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Abstract. The generalized d-plane transform of a function f on Rn

is defined on a set E of d-dimensional affine subspaces (“d-planes”) of Rn

by integration of f over each subspace in E . In general, it renders less
information about the unknown function f than in the special case of the
well known Radon d-plane transform, where E contains every d-plane in
Rn . We study the case where E appears as an orbit of a matrix group and
characterize the range of the spaces of Schwartz functions and of smooth
ones with compact support.

Introduction

The Radon d-plane transform of a function f on Rn is a function on the set of
d-dimensional affine subspaces (“d-planes”) of Rn , obtained by integration of f
over each such subspace. For d = n − 1, the case of hyperplanes, it was first
introduced and studied by Radon in his famous work of 1917 [12]. For d < n− 1,
the idea goes back to John, who considered line integrals of point functions in
R3 in connection with the ultrahyperbolic differential equation [10]. However, the
first one who systematically studied this transform was Helgason. Beside inversion
formulas, he investigated the range of certain function spaces, such as C∞c (Rn),
the smooth functions with compact support, or S(Rn), the Schwartz functions (see
[9]). The range of C∞c (Rn) under the Radon d-plane transform has been described
by Helgason in terms of the so called “moment conditions”. For d = n − 1 (the
Radon transform), these characterize the range of S(Rn), too [9]. However, this
is no longer true for d < n− 1, as Gonzalez later showed [6].

In the already mentioned article of 1938 John showed that the line functions
in R3 , which are obtained by integration of point functions over straight lines,
satisfy certain differential equations, which characterize this class of line functions
[10]. The idea was further developed by Gel’fand, Gindikin and Graev in 1980, who
gave a characterization of the range of S(Rn) in terms of a system of second order
partial differential equations but without complete proof [3]. In 1984 Grinberg
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used both moment conditions and the differential operators of Gel’fand et al. to
determine the range [7]. The proof of the assertion of Gel’fand et al. was given in
detail by Richter in 1986 [13]. It was his great achievement to observe that the
differential operators arise from infinitesimal operators of the group of euclidean
motions in Rn [14]. Later, Gonzalez and Kurusa gave other proofs, the former
in the group theoretic frame of Richter, the latter following John’s method of
parametrizing the d-planes [11], [6].

In this article we study the generalized situation, where the d-plane trans-
form is only defined on certain subsets E of the set G(d, n) of all d-planes in
Rn . In practice, particularly in computer tomography, where the theory applies
decisively, measurements can only be made for a finite set of d-planes, so it is of
natural interest to consider the whole problem in the restriction to subclasses of
d-planes. It is of great practical importance to see how the main facts such as
inversion formulae and range theorems depend on the geometry of E . Gel’fand,
Graev and others have studied the complex case, where E is an n-dimensional
analytic submanifold of the set of all (complex) d-planes in Cn , and have termed
E “admissible”, if it is possible to recapture a function from its integrals over the
planes in E (see for instance [4]). Felix has treated some more general settings [2].
In this work we show that the group theoretic approach, as it has been introduced
by Helgason and applied by Richter and Gonzalez with great success to the range
problem, bears its fruits in a greater generality of cases, provided that E is an orbit
of a matrix group. So we restrict ourselves to such cases. Moreover, the group
theoretic treatment of the generalized d-plane transform reveals the meaning of the
otherwise mysterious construction of the differential operators which characterize
the range in [14] (here: remark 2 to lemma 5.2).

In the sequel, by “classical case” we shall mean the case E = G(d, n). The
Radon d-plane transform, which refers to it, has been extensively studied through
the past decades by Helgason, Richter and Gonzalez, as already mentioned.

The organization of the paper is as follows. The set E is introduced in
section 1. In section 2 the notion of rapidly decreasing functions on E and the
Fourier transform are defined. Section 3 deals with the group theoretic nature
of the differential operators which serve to characterize the range. Here we follow
Richter [14] and correct the way in which he defines these operators. This part can
be skipped during the first reading. The d-plane transform, the moment conditions
and the differential operators in connection to it are introduced in section 4. In
5, the range of S(V ), the set of Schwartz functions on the vector space V , is
characterized by both moment conditions and differential operators. The main
work is done here. Section 6 covers a lot of special cases (the classical case
included), where the differential operators alone characterize the range of S(V ).
In section 7 it turns out that for d = n − 1 the only example that fits into our
framework is the classical case itself. The range of C∞c (V ) is determined with the
help of a “polar coordinate” version of the classical Paley-Wiener theorem, due
to Helgason [8]. This is done in section 8. Finally, the theory is applied to some
concrete situations (section 9). The precise characterization of those cases, where
we can dispense with the moment conditions, is still an open problem.

The author would like to stress that the main facts concerning the range
of C∞c (Rn) and S(Rn) in the classical case are here recovered as special cases. In
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this sense, the classical results are truly generalized.

1. Fundamental concepts

Let H be a Lie group, ρ a (C∞ -) representation of H on a finite-dimensional
vector space V . The representation ρ gives rise to a semi-direct product H ×s V ,
where multiplication is given by

(h1, v1) · (h2, v2) := (h1h2, v1 + ρ(h1)v2)

(from now on we write h · v instead of ρ(h)v ).

The Lie group H ×s V operates transitively on V :

(h, v) · v0 := v + h · v0 .

It also operates transitively on G(d, V ), the set of d-dimensional affine subspaces
of V (1 ≤ d ≤ n− 1, n = dimV ) :

(h, v) · E := v + h ·E (h · E = {h · z|z ∈ E}) .

We fix a d-dimensional linear subspace E of V and denote by HE the
isotropy subgroup of E in H . Then HE ×s E is the isotropy subgroup of E in
H ×s V . The orbit of E will be identified with H×sV /HE×sE and will be given
the differentiable structure of this homogeneous space. H×sV /HE×sE is in fact a
vector bundle over H/HE : If σ : W → H is a local cross section of an open set
W ⊆ H/HE into H and U a complement of E in V , we obtain a local trivialization
by the mapping (ḣ, u) 7→ (σ(ḣ), σ(ḣ) · u)(HE ×s E) (ḣ = hHE) of W × U into
H×sV /HE×sE . We put E := H×sV /HE×sE and (ḣ, x) for (h, x)(HE ×s E).

The contragredient representation ρ∗ ,

[ρ∗(h)ξ](v) := ξ[ρ(h)−1v] (v ∈ V, ξ ∈ V ∗) ,

leads analogously to a semi-direct product H ×s V ∗ . We write h∗ · ξ instead of
ρ∗(h)ξ . If E⊥ ⊆ V ∗ denotes the orthogonal subspace to E , then the set

E∗ := {(ḣ, ξ)|ξ ∈ h∗ · E⊥}

can be given the structure of a vector bundle over H/HE via the mappings (ḣ, w) 7→
(ḣ, σ(ḣ)∗ · w) of W × E⊥ into E∗ (notation as above). (Note that h∗ · E⊥ does
not depend on h ∈ hHE .) The set E∗ will be called “dual bundle” (its fibres can
be naturally identified with the dual spaces of the fibres of E ).

2. Rapidly decreasing functions on E and the Fourier transform

Gonzalez introduced a class of functions on G(d,Rn), the so called rapidly de-
creasing functions [6]. They can be defined on E in a similar way. By a local cross
section of a compact set M ⊆ H/HE into H we shall always mean a local C∞ -
cross section of an open neighborhood of M into H . Let U be a complement of
E in V and introduce linear coordinates (u1, . . . , un−d) on U . The vector bundle
E is of fibre type U , as already shown.
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Definition 2.1. A C∞ -function ϕ on E is called rapidly decreasing if for all
multiindices α, β ∈ Zn−d+ , all differential operators T on H/HE and all compact
sets M ⊆ H/HE admitting a local cross section σ into H

sup
ḣ∈M,u∈U

|uαTḣ
∂β

∂uβ
ϕ(ḣ, σ(ḣ) · u)| < ∞ .

(We have put uα :=
∏n−d
i=1 u

αi
i , ∂β

∂uβ
:=
∏n−d
i=1

∂βi

∂u
βi
i

.)

The above definition does not depend on the choice of U or of its basis.
Rapidly decreasing functions on E∗ can be defined similarly (E⊥ replaces U ). We
write S(E), S(E∗) for these classes of functions.

Let f ∈ C∞(V ∗) be a function of the Schwartz class. We define a function
ϕf on E∗ by

ϕf(ḣ, ξ) := f(ξ) .

Lemma 2.2. ϕf ∈ S(E∗).

Proof. ϕf ∈ C∞(E∗) by the local trivializations of the vector bundle E ∗ .
We keep the notation of definition 2.1 and consider a covering of M by open,
relatively compact subsets O1, . . . , Ok having the additional property that each
Oi is contained in a chart of H/HE and that there exists a local cross section on
the union of all Oi . Under these assumptions it suffices to verify the property of
definition 2.1 for each Oi separately. In what follows, Oi will be regarded as a
compact set in an Rm .

Let ‖·‖V ∗ be a norm on V ∗ , ‖·‖ the corresponding norm of linear operators
on the space of endomorphisms of V ∗ . If T is a differential operator of order r on
H/HE , let

C := max{ sup
0≤|s|≤r

sup
ḣ∈Oi
‖∂sρ∗(σ(ḣ))‖, sup

ḣ∈Oi
‖ρ∗(σ(ḣ))−1‖} <∞

(s = (s1, . . . , sm) ∈ Zm+ is a multiindex, |s| :=
∑m
i=1 si , and ∂s is defined as in

definition 2.1 (Oi ⊆ Rm)). Let (w1, . . . , wn−d) denote the vector of coordinates
with respect to a basis in E⊥ . The expression

|wαTḣ(
∂

∂w1
, . . . ,

∂

∂wn−d
)βϕf(ḣ, σ(ḣ)∗ · w)|

= |( (σ(ḣ)−1)∗ · (σ(ḣ)∗ · w) )α(
∂

∂w1
, . . . ,

∂

∂wn−d
)βTḣf(σ(ḣ)∗ · w)|

can then be estimated by a linear combination of terms of the form

C l‖σ(ḣ)∗ · w‖l′V ∗ · |Df(σ(ḣ)∗ · w)|

(D a constant coefficient differential operator, l, l′ ∈ Z+ ). However, since f ∈
S(V ∗), the latter are bounded for ḣ ∈ Oi , w ∈ E⊥ .



Symeonidis 43

Let pU denote the projection of V onto U , according to the decomposition
V = U ⊕E . In order to define a Fourier transform on E , we have to assume that
a translation-invariant integral du on U is left invariant by the mappings

u 7−→ pU(s · u) , s ∈ HE .

Definition 2.3. The Fourier transform ϕ̃ of a rapidly decreasing function ϕ
on E is a function on the dual bundle E∗ , defined by

ϕ̃(ḣ, ξ) :=
∫

U
ϕ(ḣ, h · u)e−i〈h·u,ξ〉du , ξ ∈ h∗ · E⊥, 〈h · u, ξ〉 := ξ(h · u) .

(The right hand side does not depend on h ∈ hHE because of the assumption
above.)

In fact, the Fourier transform on E is the classical Fourier transform on its
fibres. It therefore can be extended to functions which are integrable on the fibres
of E .

Proposition 2.4. ϕ ∈ S(E)⇒ ϕ̃ ∈ S(E∗).

The proof is straightforward and is left to the reader.

3. The left regular representation of H ×s V on C∞(V ) and the kernel
of its differential

As we have seen in the first section, the Lie group H ×s V operates transitively
on V . The subgroup H (identified with H ×s {0}) is the isotropy subgroup of
0 ∈ V , so V can be identified (set-theoretically and as a manifold) with H×sV /H .
The left regular representation λ of H ×s V on C∞(V ) is defined by

[λ(h, v)f ](v′) = f [(h, v)−1 · v′] = f(h−1 · (v′ − v)) (f ∈ C∞(V ) ) .

It follows that the subspace of Schwartz functions S(V ) is λ-invariant. The
representation λ can be differentiated on C∞(V ). For Y ∈ h ×s V , the Lie
algebra of H ×s V , and f ∈ C∞(V ) we have

dλ(Y )f(v) =
d

dt
f(exp(−tY ) · v)|t=0 .

If f ∈ S(V ), the right hand side remains in S(V ). This shows that S(V ) is
dλ-invariant, so λ can be differentiated as a representation on S(V ). Since dλ is
a representation of h×s V , it can be extended to a representation of the universal
enveloping algebra U(h×s V ).

Let X1, . . . , Xm be a basis of h, Z1, . . . , Zn one of V (being identi-
fied with its Lie algebra). By the Poincaré-Birkhoff-Witt theorem the elements
X i1

1 . . .X im
m Zj1

1 . . . Zjn
n , ik, jl ∈ Z+ , form a basis of U(h×s V ).

Definition 3.1. P ∈ U(h ×s V ) is said to have X -degree M ≥ 0 if P can
be written as a linear combination of basis vectors X i1

1 . . .X im
m Zj1

1 . . . Zjn
n with

i1 + . . .+ im ≤M , where at least one vector appears with i1 + . . .+ im = M .
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This definition does not depend on the (ordered) basis X1, . . . , Xm of h.
It comes from the canonical filtration of U(h). An X -degree is assigned to every
nonzero element P ∈ U(h×s V ).

The adjoint representation Ad of H×sV as well as its differential ad extend
to representations on U(h×s V ).

Lemma 3.2. If P ∈ U(h ×s V ) has X -degree M > 0, then for every Z ∈ V
adZ(P ) has X -degree < M or is equal to 0.

The proof follows immediately from the relations adZ(Xk) ∈ V (1 ≤ k ≤
m) for the derivations adZ .

Let πV : U(h ×s V ) → U(V ) be the canonical projection, defined by
πV (X i1

1 . . .X im
m Zj1

1 . . . Zjn
n ) = 0 for i1 + . . .+ im > 0, πV (Zj1

1 . . . Zjn
n ) = Zj1

1 . . . Zjn
n .

We define a subspace K(h×s V ) of U(h×s V ) as follows:1

An element P ∈ U(h×sV ) of X -degree M ≥ 0 belongs to K(h×sV ) iff
for all j1, . . . , jn ∈ Z+ , j1+. . .+jn ≤M , πV (adZ1)j1 . . . (adZn)jn(P ) =
0. Moreover, 0 ∈ K(h×s V ).

For later purposes we write K1(h×sV ) for {P ∈ K(h×sV ) |P has X-degree 1}∪
{0}.

Now we are ready to state and prove the main result of this section.

Theorem 3.3. ker(dλ) = K(h×s V ).

Proof. We first prove the following statement:
If an element P with πV (P ) = 0 satisfies

dλ(P ) = dλ(Ad(expZ)P )

for every Z ∈ V , then P ∈ ker(dλ).

Let P 6= 0 be such an element,

P =
∑

J

cJPJ , J = (i1, . . . , jn), PJ = X i1
1 . . .X im

m Zj1
1 . . . Zjn

n , cJ ∈ C \ {0} .

For f ∈ C∞(V ) we have

dλ(PJ)(f)(v) =
∂|J |

∂tJ
f(v(t) + h(t) · v)|t=0 , where

t = (t1, . . . , tm, tm+1, . . . , tm+n), h(t) = exp(−tmXm) . . . exp(−t1X1) ∈ H ,

v(t) = exp(−tm+nZn) . . . exp(−tm+1Z1) = −
n∑

i=1

tm+iZi ∈ V ,

1Richter’s definition leads to a much greater space K(n) (following his notation), and the
relation ‘K(n) ⊆ Kerλ ’ fails to hold in [14, Proposition 3]. For example, if P belongs to KM (n),
then P + UM−1(n) ⊆ K(n), but of course P + UM−1(n) 6⊆ Kerλ . Furthermore, the use of the
operators Zi as Ad(exp(Zi) − Id instead of adZi in the definition of KM (n) makes it much
harder to deduce the last equation in the proof of Proposition 3 if Y is not just one of the
Z1, . . . , Zn , but a linear combination of them.
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∂|J |

∂tJ
=

∂i1+...+im+j1+...+jn

∂ti11 . . . ∂t
im
m ∂t

j1
m+1 . . . ∂t

jn
m+n

.

The relation exp(Ad(g)Y ) = g exp(Y )g−1 , Y ∈ h×s V , g ∈ H ×s V , implies

dλ(Ad(g)P )(f)(v) = dλ(P )(f ◦ Lg)(g−1 · v) for P ∈ U(h×s V ) , (1)

Lg denoting left translation by g . We obtain

dλ(Ad(exp v)PJ)(f)(v) = dλ(PJ)(f ◦ Lv)(0) =
∂|J |

∂tJ
f(v + v(t) + h(t) · 0)|t=0 = 0 ,

since ∂|J|
∂tJ

contains at least one derivative with respect to a ti , 1 ≤ i ≤ m.
The assumption on P leads to dλ(P )(f)(v) = 0, which holds for all v ∈ V ,
f ∈ C∞(V ). This proves the statement.

Let now P ∈ K(h ×s V ) having X -degree M . For all Z ∈ V and all
j1, . . . , jn ∈ Z+ , j1 + . . .+ jn = M − 1, we obtain by the use of Ad(expZ) = eadZ :

dλ(Ad(expZ)(adZ1)j1 . . . (adZn)jnP ) = dλ((adZ1)j1 . . . (adZn)jnP ) .

From the above statement it follows that the right hand side is equal to 0. We
repeat this argument with j1 + . . .+jn = M−2, M−3 etc. and obtain inductively
dλ(P ) = 0.

For the converse we observe that ker(dλ) is Ad(H ×s V )-invariant, as
equation (1) shows. By differentiation we obtain (adZ)(ker(dλ)) ⊆ ker(dλ) for
every Z ∈ V (in fact, Ad(g) and ad(Z) operate on the finite dimensional subspaces
of elements of X -degrees ≤M ). Therefore it suffices to show that if P ∈ ker(dλ)
it holds πV (P ) = 0. Let P0 = πV (P ). For f ∈ C∞(V ), v ∈ V we obtain:

0 = dλ(P )(f)(v) = dλ[Ad(exp v)P ](f)(v) = dλ(P )(f ◦ Lexp v)(0) by (1)

= dλ(P0)(f ◦ Lexp v)(0) + dλ(P − P0)(f ◦ Lexp v)(0) = dλ(P0)(f ◦ Lexp v)(0)

= dλ[Ad(exp v)P0](f)(v) = dλ(P0)(f)(v) ,

so dλ(P0) = 0 and P0 = 0, since dλ is injective on U(V ).

Remark . The definition of the subspace K(h×s V ) is suggested by Corollary
3.6 in [1].

4. The d-plane transform

We return to the setting of the first two sections. E is a d-dimensional subspace
of V (1 ≤ d ≤ n− 1), U a complement of E in V . The following considerations
contain the Radon transform (d = n− 1) as a special case.

Let us introduce translation invariant integrals dz and du on E and U
respectively. The integral dy = dz du is then translation invariant on V . From
now on we assume that HE acts by unimodular automorphisms on E (that is
of determinant ±1). This, combined with the condition needed for the Fourier
transform on E , leads to the assumption that HE acts unimodularly on both E
and V . Moreover, we can assume that H operates by unimodular automorphisms
on V ; if this is not the case, we only have to replace ρ(h) by δ(h)−1/nρ(h), where
δ(h) denotes the modulus (= absolute value of the determinant) of ρ(h).
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Definition 4.1. Let f be an integrable function on V . The d-plane transform
of f is a function f̂ on E , defined by

f̂(ḣ, x) =
∫

E
f(x + h · z)dz .

The new function is well defined almost everywhere, due to the unimodularity
assumption above. The following lemma, often called “Projection-Slice theorem”,
is of great importance.

Lemma 4.2. Let f ∈ S(V ), f̃ ∈ S(V ∗) being the (classical) Fourier transform
of f . The d-plane transform f̂ is then integrable on every fibre of E , and we have:

˜̂
f(ḣ, ξ) = f̃(ξ) , ξ ∈ h∗ · E⊥ .

Proof. Clearly, f̂ is everywhere defined and integrable on the fibres by the
Fubini theorem. We have:

˜̂
f(ḣ, ξ) =

∫

U
f̂(ḣ, h · u)e−i〈h·u,ξ〉du =

∫

U

∫

E
f(h · (u+ z))e−i〈h·(u+z),ξ〉dz du

(〈h · z, ξ〉 = 0)

=
∫

V
f(h · y)e−i〈h·y,ξ〉dy =

∫

V
f(y)e−i〈y,ξ〉dy = f̃(ξ) .

Lemma 4.3. For f ∈ S(V ) we have f̂ ∈ S(E).

Proof. Clearly, f̂ ∈ C∞(E). From lemmas 4.2 and 2.2 it follows that
˜̂
f ∈

S(E∗). The desired relation is now obtained from the analogue of proposition 2.4
for the inverse Fourier transform.

An important property of the d-plane transforms f̂ is that they satisfy the
so called “moment conditions”.

Proposition 4.4. Let ϕ ∈ S(V )∧ . For every m ∈ Z+ there exists a ho-
mogeneous polynomial Pm of degree m on V ∗ , such that for every h ∈ H/HE ,
ξ ∈ h∗ ·E⊥ : ∫

U
ϕ(ḣ, h · u) · 〈h · u, ξ〉mdu = Pm(ξ) . (2)

Proof. Let ϕ = f̂ , f ∈ S(V ). We have:

∫

U
ϕ(ḣ, h · u)〈h · u, ξ〉mdu =

∫

U

∫

E
f(h · (u+ z))〈h · (u+ z), ξ〉mdz du

=
∫

V
f(h · y)〈h · y, ξ〉mdy =

∫

V
f(y)〈y, ξ〉mdy .
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Let SM (E) := {ϕ ∈ S(E)|ϕ satisfies (2)}. We have shown: S(V )∧ ⊆
SM(E).

The functions in S(V )∧ have a further common property. They are anni-
hilated by certain differential operators.

Let ν be the left regular representation of H×sV on C∞(E). For f ∈ S(V )
we compute:

[ν(h, v)f̂ ](ḣ′, x′) = f̂ [(h, v)−1 · (ḣ′, x′)] = f̂(h−1ḣ′, h−1 · x′ − h−1 · v)

=
∫

E
f(h−1 · x′ − h−1 · v + h−1h′ · z)dz =

∫

E
f((h, v)−1 · (x′ + h′ · z))dz

=
∫

E
[λ(h, v)f ](x′ + h′ · z)dz = [λ(h, v)f ]∧(ḣ′, x′)

(λ denoting the left regular representation of H ×s V on C∞(V )), so

[λ(g)f ]∧ = ν(g)f̂ , g ∈ H ×s V , (3)

which means that the operator f 7→ f̂ intertwines λ and ν . Differentiation of (3)
leads to

[dλ(Y )f ]∧ = dν(Y )f̂

for Y in h ×s V and then in U(h ×s V ). Thus, if Y ∈ ker(dλ), dν(Y )f̂ = 0 for
all f ∈ S(V )∧ .

Let SD(E) := {ϕ ∈ S(E)|dν(Y )ϕ = 0 for Y ∈ ker(dλ)}. We have shown:
S(V )∧ ⊆ SD(E). Thus, S(V )∧ ⊆ SD(E) ∩ SM(E).

5. The image of the d-plane transform

In this section we prove the relation

S(V )∧ = SD(E) ∩ SM(E) . (4)

For this we have to impose the following two conditions on the action of the Lie
group H :

(i) The mapping from H × E⊥ into V ∗ , (h, w) 7→ h∗ · w , is surjective and its
restriction to H × (E⊥ \ {0}) a submersion.

(ii) If h∗ · w1 = w2 , w1, w2 ∈ E⊥ , h ∈ H , then there exists s ∈ HE such that
s∗ · w1 = w2 .

Both conditions are satisfied in the classical case (H = SO(n), V = Rn).2

2In the first and last example of section 9 it is shown that they are also necessary for a
relation like (4).
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Lemma 5.1. The d-plane transform is an injective mapping on S(V ).

The proof follows from lemma 4.2 and the surjectivity in assumption (i)
above.

For (4) it remains to be proven that for ϕ ∈ SD(E) ∩ SM(E) there exists
f ∈ S(V ) such that ϕ = f̂ . We proceed in three steps:

1. There exists a function F ∈ C∞(V ∗ \ {0}) satisfying ϕ̃(ḣ, ξ) = F (ξ).

2. F ∈ C∞(V ∗).

3. F ∈ S(V ∗).

It then holds for f ∈ S(V ) with f̃ = F :

ϕ̃(ḣ, ξ) = F (ξ) = f̃(ξ) =
˜̂
f(ḣ, ξ)

by lemma 4.2, so ϕ̃ =
˜̂
f , and by inverse Fourier transform, ϕ = f̂ .

First step

Let X1, . . . , Xm be a basis of h. For every w ∈ V ∗ we denote by Hw the
isotropy subgroup of w in H and by hw its Lie algebra.

Lemma 5.2. Let l = inf{dimHw|w ∈ V ∗\{0}}, O = {w ∈ V ∗\{0}| dimHw =
l}.

a) O is a dense open subset of V ∗ \ {0}.

b) Let w0 ∈ O . For every w in a dense open neighborhood of w0 in O there
exists a basis

Yj(w) =
m∑

k=1

ajk(w)Xk , 1 ≤ j ≤ l ,

of hw , such that the coefficients ajk are homogeneous polynomials in w ∈ V ∗ .

Proof. If we differentiate with respect to t the equation ρ∗[exp t(a1X1 + . . .+
amXm)]w − w = 0, we obtain:

Y =
m∑

k=1

akXk ∈ hw ⇐⇒ dρ∗(Y )w = 0⇐⇒
m∑

k=1

akdρ
∗(Xk)w = 0 . (5)

a) O ⊆ V ∗ is the set of vectors w ∈ V ∗ , where the system (dρ∗(X1)w, . . . ,
dρ∗(Xm)w) has maximal rank, that is m− l .

b) Let us assume that (dρ∗(Xk)w)1≤k≤m−l is a basis of 〈dρ∗(Xk)w|1 ≤ k ≤
m〉 for w in a dense open neighborhood of w0 in O . If we bring the terms with
m− l < k ≤ m in (5) to the right hand side (and choose a basis on V ∗ ), we obtain
for every choice of am−l+1, . . . , am an n× (m− l)-linear system, whose equations
are linear in w . The statement of the lemma follows by applying Cramer’s rule to
an (m − l) × (m − l)-part of the system and multiplying the vector (a1, . . . , am)
by the common denominator.
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Remark . 1. According to the construction given in the proof, the polynomials
ajk have the same degree of homogeneity.
2. If we consider the polynomials ajk as elements of the symmetric (= universal
enveloping) algebra of V , then the Yj become the operators in K1(h ×s V ) (see
section 3):

Pj :=
m∑

k=1

Xkajk ∈ K1(h×s V ) .

This can be seen as follows (Z1, . . . , Zn a basis of V ):

0 =
m∑

k=1

ajk(ξ)dρ
∗(Xk)ξ

implies

0 = 〈
m∑

k=1

ajk(ξ)dρ
∗(Xk)ξ, Zl〉 =

m∑

k=1

ajk(ξ)〈dρ∗(Xk)ξ, Zl〉

= −
m∑

k=1

ajk(ξ)〈ξ, dρ(Xk)Zl〉 =
m∑

k=1

ajk(ξ)〈ξ, [Zl, Xk]〉 = 〈ξ, (adZl)Pj〉 .

This gives a geometrical meaning to dimK1(h×s V ) = l .

We observe that for ϕ ∈ S(E), T ∈ h×s V , dν(T )ϕ remains in S(E). Therefore
we can define the Fourier transform of every dν(T ), T ∈ h ×s V , and then for
T ∈ U(h×s V ), by iteration:

˜dν(T )ϕ̃ := [dν(T )ϕ]∼ .

We calculate ˜dν(X), ˜dν(Z) for X ∈ h, Z ∈ V :

˜dν(X)ϕ̃(ḣ, ξ) =
∫

U
dν(X)ϕ(ḣ, h · u)e−i〈h·u,ξ〉du

=
∫

U

d

dt
ϕ(exp(−tX)ḣ, exp(−tX)h · u)|t=0 · e−i〈h·u,ξ〉du

=
d

dt

∫

U
ϕ(exp(−tX)ḣ, exp(−tX)h · u) · e−i〈exp(−tX)h·u,exp(−tX)∗ ·ξ〉du|t=0

=
d

dt
ϕ̃(exp(−tX)ḣ, exp(−tX)∗ · ξ)|t=0 ; (6)

˜dν(Z)ϕ̃(ḣ, ξ) =
∫

U
dν(Z)ϕ(ḣ, h · u)e−i〈h·u,ξ〉du

=
∫

U

d

dt
ϕ(ḣ,−tZ + h · u)|t=0 · e−i〈h·u,ξ〉du

=
∫

U

d

dt
ϕ(ḣ,−th · pU(h−1 · Z) + h · u)|t=0 · e−i〈h·u,ξ〉du

(pU denoting projection on U parallel to E )

=
d

dt

∫

U
ϕ(ḣ, h · u)e−i〈h·u,ξ〉e−i〈tZ,ξ〉du|t=0 (ϕ ∈ S(E) )
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= −i〈Z, ξ〉ϕ̃(ḣ, ξ) . (7)

Following the notation in lemma 5.2 we define operators Yj, 1 ≤ j ≤ l , on
C∞(E∗):

Yjψ(ḣ, ξ) :=
m∑

k=1

ajk(ξ)
˜dν(Xk)ψ(ḣ, ξ) .

For f ∈ S(V ) we compute:

Yj(
˜̂
f)(ḣ, ξ) =

m∑

k=1

ajk(ξ)
˜dν(Xk)(

˜̂
f)(ḣ, ξ)

=
m∑

k=1

ajk(ξ)
d

dt
(
˜̂
f)(exp(−tXk)ḣ, exp(−tXk)

∗ · ξ)|t=0 by (6)

=
m∑

k=1

ajk(ξ)
d

dt
f̃(exp(−tXk)

∗ · ξ)|t=0 by lemma 4.2

=
d

dt
f̃(exp(−tYj(ξ))∗ · ξ)|t=0 = 0 , 1 ≤ j ≤ l . (8)

We now proceed to a closer study of the operators Yj . A homogeneous
polynomial in ξ ∈ V ∗ is obtained by multiplication and addition of terms of the
form 〈Z, ξ〉, Z ∈ V . Thus, because of (7) there exist elements Pjk ∈ U(V )

satisfying ˜dν(Pjk)ψ(ḣ, ξ) = ajk(ξ)ψ(ḣ, ξ). Using this fact, we obtain:

Yjϕ̃(ḣ, ξ) =
m∑

k=1

ajk(ξ)
˜dν(Xk)ϕ̃(ḣ, ξ) =

m∑

k=1

˜dν(Pjk)
˜dν(Xk)ϕ̃(ḣ, ξ)

=
m∑

k=1

[dν(Pjk)dν(Xk)ϕ]∼(ḣ, ξ) ,

so

Yjϕ̃ =
m∑

k=1

[dν(Pjk)dν(Xk)ϕ]∼ = [dν(Pj)ϕ]∼ = ˜dν(Pj)ϕ̃ ,

where we have put Pj :=
∑m
k=1 PjkXk ∈ U(h×s V ). Equation (8) now implies:

0 = [dν(Pj)f̂ ]∼ =⇒ 0 = dν(Pj)f̂ = [dλ(Pj)f ]∧ =⇒ dλ(Pj)f = 0

by (3) and lemma 5.1.

We have thus proved that there exist elements Pj ∈ ker(dλ) such that

Yj = ˜dν(Pj) , 1 ≤ j ≤ l . (9)

Remark . It holds: Pj =
∑m
k=1 XkPjk . In fact, for Qj :=

∑m
k=1 XkPjk we have

Qj ∈ K1(h×s V ) (see section 3), since ad(Z)Qj = ad(Z)Pj = 0 for every Z ∈ V
(Pj ∈ K1(h×s V )). It follows: Qj ∈ ker(dλ)⇒ Qj −Pj ∈ ker(dλ)⇒ Qj −Pj = 0,
because Qj − Pj ∈ U(V ) and dλ is injective on U(V ).

We come to the main result of this subsection:
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Proposition 5.3. For every ϕ ∈ SD(E) there exists a function F ∈ C∞(V ∗ \
{0}) such that ϕ̃(ḣ, ξ) = F (ξ) for ξ ∈ h∗ · E⊥ , ξ 6= 0.

Proof. The restriction of π : E∗ → V ∗ , (ḣ, ξ) 7→ ξ , to π−1(V ∗ \ {0}) is by
assumption a submersion. Thus it is enough to show that ϕ̃ is constant on every
subset π−1(ξ), ξ 6= 0. For this we recall assumption (ii) in the beginning of this
section.

Let ξ = h∗1 · w1 = h∗2 · w2 , w1, w2 ∈ E⊥ \ {0}. Then there exists s ∈ HE

such that s∗ · w1 = w2 , and we have:

h∗1 · w1 = (h2s)
∗ · w1 ⇔ h−1

1 h2s ∈ Hw1 ⇔ h2s ∈ h1Hw1 = Hξh1

and h2sHE = ḣ2 , so there is r ∈ Hξ such that r · (ḣ1, ξ) := (rḣ1, r
∗ · ξ) = (ḣ2, ξ).

It therefore remains to show that the function

r 7−→ ϕ̃(rḣ, r∗ · ξ) (10)

is constant on Hξ .

Relation (9) implies Yjϕ̃ = [dν(Pj)ϕ]∼ = 0, 1 ≤ j ≤ l . On the other hand,
with the help of Φ : H × E⊥ → C, Φ(h, w) := ϕ̃(ḣ, h∗ · w), we compute:

Yjϕ̃(ḣ, ξ) =
m∑

k=1

ajk(ξ)
˜dν(Xk)ϕ̃(ḣ, ξ)

=
m∑

k=1

ajk(ξ)
d

dt
ϕ̃(exp(−tXk)ḣ, exp(−tXk)

∗ · ξ)|t=0 by (6)

=
m∑

k=1

ajk(ξ)
d

dt
Φ(exp(−tXk)h, w)|t=0 if ξ = h∗ · w ,

=
d

dt
Φ(exp(−tYj(ξ))h, w)|t=0 =

d

dt
ϕ̃(exp(−tYj(ξ))ḣ, ξ)|t=0 .

Since Yj(ξ), 1 ≤ j ≤ l , form a basis of hξ for ξ in a dense open set O′ ⊆ V ∗ \{0},
(10) is constant on Hξ , ξ ∈ O′ . Thus there exists a function F ∈ C∞(O′)
satisfying ϕ̃(ḣ, ξ) = F (ξ), ξ ∈ O′ . For 0 6= ξ0 = h∗0 · w0 6∈ O′ let W(h0,w0)

be a submanifold of H × E⊥ through (h0, w0) which is mapped by (h, w) 7→
h∗ · w diffeomorphically onto an open neighborhood Wξ0 of ξ0 in V ∗ , and put
F (h∗ · w) := ϕ̃(ḣ, h∗ · w) for (h, w) ∈ W(h0,w0) . The argument shows that F can
be smoothly extended to an open neighborhood of every ξ 6∈ O′ , ξ 6= 0. If we
consider a covering of V ∗ \ {0} by such neighborhoods and by O′ , there exists a
locally finite subcovering and a partition of unity associated with it, whereby F
can be extended to a C∞ -function on V ∗ \ {0}. The equation ϕ̃ = F ◦ π then
holds on the dense subset π−1(O′) and hence everywhere on π−1(V ∗ \ {0}).

Remark . For the proof we have only used the fact that ϕ is annihilated by
dν(Y ), Y ∈ K1(h×s V ).

Second Step

The proof of F ∈ C∞(V ∗) is based on an application of a theorem of Glaeser
[5], which we shall now recall.
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Definition (Glaeser). Let ω ⊆ Rn be an open set, o ⊆ ω , V ⊆ C∞(ω). A
function Φ ∈ C∞(ω) is said to be attached to V on o if there is Ψ ∈ V such
that Φ − Ψ and all its partial derivatives vanish on o. (In that case Ψ will be
called “interpolating function” for Φ). The function Φ will be called bipunctually
attached to V if Φ is attached to V on every two-element subset of ω .

Furthermore, we consider an open set Ω ∈ Rp , p ≤ n, and a C∞ -map
θ : ω → Ω. Let Aθ denote the set of C∞ -functions on ω of the form F ◦ θ ,
F ∈ C∞(Ω).

Theorem (Glaeser). If θ : ω → Ω satisfies the following 4 conditions and
Φ ∈ C∞(ω) is bipunctually attached to Aθ , then Φ belongs to Aθ .

Θ1 : θ : ω → Ω is real analytic.

Θ2 : θ has maximal rank (= p) on a dense open subset of ω .

Θ3 : θ(ω) is closed in Ω.

Θ4 : For every compact set K ⊆ θ(ω) there is a compact set k ⊆ ω such that
θ(k) = K .

We prepare the application of this theorem.

Lemma 5.4. There is a compact set K ⊆ H such that the mapping (h, w) 7→
h∗ · w from K × E⊥ into V ∗ remains surjective.

Proof. Let SV ∗ denote the sphere of radius 1 in a norm ‖ · ‖ in V ∗ . The
map σ : H × (E⊥ \ {0}) → SV ∗ , (h, w) 7→ h∗·w

‖h∗·w‖ is continuous and open, since

it is the composition of the submersions (h, w) 7→ h∗ · w and v 7→ v
‖v‖ . For every

ξ = σ(h, w) ∈ SV ∗ let Uh be an open, relatively compact neighborhood of h in H ,
Wh := Uh× (E⊥ \ {0}). Since SV ∗ is compact, it is covered by finitely many open
sets σ(Wh1), . . . , σ(Whk). The subset K := Ā , A := ∪ki=1Uhi , has the required
property.

Let K̇ be the projection of K on H/HE . There is a finite open covering
of K̇ by charts (Ui, ϕi), 1 ≤ i ≤ q , with the property that there exists on every
Ui a cross section σi into H . The sets Ui can be considered as pairwise disjoint
open sets in Rk (k = dim H/HE) (if we identify Ui with ϕi(Ui) and take ϕi(Ui)
bounded, the ϕi(Ui) can be disjointly distributed in Rp by the use of translations).3

Let now ω := (∪qi=1Ui) × E⊥ , Ω := V ∗ , θ : ω → V ∗ , θ(ḣ, w) := σ(ḣ)∗ · w ,
σ|Ui := σi .

4 The map θ is surjective and satisfies Θ2 and Θ3 by assumption.
Our manifolds has a real analytic atlas, and the cross sections σi as well as the
representation ρ can be taken analytic. This establishes Θ1 . The next lemma
establishes Θ4 .

3This very technical assumption is needed, so as to construct a unique cross section σ from
the various σi . After all, Glaeser’s theorem is formulated for open sets in Rp and not in the
context of manifolds, as is the case here.

4After choosing bases we can identify E⊥ and V ∗ with Rn−d and Rn respectively.
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Lemma 5.5. For every compact set K ′ ⊆ V ∗ there exists a compact set k ⊆ ω
such that θ(k) = K ′ .

Proof. Similar considerations as those in the proof of lemma 5.4 lead to a
compact set K̃ ⊆ ∪qi=1Ui with the property that the restriction of θ on K̃ × E⊥
is surjective. For ḣ ∈ K̃ we put

Kḣ := {w ∈ E⊥|θ(ḣ, w) ∈ K ′} .

Obviously, Kḣ is compact. We finish the proof by verifying the compactness of
k := ∪ḣ∈K̃{ḣ} ×Kḣ .

Let ( (ḣn, wn) )n∈N be a sequence in k and suppose that ḣn converges to
ḣ ∈ K̃ . We have:

wn ∈ Kḣn
= [(σ(ḣn)−1)∗ ·K ′] ∩ E⊥ .

Let B be a compact neighborhood of ḣ in ∪qi=1Ui . Almost all wn lie in the
compact set [(σ(B)−1)∗ · K ′] ∩ E⊥ , so there is a subsequence of (wn)n∈N which
converges to w ∈ [(σ(B)−1)∗ · K ′] ∩ E⊥ . Therefore there exists ḣB ∈ B such
that σ(ḣB)∗ · w ∈ K ′ . If we let B shrink to ḣ , we obtain a sequence (ḣBn)n∈N
converging to ḣ and having the property that σ(ḣBn)∗ ·w = θ(ḣBn , w) ∈ K ′ . This
implies θ(ḣ, w) ∈ K ′ , so (ḣ, w) ∈ k .

To apply Glaeser’s above theorem to the function Φ on ω , defined by

Φ(ḣ, w) := ϕ̃(ḣ, θ(ḣ, w)) , (11)

we need to show that Φ is bipunctually attached to Aθ . Taking into account the
goal of the first step, we only have to show this for the subset {(ḣ, 0)|ḣ ∈ ∪qi=1Ui}
of ω . We first prove an algebraic lemma.

Lemma 5.6. Let Pk be a homogeneous polynomial of degree k ≥ 0 on V ∗ .
There is a unique k -linear symmetric form Tk on V ∗ such that Tk(x, . . . , x) =
Pk(x) for all x ∈ V ∗ .

Proof. Let (x1, . . . , xn) denote the vector of coordinates of x ∈ V ∗ with respect
to a fixed basis. The proof follows easily, if we consider the general expression of
a symmetric k -linear form:

Tk(x1, . . . , xk) =
∑

1≤i1≤...≤ik≤n

1

k!
ci1...ik

∑

σ∈Sk
xi1σ(1) . . . x

ik
σ(k) , ci1...ik ∈ C

(Sk the symmetric group of k elements).

Proposition 5.7. The function Φ defined by (11) on ω is attached to Aθ on
{(ḣ, 0)|ḣ ∈ ∪qi=1Ui}.
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Proof. Let (u1, . . . , un−d) be the vector of coordinates with respect to a basis
of U , (w1, . . . , wn−d) the one with respect to the dual basis of E⊥ . We have:

∂

∂w′j
Φ(ḣ, w′) =

∂

∂w′j

∫

U
ϕ(ḣ, σ(ḣ) · u)e−i〈u,w

′〉du

= −i ·
∫

U
ϕ(ḣ, σ(ḣ) · u)uje

−i〈u,w′〉du .

The moment conditions for ϕ (proposition 4.4) imply:

(
n−d∑

j=1

wj
∂

∂w′j
)mΦ(ḣ, w′)|w′=0 = (−i)mPm(σ(ḣ)∗ · w) (12)

(Pm a homogeneous polynomial of degree m on V ∗ ).
For every m ∈ Z+ let Tm be the unique m-linear symmetric form on V ∗

such that Tm(x, . . . , x) = (−i)mPm(x) (according to the preceding lemma). By
the generalized theorem of Emile Borel every (formal) power series is the Taylor
series of a C∞ -function.5 Therefore there exists a function F ′ ∈ C∞(V ∗) such
that DmF ′(0) = Tm , m ∈ Z+ . We shall show that F ′ ◦ θ is an interpolating
function for Φ on {(ḣ, 0)|ḣ ∈ ∪qi=1Ui}.

If we set

(ḣ∗Tm)(w1, . . . , wm) := Tm(σ(ḣ)∗ · w1, . . . , σ(ḣ)∗ · wm)

and denote by Dm
2 Φ(ḣ, 0) the m-th derivative of w 7→ Φ(ḣ, w) at 0, (12) takes

the form
Dm

2 Φ(ḣ, 0)(w, . . . , w) = (ḣ∗Tm)(w, . . . , w) .

Since both sides are symmetric tensors, Dm
2 Φ(ḣ, 0) = ḣ∗Tm by the preceding

lemma. On the other hand, Dm
2 (F ′ ◦ θ)(ḣ, 0) = ḣ∗Tm , the left hand side denoting

the m-th derivative of w 7→ F ′ ◦ θ(ḣ, w) = F ′(σ(ḣ)∗ · w). Hence,

Dm
2 Φ(ḣ, 0) = Dm

2 (F ′ ◦ θ)(ḣ, 0) , m ∈ Z+ .

Since this last equation holds for all ḣ ∈ ∪qi=1Ui , we can apply on both sides a
differential operator of constant coefficients in ḣ (∪qi=1Ui ⊆ Rp) without doing any
harm to the equality. This shows that F ′ ◦ θ is an interpolating function for Φ.

By Glaeser’s theorem there now exists F ′ ∈ C∞(V ∗) such that Φ and F ′◦θ
coincide on ω . Therefore, the function F of the first step can be extended to the
C∞ -function F ′ on V ∗ . We shall continue to write F instead of F ′ . By continuity
we have ϕ̃(ḣ, ξ) = F (ξ) for all ξ ∈ h∗ · E⊥ , ḣ ∈ H/HE .

Third step

Proposition 5.8. The function F defined above belongs to the Schwartz class
S(V ∗).

5This theorem is a special case of theorem I in [16, page 65].
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Proof. It remains to show that for every p ∈ Z+ and every differential operator
D with constant coefficients on V ∗

sup
ξ∈V ∗
‖ξ‖p|DF (ξ)| <∞ .

Let K ⊆ H be as in lemma 5.4, K̇ the projection of K on H/HE and
(Ui)1≤i≤q a covering of K̇ by open, relatively compact sets, which admit local
cross sections σi on their topological closures. Thus we have to show that

sup
ḣ∈K̇,w∈E⊥

‖σi(ḣ)∗ · w‖p · |DF (σi(ḣ)∗ · w)| <∞ (13)

(if ḣ is contained in Ui ). For this we shall express D in coordinates (ḣ, w).

Let us take a basis of E⊥ , extend it to one of V ∗ and denote by
(w1, . . . , wn−d) and (ξ1, . . . , ξn) the vectors of coordinates on E⊥ and V ∗ respec-
tively. The automorphisms ρ∗(σi(ḣ)) can then be regarded as n × n-matrices.
Putting θi : Ui×E⊥ → V ∗ , θi(ḣ, w) := σi(ḣ)∗ ·w , 1 ≤ i ≤ q , we have (X1, . . . , Xm

a basis of the Lie algebra h of H ):

∂

∂wj
F ◦ θi(ḣ, w) =

n∑

l=1

∂F

∂ξl
(σi(ḣ)∗ · w) · ρ∗(σi(ḣ))lj , 1 ≤ j ≤ n− d ,

Xk(F ◦ θi)(ḣ, w) :=
d

dt
F ◦ θi(exp(tXk)ḣ, w)|t=0

=
n∑

l=1

∂F

∂ξl
(σi(ḣ)∗ · w) · d

dt
[ρ∗(σi(exp(tXk)ḣ))w]l|t=0 , 1 ≤ k ≤ m .

We consider these equations as a linear system in ∂F
∂ξ1
, . . . , ∂F

∂ξn
. For every (ḣ0, w0) ∈

K̇ × (E⊥ \ {0}) there is an index i such that ḣ0 ∈ Ui , and we can choose n of
the above equations such that the determinant of the coefficients of this part
of the system does not vanish (θi is on Ui × (E⊥ \ {0}) a submersion). Since
this determinant is a homogeneous polynomial in w , it remains non-zero on a
neighborhood of (ḣ0, w0) of the form O × R∗ ·W , where O is a neighborhood of
ḣ0 in Ui and W one of w0

‖w0‖ in the sphere SE⊥ of radius 1 in E⊥ . Using Cramer’s
rule, we obtain:

∂F

∂ξl
(σi(ḣ)∗ · w) =

n−d∑

j=1

fj(ḣ, w)
∂

∂wj
F ◦ θi(ḣ, w) +

m∑

k=1

gk(ḣ, w)Xk(F ◦ θi)(ḣ, w) ,

where fj, gk are smooth homogeneous rational functions in w (fj of degree 0, gk
of degree −1) (take fj, gk to be zero, if a term does not appear). Repeating the
procedure with ∂F

∂ξl
instead of F , we obtain an expression for the second derivatives

of F , etc. Eventually this leads to an expression of the operator D in coordinates
(ḣ, w):

DF (σi(ḣ)∗ · w) =
∑

j

ej(ḣ, w)TjPj(
∂

∂w1
, . . . ,

∂

∂wn−d
)F ◦ θi(ḣ, w)
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=
∑

j

ej(ḣ, w)TjPj(
∂

∂w1
, . . . ,

∂

∂wn−d
)ϕ̃(ḣ, σi(ḣ)∗ · w) . (14)

Therein Tj is a differential operator on H/HE , Pj(
∂
∂w1

, . . . , ∂
∂wn−d

) a polynomial

in ∂
∂w1

, . . . , ∂
∂wn−d

, and ej smooth rational functions, homogeneous in w of degree
≤ 0.

Relation (13) is a property for w in a neighborhood of infinity. For ‖w‖ ≤ 1
we actually have ‖σi(ḣ)∗ · w‖ ≤ ‖ρ∗(σi(ḣ))‖, and

Ai := sup
ḣ∈Ui
‖ρ∗(σi(ḣ))‖ <∞ ,

since Ui is relatively compact and σi a local cross section on Ūi . The region
of V ∗ we obtain by σi(ḣ)∗ · w (1 ≤ i ≤ q ) from ḣ ∈ K̇ , ‖w‖ ≥ 1, contains
{ξ ∈ V ∗| ‖ξ‖ > max1≤i≤q Ai}. Therefore we can restrict ourselves to ‖w‖ ≥ 1 in
(13).

Equation (14) holds for (ḣ, w) ∈ O × R∗ ·W . If we take O and W to be
compact, all functions ej are bounded on O × (R\] − 1, 1[) ·W , and (13) holds
for (ḣ, w) ∈ O × (R\]− 1, 1[) ·W , because ϕ̃ is a rapidly decreasing function (cf.
section 2). Due to the compactness of K̇ and SE⊥ , we now only need finitely
many sets of the form O × (R\] − 1, 1[) ·W to obtain a full neighborhood of the
infinity in V ∗ . The proof is thereby completed.

6. The image in the case d < n− 1

Richter and Kurusa have shown that in the classical case (H = SO(n), V = Rn )
and for d < n − 1 the range-characterizing partial differential equations (which
are equivalent to dν(T )ϕ = 0 for T ∈ K1(so(n)×s Rn), see [14, page 72ff]) suffice
to characterize the range S(Rn)∧ (the latter author derives directly the moment
conditions of Helgason) [11], [13]. Gonzalez has given a group theoretical proof
[6]. The fact is also true in the general situation, provided that the set of planes
in E (actually in E∗ ) is sufficiently rich.

Definition 6.1. A collection U of k -dimensional linear subspaces of V ∗ will be
called fundamental system if every homogeneous polynomial on V ∗ is completely
determined by its restriction on the union of all elements of U .

For instance, a set of hyperplanes (k = n− 1) is a fundamental system iff
it contains infinitely many elements.

We proceed to the following assumption (denoted in the sequel by (G)) on
the action of the group H :

There is a dense set A ⊆ V ∗\{0} with the following property: For every
ξ ∈ A the planes of the form h∗ · E⊥ through ξ form a fundamental
system.

The set of ξ ∈ V ∗ \ {0} for which the statement in (G) holds is ρ∗(H)-
invariant. Therefore we only have to establish (G) for a dense set in E⊥ \ {0}.
This makes things much easier in concrete situations.
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Proposition 6.2. Assumption (G) implies: S(V )∧ = SD(E).

Proof. Let ϕ ∈ SD(E), ϕ̃ the Fourier transform. We denote by Dm
2 ϕ̃(ḣ, ξ0) the

m-th derivative of ξ 7→ ϕ̃(ḣ, ξ) (as a function on h∗ ·E⊥ ) at the point ξ0 ∈ h∗ ·E⊥ .
The proof will be given by establishing the moment conditions for ϕ. These are
equivalent to

Dm
2 ϕ̃(ḣ, 0) · ξ⊗m = (−i)mPm(ξ) , ξ ∈ h∗ · E⊥ ,

Pm homogeneous polynomials of degree m ≥ 0 on V ∗ (cf. proposition 4.4).

Let Yj(ξ), 1 ≤ j ≤ l , be a basis of hξ for ξ in a dense open subset of
V ∗ \ {0} (notation as in section 5). It follows from the considerations in section
5 that for 1 ≤ j ≤ l the function

(t, s) 7−→ ϕ̃(exp(−tYj(ξ))ḣ, sξ)
does not depend on t, nor does the m-th partial derivative with respect to s at
s = 0:

Dm
2 ϕ̃(exp(−tYj(ξ))ḣ, 0) · ξ⊗m .

Following the reasoning of section 5, there exists a function Fm ∈ C∞(V ∗ \ {0})
such that

Dm
2 ϕ̃(ḣ, 0) · ξ⊗m = Fm(ξ) (15)

for ξ ∈ h∗ · E⊥ , ξ 6= 0. Let ξ0 ∈ A, A as in (G). The map

ξ 7−→ DkFm(ξ0) · ξ⊗k , k > m ,

(Dk : the k -th derivative) is a homogeneous polynomial, whose restriction on every
plane h∗ · E⊥ containing ξ0 is equal to zero by (15). The fact ξ0 ∈ A implies
DkFm(ξ0) ·ξ⊗k ≡ 0, and by lemma 5.6 DkFm(ξ0) = 0. Since A is dense, we obtain
DkFm = 0 for k > m. Therefore Fm equals a polynomial (−i)mPm of degree ≤ m
on V ∗ \ {0} and can be extended to it on V ∗ . By continuity,

Dm
2 ϕ̃(ḣ, 0) · ξ⊗m = (−i)mPm(ξ) , ξ ∈ h∗ · E⊥ .

Hereby we conclude that Pm is homogeneous of degree m, and the proof is
completed.

However, assumption (G) is not necessary for a relation of the form
S(V )∧ = SD(E), as the last example in section 9 shows.

7. The Radon transform (d = n− 1)

In this section we focus our attention on the special case d = n − 1. As it will
come out, this leads to the classical Radon transform. Different situations can
only appear, if we remove some of our conditions on the group action, or if we
completely change the setting and allow for E sets of planes which do not admit
a transitive group action. For the latter possibility the reader is referred to [2].

Let H be a Lie group, ρ a representation of H on a (finite-dimensional)
vector space V . The contragredient representation will be denoted by ρ∗ . We
fix a linear subspace E ⊆ V of codimension 1 and denote by E⊥ ⊆ V ∗ its (one-
dimensional) orthogonal complement. We make the following assumptions:
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1. ρ(H) consists of unimodular automorphisms of V , and the same holds for
ρ(HE) (the isotropy subgroup of E ) in the case of E .

2. The map from H×E⊥ into V ∗ , (h, w) 7→ ρ∗(h)w , is a surjective submersion.6

We put h · u := ρ(h)u, h∗ · w := ρ∗(h)w . Let ‖ · ‖ be a norm on V ∗ , SV ∗
the sphere of radius 1. The group H acts transitively on SV ∗ :

h · w :=
h∗ · w
‖h∗ · w‖ .

Let w0 ∈ SV ∗ ∩ E⊥ , HS
w0

the isotropy subgroup of w0 . Since HE operates by

unimodular automorphisms on E⊥ , we obtain
o

HE⊆ HS
w0
⊆ HE (

o

HE denoting
the connected component of HE ) and HS

w0
= Hw0 (the isotropy subgroup in the

contragredient action). The transitivity of the action on SV ∗ implies HS
ξ = Hξ for

every ξ ∈ SV ∗ . Thus, H/Hξ
∼= SV ∗ for ξ ∈ V ∗ \ {0}. The orbit ρ∗(H)ξ is bounded

because H/Hξ is compact. Since this holds for every ξ , ρ∗(H) itself is bounded
(in the vector space L(V ∗) of all endomorphisms of V ∗ ). Therefore, det[ρ∗(H)]
is a bounded subgroup of R∗ , so det[ρ∗(H)] ⊆ {−1, 1}. This relation also holds
for the closure ρ∗(H) in L(V ∗). Thus, ρ∗(H) is a compact subgroup of GL(V ∗)
and hence leaves a positive definite inner product invariant. With the help of it,
V ∗ can be identified with V ∗∗ ∼= V , and we have ρ∗ = ρ. Eventually, V ∼= V ∗ is
identified with Rn with the help of an orthonormal basis. We obtain:

ρ(H) is a group of orthogonal matrices and operates transitively on
the sphere Sn−1 . It holds ρ = ρ∗ , and E ⊆ Rn is a subspace of
codimension 1.

This is the situation in the classical case.

As for the range of S(V ) under f 7→ f̂ , it is completely characterized by
the moment conditions (see [9, page 100]):

Proposition 7.1. In the case d = n− 1 we have: S(V )∧ = SM (E).

Proof. Since ξ ∈ h · E⊥ , ξ 6= 0, completely determines ḣ = hHE (hHE ⇔
h · E = ξ⊥), we deduce at once the result of the first step in section 5. The
differential operators are not needed for the second and third step.7

8. The range of C∞c (V )

The characterization of the range of C∞c (V ), the set of C∞ -functions with compact
support, under the d-plane transform will be done with the help of a modified
version of the Paley-Wiener theorem, due to Helgason [8], which is recalled first.
Condition (ii) in the beginning of section 5 can be dropped throughout this
section.

Let DA(Rn) denote the class of C∞ -functions on Rn with support in
{x| |x| ≤ A}.

6Notice that condition (ii) in the beginning of section 5 here degenerates.
7Obviously, we have here dν(Y ) = 0 for Y ∈ K1(h×s V ).
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Theorem . The Fourier transform f 7→ f̃ maps DA(Rn) onto the set of
functions f̃(λω) = ϕ(λ, ω) ∈ C∞(R× Sn−1) satisfying:

(i) For each ω , the function λ 7→ ϕ(λ, ω) extends to a holomorphic function on
C such that

sup
λ,ω
|ϕ(λ, ω)λNe−A|Imλ|| <∞

for each integer N ∈ Z+ .

(ii) For each k ∈ Z+ and every vector a = (a1, . . . , an) ∈ Cn satisfying
∑n
i=1 a

2
i =

0 the function

λ 7→ λ−k
∫

Sn−1
ϕ(λ, ω)〈a, ω〉kdω

is even and holomorphic on C.

For a proof we refer to [9, page 23ff].

Before we state the main theorem, we need some facts about spherical
harmonics.

Proposition . The eigenspaces of the Laplacian on Sn−1 are of the form

Ek = span{fa,k|fa,k(ω) = 〈a, ω〉k, ω ∈ Sn−1} ,

where a = (a1, . . . , an) ∈ Cn satisfies
∑n
i=1 a

2
i = 0, and k ∈ Z+ . The subspaces

Ek are pairwise orthogonal in L2(Sn−1). If Pk denotes the set of restrictions on
Sn−1 of the homogeneous polynomials of degree k on Rn , it holds

Pk = Ek + Ek−2 + . . .+ Ek−2m , m = [
k

2
] .

For a proof see [9, page 17ff].

Let 〈·, ·〉 be a (positive definite) inner product on V such that E and U
are orthogonal. SV stands for the sphere of radius 1 in the induced norm. For
h ∈ H we put

τ(h) := ‖ρ(h−1)‖ ,
ρ being the representation of H on V and ‖ · ‖ the operator norm. The map τ
is continuous. For u ∈ U , ‖u‖ ≥ τ(h), h · (u+E) has at most one point with SV
in common. If suppf ⊆ {x ∈ V | ‖x‖ ≤ A}, we therefore have f̂(ḣ, h · u) = 0 for
‖u‖ ≥ Aτ(h).

Theorem 8.1. ϕ ∈ SM (E) is the d-plane transform of a C∞ -function f of
compact support on V iff there exists a continuous function c on H such that for
every h ∈ H ϕ(ḣ, h · u) = 0 for ‖u‖ ≥ c(h).

Proof. We only have to show that the condition is sufficient. We calculate:

ϕ̃(ḣ, ξ) =
∫

U
ϕ(ḣ, h · u)e−i〈h·u,ξ〉du =

∫

U
ϕ(ḣ, h · u)

∞∑

m=0

(−i)m
m!
〈h · u, ξ〉mdu
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=
∞∑

m=0

(−i)m
m!

∫

U
ϕ(ḣ, h · u)〈h · u, ξ〉mdu

(the region of integration is bounded)

=
∞∑

m=0

(−i)m
m!

Pm(ξ)

by the moment conditions. The last series converges for all ξ ∈ h∗ ·E⊥ , and, since
it is a power series, for all ξ ∈ V ∗ . It defines an analytic function F .

The spaces V and V ∗ can be identified with the help of the inner product.
We choose an orthonormal basis and identify both spaces with Rn .

F (ξ) =
∞∑

m=0

(−i)m
m!

Pm(ξ)

is then an analytic function on Rn and can be extended to a holomorphic function
on Cn by the above power series.

Let F (λω) =: ψ(λ, ω) ∈ C∞(R× Sn−1). We show that ψ satisfies the two
conditions of the theorem in the beginning.

Ad (i): It is enough to verify the relation for even exponents N . We
calculate (ω = h∗ · w ∈ Sn−1 , w ∈ U ):

|ψ(λ, ω)λ2N | = |ϕ̃(ḣ, λω)λ2N | = |
∫

U
ϕ(ḣ, h · u)λ2Ne−i〈h·u,λh

∗·w〉du|

= |
∫

U
ϕ(ḣ, h · u)λ2Ne−iλ〈u,w〉du|

= |
∫

U
ϕ(ḣ, h · u)(−

n−d∑

k=1

∂2

∂u2
k

)Ne−iλ〈u,w〉 · ‖w‖−2Ndu|

(taking such an orthonormal basis that the first n− d vectors belong to U )

= ‖w‖−2N |
∫

U
(−

n−d∑

k=1

∂2

∂u2
k

)Nϕ(ḣ, h · u)e−iλ〈u,w〉du|

≤ ‖w‖−2N
∫

U
|(
n−d∑

k=1

∂2

∂u2
k

)Nϕ(ḣ, h · u)|du · ec(h)‖w‖|Imλ| .

For τ ∗(h) := ‖ρ∗(h−1)‖ we have: 1
τ∗(h−1)

≤ ‖w‖ ≤ τ ∗(h), so

|ψ(λ, ω)λ2N | ≤ τ ∗(h−1)2N
∫

U
|(
n−d∑

k=1

∂2

∂u2
k

)Nϕ(ḣ, h · u)|du · ec(h)τ∗(h)|Imλ| .

Let K ⊆ H be a compact subset with the property of lemma 5.4. Putting

CN := sup
h∈K

τ ∗(h−1)2N
∫

U
|(
n−d∑

k=1

∂2

∂u2
k

)Nϕ(ḣ, h · u)|du , A := sup
h∈K

c(h)τ ∗(h)

we obtain the desired relation

|ψ(λ, ω)λ2N | ≤ CNe
A|Imλ| .
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Ad (ii): Since
∑∞
m=0

(−i)m
m!

Pm(ξ) converges uniformly on compact sets, we
have: ∫

Sn−1
ψ(λ, ω)〈a, ω〉kdω =

∫

Sn−1
F (λω)〈a, ω〉kdω

=
∫

Sn−1

∞∑

m=0

(−i)m
m!

Pm(λω)〈a, ω〉kdω

=
∞∑

m=0

∫

Sn−1

(−i)m
m!

Pm(λω)〈a, ω〉kdω =
∞∑

m=0

(−iλ)m

m!

∫

Sn−1
Pm(ω)〈a, ω〉kdω .

The proposition above implies that
∫
Sn−1 Pm(ω)〈a, ω〉kdω vanishes, unless m−k ∈

Z+ . This verifies (ii) .

Concluding, there exists a function f ∈ C∞c (V ) such that

f̃(λω) = ψ(λ, ω) = F (λω) = ϕ̃(ḣ, λω) , ω ∈ h∗ · U .

Since on the other hand f̃(λω) =
˜̂
f(ḣ, λω), we obtain ϕ = f̂ by the inverse Fourier

transform.

Remark . The application of the modified version of the Paley-Wiener theorem
in the above proof shows that the support of f is contained in the ball of radius
A, which depends on the function c(h) and the compact set K . In the classical
case the theorem reduces to theorem 2.10 in [9, page 109], since H is compact.
Furthermore, for functions f of the Schwartz class, we obtain Helgason’s support
theorem [9, page 105] by taking c(h) ≡ A.

9. Examples

1. We begin by a counterexample, which shows that condition (i) in the
beginning of section 5 cannot be weakened substantially.

Let

H =








1 a c
0 1 b
0 0 1




∣∣∣∣∣∣∣
a, b, c ∈ R




,

V = R3, E = 〈(0, 0, 1)〉, U = 〈(1, 0, 0), (0, 1, 0)〉 ∼= E⊥ via the standard scalar
product. The assumptions we have made in the general case are all satisfied except
of (i), section 5. The vector (0, 0, 1) is not contained in the image (which is dense
in R3 ) of the mapping

(a, b, c, w1, w2) 7−→




1 a c
0 1 b
0 0 1




∗

·



w1

w2

0


 =




w1

−aw1 + w2

(ab− c)w1 − bw2


 .

Let g ∈ C∞c (R), g nowhere zero on [−1, 1], and define F : R3 → R by

F (ξ1, ξ2, ξ3) := g(ξ2
1 + ξ2

2 + ξ2
3) · g(

1

ξ2
1 + ξ2

2 + ξ2
3

) · 1

ξ2
1 + ξ2

2

.
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Then ψ(ḣ, ξ) := F (ξ), ξ ∈ h∗ · E⊥ , belongs to S(E∗) and hence there exists ϕ ∈
S(E) such that ϕ̃ = ψ . Due to the construction of ψ it holds ϕ ∈ SD(E)∩SM(E).
However, there is no f ∈ S(R3) such that f̂ = ϕ, because otherwise we would
have f̃ = F , which is a contradiction, since F does not extend to a C∞ -function
on R3 .

2. The action of H = SO(n) on V = Rn (by matrix multiplication) leads
to the classical d-plane transform. For the range of S(Rn) the reader is referred
to [13] and [6].

3. H = SO(p, n − p) operates on V = Rn by matrix multiplication.
We introduce the following basis on the Lie algebra so(p, n− p) (Eij denotes the
matrix (δikδjl)k,l ):

Xij := Eij − Eji for 1 ≤ i < j ≤ p , p + 1 ≤ i < j ≤ n ,
Yij := Eij + Eji for 1 ≤ i ≤ p , p+ 1 ≤ j ≤ n .

We agree to write Xji for −Xij and Yji for Yij (in the above range of the indices).
Z1, . . . , Zn will denote the standard basis of Rn .

The Lie algebra so(n) ×s Rn is isomorphic to the Lie algebra of all (n +
1)× (n+ 1)-matrices of the form

(
T Z
0 0

)
, T ∈ so(n) , Z ∈ Rn .

Similarly, so(p, n−p)×sRn is isomorphic to the Lie algebra of the (n+1)×(n+1)-
matrices of the form 


T1 X U1

XT T2 U2

0 0 0


 ,

T1 ∈ so(p), T2 ∈ so(n− p), U1 ∈ Rp , U2 ∈ Rn−p and X an arbitrary p× (n− p)-
matrix. The complexification of so(n)×sRn is isomorphic to the complexification
of so(p, n− p)×s Rn by the mapping




X1 X2 U1

−XT
2 X3 U2

0 0 0


 7−→




X1 iX2 U1

iXT
2 X3 −iU2

0 0 0


 ,

where X1 ∈ so(p,C), X3 ∈ so(n − p,C), U1 ∈ Cp , U2 ∈ Cn−p and X2 is an
arbitrary p× (n − p)-matrix. With the help of this isomorphism we obtain from
[14, page 62ff] a basis Vijl , 1 ≤ i < j < l ≤ n, of K1(so(p, n− p)×s Rn):

Vijl =





XijZl +XjlZi +XliZj for l ≤ p or i ≥ p+ 1
XijZl − YjlZi + YliZj for j ≤ p < l
YijZl +XjlZi − YliZj for i ≤ p < j

.

The dual space of V = Rn will be identified with Rn via

B(x, y) :=
p∑

i=1

xiyi −
n∑

i=p+1

xiyi .
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Since H leaves B invariant, ρ = ρ∗ .

Let E := 〈Zk, Zk+1, . . . , Zk+d−1〉, 1 < k ≤ k + d − 1 < n, that is,
1 < k < n + 1 − d (in particular, d < n − 1), U := E⊥ . Conditions (i) and
(ii) in the beginning of section 5 are satisfied.

We follow [13] and introduce a system of coordinates on a neighborhood
of E in E . Let G(d, n) denote the set of d-planes in Rn , Gd,n ⊆ G(d, n)
the subset of d-dimensional subspaces. For every multiindex j = (j1, . . . , jd),
1 ≤ j1 < . . . < jd ≤ n, let

Uj :=

{
σ ∈ Gd,n

∣∣∣∣∣
the orthogonal projection of σ on the subspace

spanned by Zj1, . . . , Zjd is bijective

}
.

Let 1 ≤ jd+1 < . . . < jn ≤ n be such that {jd+1, . . . , jn} ∪ {j1, . . . , jd} =
{1, . . . , n}. Let σ ∈ Uj , vjα ∈ σ be the inverse image of Zjα under the orthogonal
projection onto span{Zj1, . . . , Zjd} (1 ≤ α ≤ d). It holds:

Vjα = Zjα +
n∑

κ=d+1

σjκjαZjκ

with real coefficients σjκjα . In what follows, the range of α, κ will always be
[1, d], [d+ 1, n] respectively. We define the n × d-matrix Σ by taking vj1, . . . , vjd
for its columns (expressed in the basis Z1, . . . , Zn ). The open set Uj can now be
parametrized by Σ, that is, by (σjκjα)κ,α . Since ∪jUj = Gd,n , we obtain in this
way an atlas for Gd,n .

The space G(d, n) is a vector bundle over Gd,n . Let π : G(d, n) → Gd,n

denote the projection. We take ξ ∈ G(d, n) and put σ := π(ξ) ∈ Gd,n . If
σ ∈ Uj , {y} := ξ ∩ 〈Zjd+1

, . . . , Zjn〉, it holds: ξ = y + σ . We agree to write
y =

∑n
κ=d+1 yjκZjκ and parametrize π−1(Uj) by the vector

( (σjκjα)κ,α, yjd+1
, . . . , yjn) ∈ Rd(n−d) × Rn−d . (16)

However, not every d-plane in π−1(Uj) can be found in E . In fact, π(E) consists
precisely of the subspaces σ , where the signature of B equals its signature on E .
We conclude that E ⊆ G(d, n) is open, so we can restrict the above parametrization
to π−1(Uj) ∩ E (and obtain in this way an atlas of E ).

The action of SO(p, n− p) on Rn possesses property (G) of section 6, and
consequently the differential operators dν(Vijl) characterize the range of S(Rn).
However, the computation of these operators in the coordinates (16) is very
lengthy and tedious (see [15, page 36-38]). Their second order terms are linear
combinations of

Tjκjαjλ :=
∂2

∂σjκjα∂yjλ
− ∂2

∂σjλjα∂yjκ
,

their first order ones consist of derivatives in the y -coordinates, and the coefficients
of all terms only depend on σjκjα . Nevertheless, we can prove the following result,
which is analogous to that of Richter for the classical case [14, page 73ff]:
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Proposition 9.1. A function ϕ ∈ S(E) satisfies dν(Vijl)ϕ = 0 for 1 ≤ i < j <
l ≤ n iff for every multiindex j = (j1, . . . , jd) as above, ϕ0 satisfies Tjκjαjλϕ0 = 0
for 1 ≤ α ≤ d, d+ 1 ≤ κ, λ ≤ n on π−1(Uj)∩E , where ϕ0 is a modified function,
defined with the help of the n× d-matrix Σ:

ϕ0(Σ, y) := | det ΣT Ip,n−pΣ|−
1
2ϕ(Σ, y)

(Ip,n−p denoting the matrix of B in the basis Z1, . . . , Zn ).

Proof. — The condition is necessary: If ϕ ∈ SD(E), there exists f ∈ S(Rn)
such that f̂ = ϕ. By looking at the integration measure on the various d-planes
f is integrated on, we conclude that

ϕ0(Σ, y) =
∫

Rd
f(Σx+ y)dx1 . . . dxd , x = (x1, . . . , xd)

T .

The relations Tjκjαjλϕ0 = 0 now follow immediately.

— The condition is sufficient: We compute the Fourier transform of ϕ
(A ∈ SO(p, n− p), u ∈ U ):

ϕ̃(A · E,Au) =
∫

U
ϕ(A · E,Au′)e−i〈Au,Au′〉du′ =

∫

U
ϕ(Σ, y)e−i〈Au,y〉du′

in the notation of (16),

= | det ΣT Ip,n−pΣ|−
1
2

∫

Rn−d
ϕ(Σ, y)e−i〈Au,y〉dyjd+1

. . . dyjn

=
∫

Rn−d
ϕ0(Σ, y)e−i〈Au,y〉dyjd+1

. . . dyjn .

In a completely analogous way to that of Richter [13, page 252-254] it can now
be shown that ϕ̃(A · E,Au) only depends on Au, so there exists a function
F ∈ C∞(Rn \ {0}) such that ϕ̃(A · E,Au) = F (Au). The proof now follows by
remark 2 to lemma 5.2 and the subsequent computation of the Fourier transforms.

4. The group of orthogonal matrices

H =








x1 −x2 −x3 −x4

x2 x1 x4 −x3

x3 −x4 x1 x2

x4 x3 −x2 x1




∣∣∣∣∣∣∣∣∣
x2

1 + x2
2 + x2

3 + x2
4 = 1




< SO(4)

operates on V = R4 , which is identified with (R4)∗ via the canonical scalar
product. We have ρ = ρ∗ .

The choice E = 〈Z1〉 (notation as above) shows how indispensable as-
sumption (ii) , section 5, is for our considerations. The other assumptions are
all satisfied. For ξ 6= 0 we have Hξ = {e}. Thus, there should be no need of
differential operators. But since every point ξ lies on more than one hyperplanes
of the form h ·E⊥ , the moment conditions fail to characterize the range of S(R4).
A counterexample can be constructed as in [6, page 605].
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Now let E = 〈Z1, Z2〉. All assumptions are satisfied. The action does not
have property (G) of section 6. We have instead the extreme situation where two
planes of the form h · E⊥ either coincide or are complementary. Here we cannot
dispense with the moment conditions. Otherwise, S(R4)∧ = S(E) would hold, but
this is contradicted by the following counterexample:

Let g ∈ C∞c (R4), g(0) 6= 0. Let (x1, x2, x3, x4) denote the matrix in
H , which has this vector in its first column. x2

3 + x2
4 is constant on the coset

(x1, x2, x3, x4)HE . For ξ ∈ (x1, x2, x3, x4) · E⊥ , ξ 6= 0, it holds:

x2
3 + x2

4 =
ξ2

1 + ξ2
2

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4

.

Now take ϕ ∈ S(E) such that

ϕ̃( (x1, x2, x3, x4)HE, ξ) = (x2
3 + x2

4)g(ξ) =
(ξ2

1 + ξ2
2)g(ξ)

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4

=: F (ξ)

for ξ ∈ (x1, x2, x3, x4) · E⊥ , ξ 6= 0. Obviously, ϕ is not an element of S(V )∧ ,
because F cannot be continuously extended to 0.

Next, H is being enriched by the central matrices of the form




cos t − sin t
sin t cos t

0

0
cos t − sin t
sin t cos t


 . (17)

We study the interesting case E = 〈Z2, Z3〉. The matrices

X1 =




0 1
−1 0

0


 , X2 =




0
0 1
−1 0


 ,

Y =




0
1 0
0 1

−1 0
0 −1

0


 , Z =




0
0 1
−1 0

0 1
−1 0

0




form a basis of the Lie algebra of H . Now K1(h×s R4) is spanned by

P = X1(Z2
3 + Z2

4) +X2(Z2
1 + Z2

2) + Y (Z1Z4 − Z2Z3)− Z(Z1Z3 + Z2Z4) .

For w = w1Z1 +w2Z4 ∈ E⊥ \ {0} we have: hw = 〈w2
2X1 +w2

1X2 +w1w2Y 〉.
Therefore, every 2-plane h · E⊥ through w has the form exp[t(w2

2X1 + w2
1X2 +

w1w2Y )] · E⊥ , t ∈ R. Since w̄ := w1Z2 − w2Z3 is orthogonal to all these planes
(hw̄ = hw and w̄ ⊥ E⊥ ), the action does not have property (G). Nevertheless,
we can still dispense with the moment conditions. The latter are satisfied if the
functions Fm in (15) are polynomials. So we proceed as follows.

Let F ∈ C∞(R4 \ {0}) have the property that its restriction to every plane
h · E⊥ is a homogeneous polynomial of degree m. We shall show that F is a
homogeneous polynomial of degree m.
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At first, we establish this for the hyperplane R3 × {0} in R4 .

Let (x1, x2, x3, x4, t) denote the matrix (x1, x2, x3, x4) multiplied by the
matrix (17). Then (x1, x2, x3, x4, t) · E⊥ lies in R3 × {0} iff

x3 sin t+ x4 cos t = x1 cos t + x2 sin t = 0 .

In that case,

h · w =
1

cos t




−w1x2 sin 2t+ w2x3 sin 2t
w1x2 cos 2t− w2x3 cos 2t

w1x3 + w2x2

0




for cos t 6= 0 and h · E⊥ = 〈Z2, Z3〉 for cos t = 0. We obtain all planes through
(0, 0, 1) in R3 . Since F , restricted to each of them, is a homogeneous polynomial,
we can write

F (ξ1, ξ2, ξ3, 0) = A0(ξ1, ξ2) + A1(ξ1, ξ2)ξ3 + . . .+ Am(ξ1, ξ2)ξm3 .

If we write down this equation for m + 1 different values of ξ3 6= 0, we obtain
a linear system in A0, . . . , Am . By Cramer’s rule we deduce that the Ai ’s are
C∞ -functions and, therefore, so is F |R3×{0} . Now since F |R3×{0} is homogeneous,
it is a polynomial. We denote it by P0 .

If F (ξ1, ξ2, ξ3, ξ4) 6≡ P0(ξ1, ξ2, ξ3), let 0 < k0 ≤ m be the highest possible
exponent, such that

F1(ξ1, ξ2, ξ3, ξ4) :=
F (ξ1, ξ2, ξ3, ξ4)− P0(ξ1, ξ2, ξ3)

ξk0
4

is a C∞ -function on R4 \ {0}. This function is a homogeneous polynomial of the
smaller degree m − k0 on every plane h · E⊥ that is not contained in R3 × {0}.
This means that every expression of the form

(
∂

∂w1
)m−k0+1−j(

∂

∂w2
)jF1(h · w)

vanishes for h = (x1, x2, x3, x4, t), (x3 sin t+x4 cos t, x1 cos t+x2 sin t) 6= (0, 0). By
continuity, it vanishes for every h. Consequently, F1 is a homogeneous polynomial
on every plane h · E⊥ ⊆ R3 × {0} too.

We repeat the argument with F1 instead of F , define a polynomial P1 , a
number k1 and a function F2 with which we continue in the same manner. After
finitely many steps

(P0, k0)→ (P1, k1)→ . . .→ (Pn, kn)

we obtain a function Fn+1 ∈ C∞(R4 \ {0}), constant on every plane h ·E⊥ . Since
all planes h ·E⊥ ∈ R3×{0} contain (0, 0, 1), Fn+1 is constant on R3×{0}. Since
every other plane h ·E⊥ meets R3 × {0}, it is globally constant. We obtain:

F (ξ1, ξ2, ξ3, ξ4) = Fn+1ξ
∑n

i=0
ki

4 +
n∑

j=0

Pn−j(ξ1, ξ2, ξ3)ξ
∑n−j−1

i=0
ki

4

(
∑n
i=0 ki = m).
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