily
small compact, 0-dimensional normal subgroup Θ / ∆ such that ∆/Θ is a Lie
group. According to [9, 93.18], the connected component ∆1 = Σ1 and the
group Θ centralize each other, and ∆1

a acts trivially on the orbit aΘ . A group
Ξ is called straight if each point orbit xΞ is contained in a line, and a well-known
theorem of Baer implies that either Ξ is planar (i.e. the fixed elements of Ξ
form an 8-dimensional subplane FΞ ), or Ξ is contained in a group Σ[z] of
collineations with common center z , see [7, Th.B].

Assume now that dim Σ ≥ 29 and that Σ is not a Lie group, and choose
∆ and Θ as above. Then Θ is not a Lie group, and the Proposition shows that
Θ cannot be planar. By Baer’s Theorem, there remain two possibilities: either
Θ is not straight and some orbit aΘ contains a triangle, or Θ consists of axial
collineations with a common center. Note that ∆1 is not semi-simple by the
above Corollary.

(i) If aΘ consists of more than 3 non-collinear points, then aΘ generates
a subplane, and (�) implies dim ∆1

a ≤ 11, dim ∆ ≤ 26. If aΘ is just a triangle,
however, and if the same is true for all orbits bΘ with b near a , then aΘ∪bΘ = C
generates a subplane, Θ induces on C a finite group Θ/Λ , the kernel Λ is not
a Lie group, Λ 6= 1l, and FΛ would be a ∆1Λ -invariant proper closed subplane.
This contradicts the Proposition. Hence Θ must be straight.

(ii) Because all arguments can be dualized, the elements of Θ also have
a common axis W , and Θ is contained either in a group Σ[a,W ] of homologies
(a /∈ W ), or in a group Σ[v,W ] of elations with center v ∈ W . The case that
Θ consists of homologies and that ∆ is connected has been treated in [7]. A
contradiction is obtained by studying the possible actions of the Lie group ∆/Θ
on the axis W . The reasoning remains valid, if instead of the center Z of ∆ the
centralizer of ∆1 in ∆ is used throughout. In the remaining case Θ ≤ Σ[v,W ] ,
the situation is different; it is the only one, in which the stronger hypothesis
dim Σ ≥ 29 is needed. If ∆ is connected, a theorem of Löwen [3] implies that ∆
is a Lie group regardless of its dimension, cp. [4, (2.7)]. There seems to be no
way, however, to extend Löwen’s proof to non-connected groups. In the general
case, a proof can be based on a careful analysis of a point stabilizer.

(1) Suppose again that Θ ≤ Σ[v,W ] with v ∈ W . Choose any point a /∈ W ,
and consider the connected component Γ of ∆a . Because Γ ∩ Θ = 1l, there
is an embedding of Γ into the Lie group ∆/Θ . Hence Γ is itself a Lie group,
and Γ has a minimal commutative, connected normal subgroup Ξ , or Γ is semi-
simple. As has been noted before, Γ fixes the (infinite) orbit aΘ pointwise. The
dimension formula [9, 96.10] and (�) imply 14 ≤ g = dim Γ ≤ 26. Moreover,
Γ acts effectively on W , and there is at most one point u ∈ W \ {v} such that
uΓ = u , compare [7, Prop. G]
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(2) Let E = 〈aΘ, zΓ〉 denote the smallest closed subplane containing the orbits
aΘ and zΓ . If z ∈ W \ {v} and z 6= u , then zΓ is a non-trivial connected set,
and E has dimension d ∈ {2, 4, 8, 16} , see [9, 54.11]. Remember that zΘ = z
and that Γ and Θ commute. Consequently, EΘ = E . As a group of elations, Θ
acts effectively on E . Since each automorphism group of a plane of dimension
d ≤ 4 is a Lie group [9, 32.21 and 71.2], it follows that E is a Baer subplane or
the plane P itself, for short, E ≤• P .

(3) Similarly, if Π is a one-parameter subgroup of Γ and if zΠ 6= z , then
〈aΘ, zΠ〉 ≤• P . Let Ψ denote the connected component of the centralizer of
Π in Γ . The Lie group Ψz acts trivially on 〈aΘ, zΠ〉 , and Ψ 1

z is isomorphic to
a subgroup of SU2C by [9, 83.22]. In particular, dim Ψz ≤ 3, dim Ψ ≤ 11. Note
that CsΠ = Cs% = Γ% for any % ∈ Π \ {1l} . The dimension formula [9, 96.10]
gives g − 8 ≤ dim Γz ≤ dim % Γz + 3.

(4) Because a compact, commutative normal subgroup of Γ is contained in the
center, it follows from (1) and (3) that either Γ is semi-simple, or Γ has a minimal
normal subgroup Ξ ∼= Rt with t ≥ g − 11, compare [9, 94.26]. The semi-simple
case will be discussed later.

(5) Assume that Rt ∼= Ξ/ Γ , and let zΓ 6= z ∈W \{v} . If zΞ = z , then Ξ induces
the identity on E ≤• P , and Ξ would be compact by [9, 83.6]. Consequently,
zΞ 6= z , and 〈aΘ, zΞ〉 ≤• P by the arguments of (2). Since Ξz fixes each point
of 〈aΘ, zΞ〉 , it follows that Ξz is compact, and then Ξz = 1l. Therefore, Ξ
acts freely on W \ {u, v} or on W \ {v} , and t ≤ 8, g ≤ 19. In particular,
dim a∆ ≥ 10, and the line av is not fixed by ∆ .

(6) If g = 19, and if 1l 6= % ∈ Ξ , then (3) implies dim Γz = 11, dim % Γz = 8, and
% Γz is open in Ξ by [9, 92.14 or 96.11(a)]. Hence Γz is transitive on Ξ \ {1l} ,
and a maximal compact, connected subgroup is transitive on the 7-sphere of the
rays in Ξ ∼= R8 , see [9, 96.19]. With [9, 96.20–22] it follows that Γ ′z ∼= U2H . The
central involution σ ∈ Γz inverts each element of Ξ , and z is an isolated fixed
point of σ on W . Therefore, σ is a reflection with center z and axis av . This
contradicts the following Lemma on involutions, which will be needed repeatedly:

(∗) Let α , β , and αβ be pairwise commuting involutions in Γ . If Θ is not a Lie
group, then exactly one of the 3 involutions is a reflection, and the torus rank
rk Γ ≤ 2 . Each reflection in Γ has axis av and some center z ∈ W . Moreover,
Γ has no subgroup Φ ∼= SO3R , and dim zΓ ≤ 6 .

Proof. Any involution is either a reflection, or it is planar [9, 55.29]. If all
3 involutions α , β , and αβ are planar, then the common fixed elements of α
and β form a 4-dimensional subplane F , see [9, 55.39(a)]. By definition, Γ is
connected, Γ and Θ centralize each other, and FΘ = F . Because Θ consists of
elations, Θ acts effectively on F , and Θ would be a Lie group by [9, 71.2]. Hence
we may assume that α is a reflection. Because Γ fixes the orbit aΘ pointwise,
each reflection in Γ has axis av , its center z lies on the fixed line W . Since the
center of one of two commuting reflections is on the axis of the other [9, 55.35],
the involutions β and αβ are planar. If SO3R ∼= Φ ≤ Γ , and if α and β are
chosen in Φ , then α and β are conjugate in Φ and therefore would be of the same
kind, a contradiction. If dim zΓ = k > 0, then αΓα is a k -dimensional set in
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the connected component E of the elation group ∆[v,av] , compare [9,61.19(b)].

The last statement in (5) implies that E is commutative, in fact, E ∼= Rk .
The connected group Γ induces linear maps of positive determinant on E . In
particular, detα = 1. On the other hand, the reflection α inverts each element
in E , and α|E = −1l. Consequently, k is even. If k = 8, then ∆[v,v] is transitive,
and Θ would be contained in the Lie group ∆[v,W ]

∼= R8 . This completes the
proof of Lemma (∗).

(7) Now let 14 ≤ g ≤ 18, and put Ω = Γ 1
z . Then dim Ω ≥ 6, and for each

% ∈ Ξ \ {1l} the last assertion in (3) gives dim %Ω ≥ 3. Hence any minimal Ω -
invariant subspace Υ ≤ Ξ has dimension s ≥ 3. If s = 3, then Ω is transitive
on Υ \ {1l} , and Ω%

∼= SU2C by (3). Because Ω% fixes a subspace of Υ , the
representation of Ω% on Υ is trivial. Consequently, Ω/Ω% would act sharply
transitive on Υ \ {1l} ∼= R3 \ {0} , but such a group does not exist.

(8) Similarly, the case s = 4 leads to a contradiction: because SU2C has no
2-dimensional subgroup, one has again Ω%

∼= SU2C for each % ∈ Υ \ {1l} .
Being compact, Ω% acts on Υ as an orthogonal group, in fact as a subgroup
of SO3R . Hence the central involution ω of Ω% is planar, the Baer subplane
of its fixed elements is Fω = 〈aΘ, zΥ〉 . Either Ω% acts trivially on Fω , or Ω%

induces on Fω a group Φ = Ω%/〈ω〉 ∼= SO3R . In the latter case, Φ fixes a
quadrangle in Fω by its very definition. It follows that the fixed elements of Φ
in Fω form a 2-dimensional subplane (use [9, 96.34]). Acting faithfully on this
subplane, Θ would be a Lie group by [9, 32.21]. Therefore, Ω% is the kernel of
the irreducible action of Ω on Υ , and (Ω/Ω%)

′ is a non-trivial semi-simple linear
group. Consequently, Ω′ contains a 2-torus. Lemma (∗) implies dim zΓ ≤ 6,
but then 14 ≤ g ≤ dim zΓ + dim Ω ≤ 6 + s + 3 = 13. This contradiction shows
that s > 4.

(9) By the last assertion, Ω = Γ 1
z acts faithfully and irreducibly on Υ ∼= Rs , and

the semi-simple commutator subgroup satisfies dim Ω′ > 3, hence dim Ω′ ≥ 6,
see [9, 95.6]. If s ∈ {5, 7} , then Γ ′z is almost simple and irreducible on Υ by
Clifford’s Lemma [9, 95.5]. Inspection of a list of irreducible representations [9,
95.10] shows that either s = 5 and dim Γ ′z ≥ 10, or s = 7 and dim Γ ′z ≥ 14, but
dim Γz ≤ s+ 3. Hence s ∈ {6, 8} .

(10) Suppose that s = 6 = dim Ω′ . Lemma (∗) implies rk Ω = 1, or rk Ω = 2
and dim zΓ ≤ 6. In the second case, dim Ω = 8, and the center of Ω is isomorphic
to C× . Consequently, rk Ω′ = 1 and Ω′ is almost simple and locally isomorphic
to SL2C . From [9, 95.6(b) and 95.10] it follows that Ω′ acts irreducibly on Υ
and Ω′ ∼= SO3C > SO3R . This contradicts (∗).

(11) If s = 6 and dim Ω′ = 8, then Ω′ is isomorphic to a group SU3(C, r) or to
SL3R . None of these groups contains a central involution. Consequently, each
involution in Ω′ has a positive eigenspace in Υ and hence is planar. Moreover,
there are 3 pairwise commuting involutions in Ω′ . This is excluded by (∗).

(12) The case s = 6 and dim Ω′ = 9 leads to a contradiction as follows: a
9-dimensional semi-simple group is not almost simple and has at least one 3-
dimensional factor. On the other hand, the arguments of (6) show that Ω′ acts
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transitively on Υ \ {1l} and hence on the 5-sphere consisting of the rays in
Υ ∼= R6 . Therefore, Ω′ contains an 8-dimensional almost simple factor SU3C .

(13) From (7–12), it follows that Υ = Ξ ∼= R8 . If z ∈ W \ {v} , z 6= u , then
zΞ ≈ R8 by step (5), and zΞ is open in W by [9, 53.1(a)]. Hence W is a
manifold, and W ≈ S8 according to [9, 52.3]. Since W \ {u, v} 6≈ R8 , the group
Ξ is sharply transitive on W \ {v} . Remember that Γz acts effectively on Ξ .

(14) Combination of (13) and (∗) shows that the group Ω = Γz does not contain
any reflection. The semi-simple commutator subgroup Ω′ has dimension at least
6. Because of (∗), its torus rank is 1, and Ω′ is even almost simple. The only
groups satisfying these conditions and having a faithful linear representation are
SL2C , SO3C , and SL3R , see [9, 95.10]. In the first case, the central involution
would be a reflection. The latter two groups have a subgroup SO3R and hence
are excluded by (∗). Together, steps (4–14) imply that Γ is semi-simple.

(15) If Γ has two or more factors, choose an almost simple factor B of maximal
dimension and let A denote the product of the other factors, so that A and B
commute elementwise. Consider z ∈ W with zΓ 6= z and 〈aΘ, zΓ〉 = E ≤• P
as in (2). Assume first that zA = z . Then A acts trivially on E and E is
a Baer subplane, moreover, A ∼= SU2C by [9, 83.22]. Therefore, dim B ≥ 11.
Since B is almost simple, dim B ≥ 14 and B acts almost effectively (i.e. with
discrete kernel) on E . But B fixes aΘ , and the stiffness theorem [9, 83.17] gives
dim B ≤ 7 + 4, a contradiction. Similarly, zB = z implies dim B = 3, and A is
a product of 3-dimensional groups by the maximality of B . Hence dim A ≥ 12.
The kernel K of the action of Γ on E contains B , and dim K = 3 by [9, 83.22].
Consequently, A acts almost effectively on E . Again, the stiffness theorem shows
dim A ≤ 11. Thus, 〈aΘ, zA〉 = A ≤• P and 〈aΘ, zB〉 = B ≤• P .

(16) As in step (3), the last part of (15) implies dim Az ≤ 3 and dim A ≤ 11.
If dim B ≤ 6, then dim A ≡ 0 mod 3 and dim A = 9. Therefore, dim zA ≥ 6
and A = P . Consequently, Bz = 1l, dim B = 6, and B = P . Now Az = 1l and
dim A ≤ 8, a contradiction. Since also dim B ≤ 11 and B is almost simple, it
follows that dim B ∈ {8 , 10} and dim zB > 4. Hence B = P and again Az = 1l.
Because dim Γ ≥ 14, the semi-simple group A has dimension at least 6, and
A = P , so that Bz = 1l and dim B = 8.

(17) By [9, 53.1(a)], the orbit zB is open in W whenever zΓ 6= z , and this is true
for each point z ∈ W \ {v} with at most one exception u , see step (1). Hence
B is sharply transitive on W \ {v} ≈ R8 or on W \ {u, v} ≈ eR × S7 . In both
cases, the homotopy group π3B vanishes, but every almost simple Lie group X
satisfies π3X ∼= Z , see [2] or [9, 94.36]. Therefore, Γ is almost simple.

(18) If the center Z of Γ is not trivial, and if zZ 6= z ∈ W , then Γz fixes each
point of 〈aΘ, zZ〉 , and (�) implies dim Γz ≤ 11, dim Γ < 20. Therefore, Γ is
of type G2 , or Γ is locally isomorphic to one of the groups SU4(C, r), SL2H ,
SL4R , SL3C , or dim Γ ≥ 20 and Γ is even simple in the strict sence, cp. [9,
94.21]. In any case, Γ has a compact subgroup Φ which is locally isomorphic to
SU3C or to (SU2C)2 . Note that SO3R < SU3C . Hence Φ contains a subgroup
SO3R or Φ = A × B with A ∼= B ∼= SU2C . The first possibility is excluded by
Lemma (∗).
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(19) Finally, consider the alternative Γ > Φ = A × B of the last step, and let
α ∈ A and β ∈ B be the central involutions of the two factors. Assume that β
is not a reflection (∗). Then the fixed elements of β form a ΦΘ -invariant Baer
subplane B , and aΘ ⊆ K = av ∩ B . Lemma (∗) implies that α acts on B as
a reflection with axis K and some center z ∈ W . Because a compact group of
(z,K)-homologies of B has dimension at most 3, the group Φ acts non-trivially
on K . Since Φ fixes each point of aΘ , it follows from Richardson’s theorem [9,
96.34] that Φ induces on K a group SO3R , and that the fixed points of Φ on
K form a circle S . The group Θ acts effectively on S and hence would be a Lie
group. This contradiction completes the proof of the theorem.
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