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Large automorphism groups
of 16-dimensional planes are Lie groups, 11

Helmut Salzmann

Communicated by K. H. Hofmann

Abstract. Let P be a compact, 16-dimensional projective plane. If the
group ¥ of all continuous collineations of P is taken with the compact-open
topology, then ¥ is a locally compact group with a countable basis. The
following theorem is proved: If the topological dimension dim ¥ is at least
29, then ¥ is a Lie group.

The automorphism group X of a projective plane P with compact, 16-dimen-
sional point space P is a locally compact transformation group of P, and ¥ has
a countable basis [9, 44.3]. It is an open problem whether or not ¥ is always a
Lie group. If the topological dimension dim ¥ is sufficiently large and if ¥ is a
Lie group, then the structure theory for Lie groups can be exploited to determine
all possible planes. This has successfully been done in several cases, cp. [9, Chap.
8] and [8]. Therefore, the following criterion is useful:

Theorem. If dim¥ > 29, then ¥ is a Lie group.

In order to conclude that the connected component ¥! of ¥ is a Lie
group, a weaker hypothesis suffices [7]:

If dim ¥ > 27, then X' is a Lie group.
A theorem of Bédi [1], Proposition G in [7], and [9, 53.2] imply

(O) If ¥ is not a Lie group, and if the subgroup N of ¥ fizes a quadrangle, then
dim A < 11. Moreover, dima* = dim X /¥, < 16 for each point x.

The next result has been stated in [7, (a)] for connected subgroups of ¥,
but the proof does not use connectedness:

Proposition. If A leaves some proper closed subplane invariant, then dim A <
25 or A is a Lie group.

All large semi-simple groups on a 16-dimensional plane P are known [5], [6]:

If dimA > 28 and if A' is semi-simple, then either P is a Hughes plane
(including the classical Moufang plane), or A' = Sping(R,r) with r < 1.
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The full group of a Hughes plane is a Lie group [9, 86.12 and 53.2] or
[9, 86.35]. The groups Sping(R, ) contain the 28-dimensional compact group
SpingR (which fixes a triangle), and ¥ is a Lie group by (O):

Corollary. If dim A > 28 and if A' is semi-simple, then ¥ is a Lie group.

The proof of the theorem uses the approximation theorem [9, 93.8] for
locally compact groups: there is an open subgroup A of ¥ and an arbitrarily
small compact, 0-dimensional normal subgroup © < A such that A/© is a Lie
group. According to [9, 93.18], the connected component A! = ¥! and the
group © centralize each other, and A!, acts trivially on the orbit a®. A group
= is called straight if each point orbit z= is contained in a line, and a well-known
theorem of Baer implies that either = is planar (i.e. the fixed elements of =
form an 8-dimensional subplane F= ), or = is contained in a group X[, of
collineations with common center z, see [7, Th.B].

Assume now that dim ¥ > 29 and that ¥ is not a Lie group, and choose
A and © as above. Then © is not a Lie group, and the Proposition shows that
© cannot be planar. By Baer’s Theorem, there remain two possibilities: either
© is not straight and some orbit a® contains a triangle, or © consists of axial
collineations with a common center. Note that A! is not semi-simple by the
above Corollary.

(i) If a® consists of more than 3 non-collinear points, then a® generates
a subplane, and (OJ) implies dim Al, < 11, dim A < 26. If a® is just a triangle,
however, and if the same is true for all orbits b® with b near a, then a®UB® = C
generates a subplane, © induces on C a finite group ©/A, the kernel A is not
a Lie group, A # 1, and Fj would be a Al'A-invariant proper closed subplane.
This contradicts the Proposition. Hence © must be straight.

(ii) Because all arguments can be dualized, the elements of © also have
a common axis W, and © is contained either in a group X[, w] of homologies
(a ¢ W), or in a group X, w) of elations with center v € W. The case that
© consists of homologies and that A is connected has been treated in [7]. A
contradiction is obtained by studying the possible actions of the Lie group A/©
on the axis W . The reasoning remains valid, if instead of the center Z of A the
centralizer of A! in A is used throughout. In the remaining case © < W
the situation is different; it is the only one, in which the stronger hypothesis
dim ¥ > 29 is needed. If A is connected, a theorem of Lowen [3] implies that A
is a Lie group regardless of its dimension, cp. [4, (2.7)]. There seems to be no
way, however, to extend Lowen’s proof to non-connected groups. In the general
case, a proof can be based on a careful analysis of a point stabilizer.

(1) Suppose again that © < ¥, w| with v € W. Choose any point a ¢ W,
and consider the connected component ' of A,. Because N © = 1, there
is an embedding of I into the Lie group A/©. Hence I is itself a Lie group,
and [ has a minimal commutative, connected normal subgroup =, or I is semi-
simple. As has been noted before, I fixes the (infinite) orbit a® pointwise. The
dimension formula [9, 96.10] and (O) imply 14 < g = dim[l < 26. Moreover,
[ acts effectively on W, and there is at most one point v € W \ {v} such that
u' = u, compare [7, Prop. G]



SALZMANN 483

(2) Let £ = (a®, 2") denote the smallest closed subplane containing the orbits
a® and 2'. If 2z € W\ {v} and z # u, then z' is a non-trivial connected set,
and & has dimension d € {2,4,8,16}, see [9, 54.11]. Remember that 2°® = 2
and that I and © commute. Consequently, £ = £. As a group of elations, ©
acts effectively on £. Since each automorphism group of a plane of dimension
d < 4 is a Lie group [9, 32.21 and 71.2], it follows that £ is a Baer subplane or
the plane P itself, for short, £ < P.

(3) Similarly, if M is a one-parameter subgroup of I' and if 2™ # 2, then
(a®,2M) <+ P. Let W denote the connected component of the centralizer of
M in . The Lie group V. acts trivially on (a®, z™), and W.! is isomorphic to
a subgroup of SU5C by [9, 83.22]. In particular, dim V¥, < 3, dimW¥ < 11. Note
that Csl = Csp =T, for any ¢ € M\ {1}. The dimension formula [9, 96.10]
gives ¢ —8 < dimT, < dimp"™ + 3.

(4) Because a compact, commutative normal subgroup of I' is contained in the
center, it follows from (1) and (3) that either I' is semi-simple, or I' has a minimal
normal subgroup = & R with ¢t > g — 11, compare [9, 94.26]. The semi-simple
case will be discussed later.

(5) Assume that R® = =< I, and let 2" # 2 € W\{v}. If 2 = 2, then = induces
the identity on & <¢ P, and = would be compact by [9, 83.6]. Consequently,
2= # z, and (a®,27) <+ P by the arguments of (2). Since =, fixes each point
of (a®,z7), it follows that =, is compact, and then =, = 1. Therefore, =
acts freely on W \ {u,v} or on W \ {v}, and t < 8, g < 19. In particular,
dim a® > 10, and the line av is not fixed by A.

(6) If g =19, and if 1# o € =, then (3) implies dimT, = 11, dimo" = 8, and
o' is open in = by [9, 92.14 or 96.11(a)]. Hence I, is transitive on =\ {1},
and a maximal compact, connected subgroup is transitive on the 7-sphere of the
rays in = = R®, see [9, 96.19]. With [9, 96.20-22] it follows that I’ = UsH. The
central involution o € I, inverts each element of =, and z is an isolated fixed
point of & on W . Therefore, o is a reflection with center z and axis av. This
contradicts the following Lemma on involutions, which will be needed repeatedly:

(%) Let o, B, and af be pairwise commuting involutions in [. If © is not a Lie
group, then exactly one of the 3 involutions is a reflection, and the torus rank
k[T < 2. Fach reflection in [ has azis av and some center z € W . Moreover,
[ has no subgroup ® = SO3R, and dimz" < 6.

Proof.  Any involution is either a reflection, or it is planar [9, 55.29]. If all
3 involutions «, @, and af are planar, then the common fixed elements of «
and @ form a 4-dimensional subplane F, see [9, 55.39(a)]. By definition, I is
connected, [ and © centralize each other, and F® = F. Because © consists of
elations, © acts effectively on F, and © would be a Lie group by [9, 71.2]. Hence
we may assume that « is a reflection. Because I fixes the orbit a® pointwise,
each reflection in I' has axis av, its center z lies on the fixed line W . Since the
center of one of two commuting reflections is on the axis of the other [9, 55.35],
the involutions 4 and af are planar. If SO3R = & < ', and if o and 3 are
chosen in @, then a and ( are conjugate in ® and therefore would be of the same
kind, a contradiction. If dimz" = k > 0, then o'« is a k-dimensional set in
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the connected component E of the elation group A, 4., compare [9,61.19(b)].
The last statement in (5) implies that E is commutative, in fact, E = RF.
The connected group ' induces linear maps of positive determinant on E. In
particular, det « = 1. On the other hand, the reflection « inverts each element
in E, and alg = —1. Consequently, k is even. If k =8, then A, , is transitive,
and © would be contained in the Lie group Ay, w) = R®. This completes the
proof of Lemma ().

(7) Now let 14 < g < 18, and put Q = I}. Then dimQ > 6, and for each
0 € =\ {1} the last assertion in (3) gives dim o® > 3. Hence any minimal Q-
invariant subspace T < = has dimension s > 3. If s = 3, then € is transitive
on T\ {1}, and Q, = SU,C by (3). Because Q, fixes a subspace of T, the
representation of Q, on T is trivial. Consequently, ©/Q, would act sharply
transitive on T\ {1} = R3\ {0}, but such a group does not exist.

(8) Similarly, the case s = 4 leads to a contradiction: because SU5C has no
2-dimensional subgroup, one has again Q, = SU;C for each p € T\ {1}.
Being compact, Q, acts on T as an orthogonal group, in fact as a subgroup
of SO3R. Hence the central involution w of €2, is planar, the Baer subplane
of its fixed elements is F, = (a®,2"). Either Q, acts trivially on F,, or Q,
induces on F, a group ® = Q,/(w) = SO3R. In the latter case, ¢ fixes a
quadrangle in F,, by its very definition. It follows that the fixed elements of ®
in F, form a 2-dimensional subplane (use [9, 96.34]). Acting faithfully on this
subplane, © would be a Lie group by [9, 32.21]. Therefore, Q, is the kernel of
the irreducible action of Q on T, and (2/Q,)’ is a non-trivial semi-simple linear
group. Consequently, Q' contains a 2-torus. Lemma (*) implies dimz" < 6,
but then 14 < g < dim 2l +dimQ < 6+ s+ 3 = 13. This contradiction shows
that s > 4.

(9) By the last assertion, Q = I1 acts faithfully and irreducibly on T = R*  and
the semi-simple commutator subgroup satisfies dim Q" > 3, hence dim Q' > 6,
see [9, 95.6]. If s € {5,7}, then I is almost simple and irreducible on T by
Clifford’s Lemma [9, 95.5]. Inspection of a list of irreducible representations [9,
95.10] shows that either s =5 and dim[,’ > 10, or s =7 and dim[,’ > 14, but
diml, < s+ 3. Hence s € {6,8}.

(10) Suppose that s = 6 = dimQ’. Lemma (*) implies tkQ = 1, or tkQ = 2
and dim 2" < 6. In the second case, dim Q = 8, and the center of Q is isomorphic
to C*. Consequently, tk Q" =1 and Q' is almost simple and locally isomorphic
to SLoC. From [9, 95.6(b) and 95.10] it follows that Q’ acts irreducibly on T
and Q' 22 SO3C > SO3R. This contradicts (x).

(11) If s =6 and dim Q' = 8, then Q' is isomorphic to a group SU3(C,r) or to
SL3sR. None of these groups contains a central involution. Consequently, each
involution in Q' has a positive eigenspace in T and hence is planar. Moreover,
there are 3 pairwise commuting involutions in €. This is excluded by ().

(12) The case s = 6 and dimQ’ = 9 leads to a contradiction as follows: a
9-dimensional semi-simple group is not almost simple and has at least one 3-
dimensional factor. On the other hand, the arguments of (6) show that Q' acts
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transitively on T \ {1} and hence on the 5-sphere consisting of the rays in
T = RS, Therefore, Q' contains an 8-dimensional almost simple factor SU3C.

(13) From (7-12), it follows that T = = =2 R®. If 2 € W \ {v}, 2z # u, then
2= ~ R® by step (5), and 2= is open in W by [9, 53.1(a)]. Hence W is a
manifold, and W ~ Sg according to [9, 52.3]. Since W \ {u, v} % R®, the group
= is sharply transitive on W \ {v}. Remember that I, acts effectively on =.

(14) Combination of (13) and () shows that the group Q2 =T, does not contain
any reflection. The semi-simple commutator subgroup Q’ has dimension at least
6. Because of (), its torus rank is 1, and Q' is even almost simple. The only
groups satisfying these conditions and having a faithful linear representation are
SLo,C, SO3C, and SL3R, see [9, 95.10]. In the first case, the central involution
would be a reflection. The latter two groups have a subgroup SO3R and hence
are excluded by (*). Together, steps (4-14) imply that I' is semi-simple.

(15) If T has two or more factors, choose an almost simple factor B of maximal
dimension and let A denote the product of the other factors, so that A and B
commute elementwise. Consider z € W with 2 # z and (a®,2') = £ <+ P
as in (2). Assume first that 2 = z. Then A acts trivially on £ and & is
a Baer subplane, moreover, A = SU>C by [9, 83.22]. Therefore, dimB > 11.
Since B is almost simple, dimB > 14 and B acts almost effectively (i.e. with
discrete kernel) on €. But B fixes a®, and the stiffness theorem [9, 83.17] gives
dim B < 7+ 4, a contradiction. Similarly, 28 = 2z implies dimB = 3, and A is
a product of 3-dimensional groups by the maximality of B. Hence dim A > 12.
The kernel K of the action of ' on £ contains B, and dim K = 3 by [9, 83.22].
Consequently, A acts almost effectively on £. Again, the stiffness theorem shows
dimA < 11. Thus, (a®,2%) = A < P and (a®,2B) =B < P.

(16) As in step (3), the last part of (15) implies dimA, < 3 and dim A < 11.
If dimB < 6, then dimA = 0 mod 3 and dimA = 9. Therefore, dimz" > 6
and A = P. Consequently, B, =1, dimB =6, and B=P. Now A, = 1 and
dim A < 8, a contradiction. Since also dim B < 11 and B is almost simple, it
follows that dim B € {8,10} and dim 28 > 4. Hence B = P and again A, = 1.
Because dim[ > 14, the semi-simple group A has dimension at least 6, and
A =P, sothat B, =1 and dimB = 8.

(17) By [9, 53.1(a)], the orbit 2B is open in W whenever 2" # z, and this is true
for each point z € W\ {v} with at most one exception u, see step (1). Hence
B is sharply transitive on W \ {v} ~ R® or on W \ {u,v} ~ e® x S;. In both
cases, the homotopy group m3B vanishes, but every almost simple Lie group X
satisfies m3X = Z, see [2] or [9, 94.36]. Therefore, I' is almost simple.

(18) If the center Z of I is not trivial, and if 22 # 2z € W, then I, fixes each
point of (a®,2?), and (0) implies diml, < 11, diml < 20. Therefore, I is
of type G, or I is locally isomorphic to one of the groups SU4(C,r), SLoH,
SL4R, SL3C, or diml > 20 and T is even simple in the strict sence, cp. [9,
94.21]. In any case, [ has a compact subgroup ® which is locally isomorphic to
SU3C or to (SU3C)2. Note that SO3R < SU3C. Hence ¢ contains a subgroup
SO3R or & = A x B with A 2 B = SU,C. The first possibility is excluded by
Lemma ().
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(19) Finally, consider the alternative I > ® = A x B of the last step, and let
a € A and § € B be the central involutions of the two factors. Assume that 3
is not a reflection (*). Then the fixed elements of 8 form a ®O-invariant Baer
subplane B, and ¢® C K = av N B. Lemma () implies that a acts on B as
a reflection with axis K and some center z € W. Because a compact group of
(z, K)-homologies of B has dimension at most 3, the group ¢ acts non-trivially
on K. Since ® fixes each point of a®, it follows from Richardson’s theorem [9,
96.34] that ® induces on K a group SO3R, and that the fixed points of ® on
K form a circle S. The group © acts effectively on S and hence would be a Lie
group. This contradiction completes the proof of the theorem.
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