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On classification of metabelian Lie algebras

L. Yu. Galitski, D. A. Timashev

Abstract. We classify metabelian Lie algebras with successive dimensions

of quotients of the lower central series (m,n)=(5,5) and (6,3) . The problem is

reduced to describing orbits of the linear group
∧2

SLm⊗SLn , the latter being

a θ -group in both cases. The results obtained in the paper allow to complete

the classification of metabelian Lie algebras of dimension up to 9 .

Introduction

The classification of finite-dimensional Lie algebras divides in three parts: (1) clas-
sification of nilpotent Lie algebras; (2) description of solvable Lie algebras with
given nilradical; (3) description of Lie algebras with given radical. The third
problem reduces to the description of semisimple subalgebras in the algebra of
derivations of a given solvable algebra [8]. The second problem reduces to the
description of orbits of certain unipotent linear groups [9]. The first problem is
most complicated. Just recall that the classification of all Lie algebras over C is
obtained in dimension up to 6, and nilpotent complex Lie algebras are classified
only in dimension up to 7.

Two-step nilpotent, or metabelian, Lie algebras form the first non-trivial
subclass of nilpotent algebras. However even the classification of metabelian
algebras is a rather complicated problem. The solution in dimension up to 7
is given in [4]. In greater dimensions, only partial results are obtained. In this
paper, we introduce an invariant-theoretic approach to this problem, which allows
to complete the classification of complex metabelian Lie algebras in dimension up
to 9.

Let m,n be the dimensions of successive quotients of the lower central
series for a metabelian Lie algebra. We call the pair (m,n) the signature of
the metabelian Lie algebra. The classification of metabelian Lie algebras with
given signature reduces to the following problem of linear algebra: classify the
orbits of GLm(C) × GLn(C) acting naturally on

∧2Cm ⊗ Cn . Moreover, the
solution of the latter problem yields the classification of all metabelian Lie algebras
with signature (p, q), p ≤ m, q ≤ n. The problem of classifying the orbits of
the linear group

∧2GLm(C) ⊗ GLn(C) belongs to Invariant Theory and may be
attacked by invariant-theoretic methods. It is more convenient to consider the
respective unimodular group

∧2SLm(C) ⊗ SLn(C), since
∧2GLm(C) ⊗ GLn(C)

has no polynomial invariants, and homotheties are easily controlled.

An inspection of tables in [5] yields the list of pairs (m,n) such that the
group

∧2SLm(C) ⊗ SLn(C) is visible: (5, 2), (6, 2), (7, 2), (8, 2), (5, 3), (6, 3),
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(5, 4), (5, 5), (4, n). (A linear algebraic group is called visible if each level variety
for the polynomial invariants consists of finitely many orbits.) The description of
orbits for the group

∧2SLm(C)⊗SL2(C), or classes of two-dimensional subspaces
of skew-symmetric matrices, can be obtained in terms of the Weierstraß–Kronecker
theory of pencils, see sect. 1 and references therein. Here we classify the orbits of∧2SLm(C) ⊗ SLn(C) for (m,n) = (5, 5) and (6, 3). This yields the solution in
all remaining visible cases. If a group is not visible, then there arise “conditional”
continuous invariants on some “bad” level varieties of invariant polynomials, and
the classification of orbits is much more complicated if at all possible.

Our linear groups in the cases (m,n) = (5, 5) and (6, 3) are not only
visible, but they are θ -groups, i. e., they integrate the adjoint action of the degree-
zero component of a periodically graded semisimple Lie algebra on its degree-one
component. The invariant theory of θ -groups is very nice. It resembles the theory
of the adjoint representation in many features. We use the theory of θ -groups
developed in [13] and [14] (see sect. 2) in order to describe the invariants and
classify the orbits of our linear groups.

We obtain the following results. There are three families of metabelian
complex Lie algebras of signature (5, 5). The first one depends on one continuous
parameter. The second family contains 7 algebras. The third family consists of
those algebras, whose structure tensor can be contracted to zero by unimodular
change of coordinates. It contains 43 algebras. Moreover, there are 38 algebras of
signature (5, 4), 17 of (5, 3), 5 of (5, 2), 2 of (5, 1), 2 of (4, 5), 3 of (4, 4), 5 of
(4, 3), 3 of (4, 2), 2 of (4, 1), 1 of (3, 3), 1 of (3, 2), 1 of (3, 1), and 1 of (2, 1).
This reproduces the results of [4]. For the signature (6, 3) we have 7 families. The
first one depends on 2 continuous parameters. The second and third families
depend on one continuous and one arithmetic parameter. The fourth family
contains 6 algebras, the fifth one contains 6 algebras, and the sixth family contains
15 algebras. The seventh family consists of those algebras, whose structure tensor
can be contracted to zero by unimodular change of coordinates. It contains
61 algebras. Moreover, there are 11 algebras of signature (6, 2), and 3 of (6, 1).
See sect. 3–4 and the tables therein.

The paper is organized as follows. In section 1 we recall the general theory of
metabelian algebras from [4], whereas section 2 contains a brief review of θ -groups.
In section 3 we study the linear θ -group

∧2SL5(C)⊗SL5(C), and section 4 deals
with

∧2SL6(C)⊗ SL3(C).

Acknowledgments. Both authors would like to express their gratitude to Profes-
sor E. B. Vinberg, whose encouraging help made possible to carry on the work. The
second author thanks CRDF (grant RM1–206) and RFBR (grant 98–01–00598) for
the support.

1. Metabelian Lie algebras

In this section we recall basic facts on metabelian Lie algebras and reduce their
classification to a certain problem of linear algebra. The paper [4] will be our basic
reference.
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1.1. General definitions. All Lie algebras, algebraic varieties and groups
are considered over C. However all definitions and results remain valid over an
arbitrary algebraically closed field of characteristic zero.

Definition 1.1. A finite-dimensional Lie algebra L is called metabelian if
[L, [L, L]] = 0. Its signature is a pair (m,n), where m = dimL/[L, L], n =
dim[L, L].

A metabelian Lie algebra structure on L is completely determined by the
commutator map

∧2U → V , where V = [L, L] and U is its complement in L.
Conversely, let U, V be two vector spaces of dimensions m,n. Then each skew-
symmetric bilinear surjective map b :

∧2U → V determines a metabelian Lie
algebra structure on L = U ⊕ V such that V = [L, L]. Two such structures
are isomorphic iff the respective bilinear maps differ by a transformation from the
group GL(U)×GL(V ) acting naturally on the space

∧2U∗⊗ V of all such maps.

Surjective maps, or tensors of full rank, form a Zariski open GL(U) ×
GL(V )-stable subset in

∧2U∗ ⊗ V . Thus the classification of metabelian Lie
algebras of signature (m,n) is equivalent to the classification of orbits in an open
subset of

∧2U∗ ⊗ V stable under the action of GL(U) × GL(V ). Moreover,
if L0 = U0 ⊕ V0 is a metabelian algebra of signature (p, q), p ≤ m, q ≤ n,
then its structure map is an element of

∧2U∗0 ⊗ V0 , and embeddings U∗0 ↪→ U∗ ,
V0 ↪→ V induce an embedding

∧2U∗0⊗V0 ↪→
∧2U∗⊗V such that GL(U)×GL(V )-

orbits intersect the subspace in GL(U0)×GL(V0)-orbits. Now it is clear that the
description of GL(U) × GL(V )-orbits on

∧2U∗ ⊗ V is the same thing as the
classification of metabelian Lie algebras of signature (p, q), p ≤ m, q ≤ n. This is
the problem we are interested in.

Remark 1.2. Each tensor of full rank in
∧2U∗0 ⊗V0 , i. e., such that its contrac-

tions with all bivectors from
∧2U0 generate V0 , represents not only a metabelian

Lie algebra of signature (p, q) but also a series of metabelian algebras of signa-
ture (l, q), p < l ≤ m that are obtained by adding a (l − p)-dimensional central
subalgebra.

Next we describe the automorphism group of a metabelian Lie algebra. Let
L = U⊕V be a metabelian algebra defined by a structure map b :

∧2U → V . Then
AutL is a semidirect product of the subgroup of automorphisms normalizing U ,
which is exactly the stabilizer G(b) of b in GL(U) × GL(V ), and the normal
unipotent subgroup of inner automorphisms (acting trivially on V and L/V ),
which is isomorphic to the vector group HomC(U, V ). The identity component
G(b)0 of G(b) is a quasi-direct product of C∗ , or (C∗)2 if the SL(U) × SL(V )-
orbit of b is conical, and S(b)0 , the identity component of the stabilizer S(b) of b
in SL(U) × SL(V ). The subgroups S(b)0 are computed (in a sense) in sect. 3–4
for all orbits in

∧2U∗ ⊗ V whenever (m,n) = (5, 5) or (6, 3).

Furthermore, suppose a tensor b belongs to a subspace
∧2U∗0 ⊗ V0 of∧2U∗ ⊗ V , and U∗0 , V0 are minimal subspaces with this property. This means

that U∗0 (resp. V0 ) is generated by all contractions of b with a vector from U and
a covector from V ∗ (resp. a bivector from

∧2U ), or equivalently, that b defines a
metabelian algebra structure on L0 = U0 ⊕ V0 such that Z(L0) = [L0, L0] = V0 .



128 Galitski, Timashev

Then G(b) is a semidirect product of the stabilizer G0(b) of b in GL(U0)×GL(V0),
and the subgroup of transformations from GL(U)×GL(V ) acting trivially on U ∗0
and V0 . Thus we may compute the dimension of G0(b) (or AutL0 ) and the type
of its Levi part if we know these data for G(b), and conversely.

1.2. Duality. Another interesting thing is a natural duality on metabelian Lie
algebras, cf. [4, §3]. To each surjective map b :

∧2U → V we assign the projection
map b∨ :

∧2U∗ → ∧2U∗/(Ker b)⊥ . (Here ⊥ denotes annihilator in the dual
space.) This is a bijection between (isomorphism classes of) metabelian algebras
of signature (m,n), and those of signature

(
m,
(
m
2

)
− n
)

. Therefore it suffices to
classify the algebras in one of the two cases, say, for 2n ≤

(
m
2

)
.

1.3. Classification in simple cases. First we consider metabelian Lie alge-
bras of signature (m, 1). It is clear from the above discussion that to classify them
is the same thing as to classify skew-symmetric bilinear forms on U . These forms
are classified by their rank 2r . It now follows that each metabelian Lie algebra
of signature (m, 1) is isomorphic to one of L = Hr(C) ⊕ Cm−2r , where Hr(C) is
the (2r+ 1)-dimensional Heisenberg algebra determined by commutator relations
[ei, er+i] = e2r+1, 1 ≤ i ≤ r .

Now we consider the classification of metabelian algebras of signature
(m, 2). This problem reduces to classifying pairs or, more precisely, two-dimen-
sional subspaces of skew-symmetric bilinear forms on U . This problem can be
solved in general with the aid of the Weierstraß–Kronecker theory of pencils, see
[4, §6] and [3, Chap. 12].

Consider a pencil of skew-symmetric (m×m)-matrices xA+ yB (x and y
are indeterminates). We say that a pencil xA′ + yB′ is equivalent (congruent) to
xA+yB if xA′+yB′ = C(xA+yB)C ′ , where C,C ′ are non-degenerate complex
matrices (respectively, xA′ + yB′ = C(xA + yB)CT for some non-degenerate
complex matrix C ).

Definition 1.3. Invariant factors of the pencil xA+ yB are the homogeneous
polynomials di(x,y) = ∆i

∆i−1
, i = 1, . . . , r , where ∆i(x,y) is the g. c. d. of all (i×i)-

minors of xA+yB , and r = rk(xA+yB). Each invariant factor decomposes into
a product of powers of prime (linear) polynomials in x,y . These prime power
factors are called elementary divisors of the pencil.

Minimal indices δ1, . . . , δm−r of the pencil are defined by induction. Con-
sider polynomial solutions of a linear system (xA+yB)X = 0. Each m-column X
with polynomial entries satisfying the above equation is the sum of homogeneous
components satisfying the equation, too. (A column X is said to be homogeneous
if all its entries are homogeneous polynomials in x,y of the same degree denoted
by degX .)

Suppose we have chosen homogeneous solutions Xi and defined the minimal
indices δi = degXi for i < k . Among all homogeneous solutions that are linearly
independent of Xi (i < k), choose one, say Xk , of the lowest degree and set
δk = degXk . Clearly, we have 0 ≤ δ1 ≤ . . . ≤ δm−r . It is easy to show
that the sequence δ1, . . . , δm−r does not depend on the choice of the fundamental
solutions Xi .
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Theorem 1.4. [4, §6], [3, Chap. 12] For two skew-symmetric pencils, the follow-
ing assertions are equivalent:

1. The pencils are congruent.

2. The pencils are equivalent.

3. Their sets of elementary divisors and minimal indices coincide.

For a skew-symmetric pencil, elementary divisors occur with even multi-
plicities. One can write out a canonical form for a skew-symmetric pencil [4, §6],
which generalizes both the canonical form for one skew-symmetric matrix and
Jordan normal form.

If we are interested rather in classifying two-dimensional subspaces than
pairs of skew-symmetric matrices, then we should allow linear substitutions of
x,y . Minimal indices do not change under a linear substitution of x,y and
elementary divisors transform in accordance with the change of variables. One
can find a “canonical set” in each equivalence class of sets of elementary divisors
by transforming three given linear forms to x, y, x+y . Thus we obtain a canonical
form for a two-dimensional subspace of skew-symmetric matrices or skew bilinear
forms. See [4] for precise formulations.

1.4. Invariant-theoretic approach. Now we return to our problem in its
general setting: classify the orbits for the natural action GL(U)×GL(V ) :

∧2U∗⊗
V . It will be more convenient for us to consider the equivalent action GL(U) ×
GL(V ) :

∧2U ⊗V , so that each orbit determines a class of isomorphic metabelian
algebra structures on L = U ∗⊕V . The respective linear group

∧2GL(U)⊗GL(V )
contains homotheties, hence this action has no non-constant polynomial invariants.
Thus it is more convenient to consider the respective unimodular linear group∧2SL(U)⊗ SL(V ) and classify its orbits. Homotheties leave conical orbits stable
and glue together one-parametric families of non-conical orbits.

The first approximation in classifying orbits of a linear algebraic group
is to separate them by invariant polynomials. If each level variety of invariant
polynomials contains already finitely many orbits, then a group is “good” from the
invariant-theoretic point of view, and one may hope to complete the classification
by introducing some arithmetic invariants on each level variety. Such algebraic
linear groups are called visible. We give the precise definition.

Definition 1.5. Let H ⊆ GL(M) be a reductive algebraic linear group, π :
M → M//H := SpecC[M ]H the categorical quotient. The group H is visible if
π−1(z) contains finitely many H -orbits for ∀z ∈M//H .

The visibility correlates with other good invariant-theoretic properties of
a representation (equidimensionality, freeness of the algebra of invariants etc.).
Visible semisimple irreducible linear groups are classified by Kac [5]. An easy
inspection of tables in [5] gives the list of pairs (m,n) such that the semisimple
irreducible linear group

∧2SL(U)⊗ SL(V ) is visible: (5, 2), (6, 2), (7, 2), (8, 2),
(5, 3), (6, 3), (5, 4), (5, 5), (4, n). The classification of orbits in the first four cases
is covered by 1.3. It is clear from the discussion in 1.1 that the five remaining cases
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reduce to the cases (m,n) = (5, 5) and (6, 3). (In the last case, we may assume
n ≤ 3 by 1.2.)

In the latter two cases, the group
∧2SL(U)⊗SL(V ) is even a θ -group, and

its invariant theory is especially nice. See sect. 2 for the definition and properties
of θ -groups. The case (m,n) = (5, 5) is considered in sect. 3, and the case
(m,n) = (6, 3) is considered in sect. 4.

Remark 1.6. Suppose b ∈ ∧2U ⊗ V is degenerate, i. e., it lies in a subspace
of the type

∧2U0 ⊗ V0, U0 ⊆ U, V0 ⊆ V , and one of the inclusions is strict. It is
easy to see that the intersection of the SL(U)×SL(V )-orbit of b with

∧2U0⊗V0

is a GL(U0) × GL(V0)-orbit. In particular, it contains λb, ∀λ ∈ C× . Hence
(SL(U) × SL(V ))b = (GL(U) × GL(V ))b contains 0 in its closure, and b lies
in the null-cone π−1(π(0)). Elements of the null-cone are called nilpotent. Thus
the classification of orbits for

∧2GLp(C) ⊗ GLq(C), where p ≤ m, q ≤ n and
one of the inequalities is strict, reduces to the classification of nilpotent orbits for∧2SLm(C)⊗ SLn(C).

It remains to note that each metabelian algebra of dimension ≤ 9 has the
signature (m,n) such that either n ≤ 2, or m,n ≤ 5, or m ≤ 6, n ≤ 3. The
same holds for 10-dimensional algebras with the two exceptions: (m,n) = (7, 3)
and (6, 4). Thus we obtain a complete classification of metabelian Lie algebras in
dimension up to 9.

1.5. Notation and terminology. It is a good time to introduce some nota-
tion and terminology that will be used in the sequel.

We fix bases 1e, . . . ,me in U and e1, . . . , en in V , thus identifying U, V
with Cm,Cn .

We denote dual bases of U ∗ and V ∗ by lifting indices: ie and ek .

We denote respective tensor bases in various spaces of tensors by writing
indices in a sequence, as in the “tensor notation”. For example, ijek = ie∧ je⊗ ek ,
ijek = ie∧je⊗ek , etc. In tables 1–8, we use the shorthand notation: ( abc ... ijk ) :=

abec + . . .+ ijek .

Let t ⊂ sl(U) ⊕ sl(V ) be the standard Cartan subalgebra of operators
diagonal in the chosen bases, and T ⊂ SL(U) × SL(V ) be the respective Cartan
subgroup.

Let iε, εk be the weights of ie, ek with respect to t or T . (We will not
distinguish the notation.) We have

∑
iε =

∑
εk = 0. Choose iε − jε, εk − εl

(i < j , k < l) as positive roots of sl(U)⊕ sl(V ) relative to t.

For any vector space M with a fixed basis e1, . . . , en , we use the following
notation. Let 〈·, ·〉 denote the natural pairing between tensor spaces M⊗p and
(M∗)⊗p . Denote by C(γ) the contraction of γ ∈ M⊗p ⊗ (M∗)⊗p in the first
index. We use the “big” exterior product of skew-symmetric tensors, so that
〈v∗1 ∧ . . . ∧ v∗p, v1 ∧ . . . ∧ vp〉 = p! det〈v∗i , vj〉 (v∗i ∈M∗, vj ∈M ). The isomorphism

ι :
∧pM

∼−→ ∧n−pM∗ is defined by α∧β = 〈ι(α), β〉·e1∧ . . .∧en , ∀α ∈ ∧pM, β ∈∧n−pM∗ .
Suppose H : M is a rational representation of a reductive algebraic group,

π : M → M//H is the categorical quotient. A vector v ∈ M is called nilpotent
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if v ∈ π(π−1(0)) (or, equivalently, if all homogeneous invariants of positive degree
vanish at v ). A vector v ∈M is called semisimple if the orbit Hv ⊆M is closed.
A vector that is neither semisimple nor nilpotent is called mixed.

Suppose H is an algebraic group with the Lie algebra h. Then H0 denotes
its identity component, and H ′ (h′ ) the commutator subgroup (subalgebra) of H
(resp. h). For any subset m ⊂ h, let Z(m) (z(m)) be the centralizer of m in H
(resp. in h).

If X is an H -variety (H -module), then H : X denotes the action of H
on X , XH (Xh ) is the fixed point set of H (resp. the annihilator of h) in X , and
Hx (hx ) denotes the stabilizer (subalgebra) of x ∈ X .

2. Generalities on θ-groups

In this section, we will give a brief review of the theory of θ -groups. For a detailed
narration of this topic, see [13] and [14]. In [13], the theory of Cartan subspaces,
of Weyl groups, and of invariants for a θ -group is considered. In [14], a method
for classifying nilpotent elements w. r. t. the action of a θ -group is described.
Papers [11] and [12] contain a shorthand exposition of main results of [13] and [14],
respectively.

In [15], one of the most interesting examples of a θ -group, namely the group∧3SL9(C), is considered, and the orbits and the invariants are described in that
case.

2.1. Definition of a θ-group. Let G be a semisimple algebraic group, g its
Lie algebra. Assume that g is graded modulo m:

g =
⊕

k∈Zm

gk.

(Here m is any natural number or ∞; Zm is the respective residue group; Z∞ = Z.
We also write gk = gk mod m for any k ∈ Z.) If m < ∞, then this gradation
determines an automorphism θ ∈ Aut g:

θ(x) = ωkx for ∀x ∈ gk,

where ω = e
2πi
m . If m = ∞, then this gradation determines a one-parameter

subgroup θt ∈ Aut g, t ∈ C× :

θt(x) = tkx for ∀x ∈ gk.

Conversely, each automorphism of finite order m (or a one-parameter subgroup in
Aut g ) determines a Zm - (or Z-) gradation of g. We may (and will) assume that
G is simply connected. Then θ (or θt ) is the differential of an automorphism of
G (or a one-parameter subgroup of them) denoted by the same letter.

Let G0 be the connected reductive subgroup of G corresponding to the
subalgebra g0 ⊆ g. Since G is simply connected, G0 = Gθ . The restriction of the
adjoint representation of G to G0 leaves each gk stable. Let ρ : G0 → GL(g1) be
the restriction of the adjoint action of G0 to g1 . The linear algebraic group ρ(G0)
is called a θ -group. The representation G0 :

ρ
g1 is said to be a θ -representation.
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2.2. Jordan decomposition. Each element x ∈ g has the (unique) Jordan
decomposition x = xs + xn , where xs is a semisimple element, xn is a nilpotent
element, and [xs, xn] = 0. Recall from the theory of the adjoint representation that
adjoint orbits of semisimple elements are closed, and those of nilpotent elements
contain 0 in their closure. The same thing holds for any θ -group.

Theorem 2.1. [13, §§1–2] 1. Each element x ∈ g1 has the Jordan decompo-
sition x = xs + xn , where xs, xn ∈ g1 .

2. If x ∈ g1 is semisimple, then the orbit G0x is closed.

3. If x ∈ g1 is nilpotent, then G0x 3 0.

4. Under the assumptions of 1, G0xs is the unique closed G0 -orbit in G0x.

Remark 2.2. Many representations with nice invariant-theoretic properties are
θ -representations. The theorem gives a strong motivation for the following general
terminology: a vector is called semisimple w. r. t. an algebraic linear group if its
orbit is closed, and is called nilpotent if its orbit contains 0 in the closure.

2.3. The Cartan subspace, the Weyl group, and invariants. Any max-
imal abelian subspace c ⊆ g that consists of commuting semisimple elements is
called a Cartan subspace. This notion generalizes Cartan subalgebras. All Cartan
subspaces are G0 -conjugated [13, §3], hence we can fix one of them, say c, for the
sequel. Let Z0(·) (N0(·)) denote the centralizer (resp. normalizer) in G0 .

Theorem 2.3. [13, §§3–4,6] 1. Each semisimple element of g1 is G0 -equiva-
lent to some element of c.

2. The group W = N0(c)/Z0(c) is a finite reflection group acting naturally on
c. It is called the Weyl group of the θ -representation.

3. For ∀x ∈ c : G0x ∩ c = Wx.

4. The restriction of functions on g1 to c induces an isomorphism

C[g1]G0 ∼−→ C[c]W .

Thus the classification of semisimple elements in g1 reduces to the description of
orbits for a finite reflection group.

Furthermore, each level variety of invariants, i. e., a fiber π−1(π(x)) of the
quotient morphism π : g1 → g1//G0 , has finitely many orbits (and exactly one
closed orbit G0xs ). In other words, each θ -group is visible.

2.4. The covering loop algebra. The description of all Z-gradations on a
semisimple algebra g may be obtained in the following way. Choose a maximal
torus T in G containing a one-parameter subgroup θt related to the Z-gradation.
Its Lie algebra t is a Cartan subalgebra of g contained in g0 , and each root
subspace gα is contained in some gk . Hence each root α receives the degree
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degα = k . The degree is an additive function on the root system, hence it is
determined by its values on simple roots. We may choose simple roots so that
their degrees are non-negative. Conversely, each non-negative integer labelling of
the Dynkin diagram of g determines a Z-gradation on g.

In order to describe all Zm -gradations on g, it is convenient to pass to
a “covering” infinite-dimensional Lie algebra. Assume g =

⊕
gk is Zm -graded.

Consider a twisted loop algebra

G =
⊕

k∈Z
Gk ⊆ C[t, t−1]⊗ g, Gk = tkgk,

so that g = G/(tm−1)G. In case, where g is simple, G is a simple codimension 2
subquotient of an affine Kac–Moody algebra. In general, G is a direct sum of such
algebras. For the rest of this subsection, we will assume that g is simple.

See [6, Chap. 7–8] for a detailed exposition of the theory of loop algebras. It
resembles the theory of finite-dimensional (semi)simple Lie algebras. In particular,
G is graded by a free abelian finitely-generated group Q (the root lattice) so that
its component t of degree zero is a Cartan subalgebra in G0

∼= g0 and each
component Gα of degree α ∈ Q is contained in some Gk . Elements α ∈ Q such
that Gα 6= 0 are called roots. Thus each root α receives the degree deg α = k .

The period s of θ mod Int g is called the index of G. There exists a unique
root ν ∈ Q such that ∀α ∈ Q : tmGα = Gα+sν . There exists a homomorphism
Q→ t∗, α 7→ ᾱ, such that ∀h ∈ t, x ∈ Gα : [h, x] = ᾱ(h)x, and ᾱ = 0 iff α is a
multiple of ν (such roots are called imaginary). For real roots (i. e., such α that
ᾱ 6= 0) we have dim Gα = 1.

The set ∆ = { ᾱ | α is a real root } is exactly the set of nonzero weights of
g relative to t. If t is a Cartan subalgebra of g, not only of g0 , or equivalently,
s = 1, then ∆ is just the root system of g relative to t.

There exists a base Π of Q consisting of real roots, and we may choose
it so that degα ≥ 0 for ∀α ∈ Π. One may associate a Cartan matrix and a
Dynkin diagram with Π exactly in the same way as in the theory of semisimple
algebras. The diagrams thus obtained are affine Dynkin diagrams X

(s)
l , where Xl

is the Dynkin diagram of g. We label the nodes of an affine Dynkin diagram by
Kac labels aα , which are the (integer mutually coprime) coefficients of the linear
dependence among the columns of the respective Cartan matrix. We have

ν =
∑

α∈Π

aαα

The loop algebra is determined by its Dynkin diagram up to an isomorphism
discarding the gradation. Since the degree function is additive on the roots, it is
determined by its values dα = degα on α ∈ Π. Clearly we have

∑

α∈Π

aαdα =
m

s
(1)

Conversely, each non-negative integer labelling of the affine Dynkin diagram sat-
isfying (1) determines a Z-gradation of G and Zm -gradation of g. Simple roots
α with zero labels (or, more precisely, their restrictions ᾱ to t) form a base of the
root system of g0 , whereas the functionals ᾱ such that dα = 1 are exactly the
lowest weights of irreducible components of the θ -representation G0 : g1 .
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Remark 2.4. If g is not simple, then the respective θ -group is a direct product
of θ -groups for simple graded algebras acting each on its own space, and the θ -
representation is a direct sum of the respective θ -representations. The covering
algebra G is a direct sum of simple twisted loop algebras, and the whole theory
generalizes with minor changes.

2.5. Classification of nilpotent elements. For θ -groups, we have the fol-
lowing generalization of the Morozov-Jacobson theorem.

Theorem 2.5. [14, §2] Suppose e ∈ g1 is a nonzero nilpotent element. Then
there exists a nilpotent element f ∈ g−1 and a semisimple element h ∈ g0 such
that {e, f, h} is an sl2 -triple. The element h is called a characteristic of e. It is
determined up to conjugation by Z0(e), whereas e is determined up to conjugation
by Z0(h).

Replacing a nilpotent element e by its conjugate, we may (and will) assume that
a maximal torus of N0(e) lies in t. In particular, h ∈ t. Moreover, h lies in
the rational form t(Q) of t defined by the condition that differentials of all T -
characters have rational values, and we may assume that h lies in the positive Weyl
chamber of t(Q) w. r. t. a given base of the root system. Such h is determined
uniquely by the orbit G0e.

We will consider Z-graded subalgebras s ⊆ g. (This means that sk ⊆ gk
for ∀k ∈ Z.) A Z-graded subalgebra is said to be regular if it is normalized by a
maximal torus in G0 , and complete if it is maximal among all semisimple regular
subalgebras of the same rank.

Definition 2.6. A support of a nilpotent element e ∈ g1 is a minimal complete
subalgebra containing e.

A support is determined up to conjugacy and may be constructed as follows.
Consider a reductive Z-graded subalgebra

g(h) =
∑

k∈Z
gk(h), gk(h) = { x ∈ gk | [h, x] = 2kx },(2)

and let te be the centralizer of e in t. Then s = (g(h)te)′ is the (T -regular)
support of e [14, §4].

Let S0 be the reductive subgroup of G0 corresponding to s0 . Then all
elements of s1 are nilpotent, S0 acts on s1 with finitely many orbits, e lies in the
dense orbit, and the stabilizer (S0)e is finite. In particular, a nilpotent element
is determined by its support up to conjugacy. Conversely, if s ⊆ g is a complete
subalgebra such that the stabilizer of the dense S0 -orbit in s1 is finite, then s is
the support of any element e from the dense orbit. Semisimple Z-graded algebras
with the above property (or, equivalently, such that dim s0 = dim s1 ) are called
locally flat. Simple locally flat algebras are listed in [14, §4], and semisimple ones
are their direct sums.

The above discussion gives us the following method of classifying nilpotent
elements in g1 .
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1. Classify all complete T -regular locally flat subalgebras of g up to W0 -conjugacy,
where W0 = N0(T )/T is the Weyl group for G0 . Note that each Z-graded
subalgebra s ⊆ g is canonically embedded in the covering algebra G so that
sk ⊆ Gk for ∀k ∈ Z. Hence the root lattice of s may be regarded as a sub-
lattice Q(s) ⊆ Q. It is easy to see that s is complete iff this sublattice is
saturated or, in other words, the quotient group Q/Q(s) is torsion-free. Thus
we have to classify all embeddings of the root systems ∆(s) of locally flat al-
gebras, or even of their systems of simple roots Π(s), in ∆ which preserve
the degrees and the invariant inner product, up to W0 -conjugacy.

2. For each complete locally flat subalgebra s ⊆ g, take an element e from the
dense S0 -orbit in s1 . These e compose a full coset for the set of G0 -orbits
of nilpotent elements in g1 .

For the sequel, we need the third step of this procedure.

3. Compute characteristics h ∈ t(Q). Each h must lie in the Cartan subalgebra
t(s) of s, hence it must be orthogonal to the annihilator of Q(s) in t w. r. t.
the invariant inner product. Moreover, h must have prescribed values on
α ∈ Π(s), since it defines the grading of s. These conditions determine h
uniquely, and we may apply a transformation from W0 to take h into the
positive Weyl chamber of t.

2.6. Classification of mixed elements. To classify vectors that are neither
semisimple nor nilpotent, we first classify their semisimple parts, and then classify
vectors x = u + e with a given semisimple part u. We may assume u ∈ c.
The nilpotent part e belongs to the semisimple Zm -graded subalgebra z(u)′ . The
problem is reduced to the classification of nilpotent elements in z(u)′1 up to Z0(u)-
conjugacy. The classification up to Z0(u)0 -conjugacy may be performed using
the method of the previous subsection applied to the graded algebra z(u)′ . The
finite component group may glue some of these orbits together in one Z0(u)-orbit.
Taking this into consideration completes the classification.

2.7. Computing stabilizers. The centralizer of a semisimple element u ∈ g1

is a graded reductive Levi subalgebra z(u) ⊆ g. We may assume u ∈ c, embed
c in a (graded) Cartan subalgebra h ⊂ g, and determine the root system of z(u)
relative to h.

The stabilizer of a mixed element x = u+ e is the stabilizer of its nilpotent
part e in the group Z0(u). If we are interested only in the stabilizer subalgebra,
then we may pass to the identity component Z0(u)0 . The center of Z(u) stabilizes
e, and it remains to determine the stabilizer of e ∈ z(u)′1 in (Z(u)′)0

0 . Thus the
problem is reduced to computing the stabilizer of a nilpotent element.

The stabilizer subalgebra z0(e) of a nilpotent element e ∈ g1 is spanned (as
a linear space) by highest vectors of the 3-dimensional simple subalgebra 〈e, f, h〉
which lie in g0 . It follows from the theory of sl2 -representations that eigenvalues
of adh on z0(e) are non-negative, and ad e maps an eigenspace g0,k(h) ⊂ g0 of
eigenvalue k ≥ 0 onto an eigenspace g1,k+2(h) ⊂ g1 of eigenvalue k+ 2. Now it is
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easy to see [15, 4.5] that

dim z0(e) =

∞∑

k=0

dim g0,k(h)− dim g1,k+2(h).(3)

The reductive subalgebra z0(e) ∩ z0(h) is a Levi part of z0(e). It coincides
with the stabilizer subalgebra of general position for the θ -representation g0(h) :
g1(h) of the Z-graded algebra g(h) defined by (2). Indeed, the orbit of e in g1(h)
is Zariski open [15, 4.5]. The algebra g0(h) = z0(h) and its θ -representation in
g1(h) are easy to find. Then the stabilizer subalgebra of general position can be
found using Elashvili’s tables [1], [2].

3. Metabelian algebras of signature (5, 5)

This section deals with the θ -group
∧2SL5(C) ⊗ SL5(C). We apply the general

theory of θ -groups to classifying the orbits of this linear group. This is the same
thing as to classify metabelian Lie algebras of signature (m,n), m, n ≤ 5.

3.1. Formulation of results. We retain the notation of 1.5 with m = n = 5.
The classification of tensors in

∧2U ⊗ V under the action of SL(U) × SL(V ) is
made as follows. Each tensor has the Jordan decomposition x = u + e (see 2.2),
where u is semisimple and e is nilpotent. Semisimple tensors fall into 3 families
according to the type of stabilizer. For each family, we give a canonical form u
of a semisimple tensor and classify all possible nilpotent parts e up to the action
of the stabilizer of u. See tables 1–2 below. If we want to classify tensors under
the action of GL(U) × GL(V ), then the canonical form for u can be reduced by
multiplying u by a nonzero scalar.

Thus the elements of
∧2U ⊗ V are divided into 3 families according to the

type of the semisimple part. All elements in the first family are semisimple, all
elements in the third family are nilpotent. Tensors of the first two families and
tensors of full rank in the third family represent metabelian algebras of signature
(5, 5). All degenerate tensors lie in the third family (Remark 1.6), and each of
them represents a series of metabelian algebras of signature (l, q), p ≤ l ≤ 5
(Remark 1.2). We indicate the “minimal” signature (p, q) in table 2.

The last two columns in each table contain information on the dimension of
the stabilizer and the type of its (connected reductive) Levi part. Here Tl denotes
an algebraic torus of dimension l . Making use of these data, one easily computes
the dimension and the type of Levi part for the automorphism group (or algebra
of derivations) of the respective metabelian algebra (cf. 1.1).

We indicate characteristics of nilpotent elements by their indices, i. e., values
of simple roots. All other information contained in the tables is explained in
section 2 and in 3.2–3.6.

Here is the classification.

Family 1. This family contains only semisimple tensors. The canonical form is

u = λ1u1 + λ2u2, λ1λ2(λ10
1 − 11λ5

1λ
5
2 − λ10

2 ) 6= 0,
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where

u1 = 12e4 + 34e1 + 51e3 + 23e5 + 45e2,

u2 = 13e2 + 52e1 + 41e5 + 35e4 + 24e3.

The coefficients λi are determined up to the action of a certain finite group W
described explicitly in 3.4. Two canonical forms are equivalent iff they have the
same values of

λ20
1 + λ20

2 + 228λ15
1 λ

5
2 − 228λ5

1λ
15
2 + 494λ10

1 λ
10
2 and

λ30
1 + λ30

2 − 522λ25
1 λ

5
2 + 522λ5

1λ
25
2 − 10005λ20

1 λ
10
2 − 10005λ10

1 λ
20
2 .

The stabilizer subgroup of u is finite.

Family 2. The canonical form of a semisimple part is

u = λu1, λ 6= 0,

where λ is determined up to multiplication by a 10-th root of unity.

Table 1: Nilpotent parts of elements of family 2

No. Canonical form Support Characteristic Stabilizer
dim Type

1 132 521 415 354 A4 2 2 2 2 0 0
2 132 521 415 A3 2 2 2 0 1 T1

3 132 521 354 A2 + A1 2 2 0 2 1 T1

4 132 521 A2 2 2 0 0 2 T2

5 132 415 2A1 2 0 2 0 2 T2

6 132 A1 2 0 0 0 3 T3

7 0 4 T4

Family 3. In this family, u = 0 and all elements are nilpotent.

Table 2: Elements of family 3

No. Canonical form Signature Support Characteristic Stabilizer
dim Type

1 125 144 153 234 243 252 342 351 (5, 5) E8 10 10 10 10 10 10 10 20 0 0
2 125 134 153 233 243 252 342 451 (5, 5) E8(a1) 10 10 0 10 10 10 10 10 1 0
3 125 135 144 152 234 242 251 343 (5, 5) E8(a2) 10 0 10 10 10 0 10 10 1 0
4 125 134 143 152 233 244 342 451 (5, 5) E8(b) 0 10 0 10 10 10 0 10 2 0
5 125 143 154 233 242 251 341 352 (5, 5) E8(d1) 10 0 10 0 0 10 0 10 2 0
6 125 132 144 153 234 243 252 351 (5, 5) E8(c2) 0 10 0 0 10 0 0 10 3 0
7 125 134 141 153 243 252 342 351 (5, 5) E8(d3) 0 0 10 0 0 0 10 0 3 0
8 125 134 143 233 252 342 451 (5, 5) E7 1 9 1 9 10 10 1 9 3 T1

9 125 135 144 153 233 242 351 (5, 5) E7(a1) 10 0 3 7 7 3 7 3 3 T1

10 135 144 152 234 243 251 341 (5, 5) D7 3 7 3 7 3 4 3 3 3 T1

11 121 144 153 234 243 252 342 451 (5, 4) E8(d5) 0 0 0 0 0 0 0 10 4 0
12 125 134 144 152 232 243 351 (5, 5) E7(a2) 1 9 0 1 10 0 1 9 4 T1

13 125 142 153 234 243 252 341 (5, 5) E7(b) 0 3 7 0 3 0 7 3 4 T1

14 135 143 152 234 242 251 342 (5, 5) D7(a1) 2 0 8 2 2 2 6 2 4 T1

15 134 141 153 243 252 342 351 (5, 4) E7(c2) 0 0 1 0 0 0 1 9 5 T1

16 125 133 144 152 233 251 342 (5, 5) D7(a2) 0 5 0 5 0 5 0 5 5 T1
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Table 2: (Continued)

No. Canonical form Signature Support Characteristic Stabilizer
dim Type

17 135 143 152 234 242 251 341 (5, 5) A7 3 3 4 3 3 3 1 3 5 T1

18 125 134 143 152 233 242 451 (5, 5) E6 + A1 1 8 1 1 10 1 1 8 5 T1

19 125 134 143 153 233 251 342 (5, 5) E6(a1) + A1 5 0 5 0 0 5 5 0 5 T1

20 125 143 152 234 242 351 (5, 5) D6 1 2 7 1 3 1 6 3 5 T2

21 124 153 233 241 252 342 351 (5, 4) E6(b) + A1 1 0 1 0 0 1 1 8 6 T1

22 125 144 152 233 242 251 341 (5, 5) A6 + A1 3 3 1 3 3 1 2 4 6 T1

23 125 134 143 152 233 251 342 (5, 5) D5 + A2 2 2 2 4 2 4 2 2 6 T1

24 125 134 143 153 251 342 (5, 5) E6(a1) 6 0 4 0 0 6 4 0 6 T2

25 125 144 151 233 244 342 (5, 5) D6(a1) 0 3 0 7 4 3 0 3 6 T2

26 133 152 233 244 251 341 (5, 4) D6(a2) 0 1 0 1 0 1 0 9 6 T2

27 125 134 143 152 233 242 251 341 (5, 5) 2A4 2 2 2 2 2 2 2 2 7 0
28 134 143 152 233 242 251 342 (5, 4) D5(a1) + A2 1 0 1 1 1 1 1 7 7 T1

29 125 144 153 232 251 341 (5, 5) A6 4 2 2 2 4 0 2 4 7 T2

30 125 134 143 233 251 342 (5, 5) D5 + A1 1 2 1 6 4 3 1 2 7 T2

31 144 152 233 242 251 341 (5, 4) A5 + A1 1 1 0 1 1 0 1 8 7 T2

32 125 134 142 233 252 451 (5, 5) E6 0 8 2 0 10 2 0 8 7 A1 + T1

33 135 141 152 234 243 251 (5, 5) A6 0 8 2 0 0 0 2 0 7 A1 + T1

34 134 143 152 233 242 251 341 (5, 4) A4 + A3 1 1 1 1 1 1 1 6 8 T1

35 124 132 153 233 242 451 (5, 4) D4 + A2 0 2 0 0 2 0 2 6 8 T2

36 134 143 231 252 342 451 (5, 4) E6(b) 2 0 0 0 0 2 0 8 8 A1 + T1

37 125 133 144 152 251 342 (5, 5) D5 + A1 3 2 0 5 3 5 0 2 8 A1 + T1

38 135 144 151 232 243 341 (5, 5) A5 + A1 3 2 0 5 2 0 3 0 8 A1 + T1

39 125 134 143 152 232 251 341 (5, 5) A4 + A3 3 1 2 1 3 1 2 1 9 T1

40 125 134 143 151 233 242 341 (5, 5) A4 + A2 + A1 1 2 1 3 2 1 1 2 9 T1

41 124 143 152 233 242 251 341 (5, 4) A4 + A2 + A1 1 1 1 1 1 1 2 4 9 T1

42 123 135 152 234 242 251 341 (5, 5) A4 + A3 0 0 5 0 0 5 0 0 9 A1

43 125 131 144 153 234 242 251 (5, 5) A4 + A2 + A1 0 5 0 0 0 0 0 5 9 A1

44 124 143 152 232 242 351 (5, 4) D5(a1) + A1 1 1 0 1 2 1 1 6 9 T2

45 123 142 151 232 243 344 (5, 4) D5(a1) + A1 0 0 0 3 3 0 0 7 9 A1 + T1

46 125 133 144 251 342 (5, 5) D5 2 2 0 6 4 4 0 2 9 A1 + T2

47 134 145 151 233 242 (5, 5) A5 3 3 0 4 1 0 3 0 9 A1 + T2

48 144 153 232 241 351 (5, 4) A5 2 0 1 0 1 1 0 8 9 A1 + T2

49 125 133 142 234 251 341 (5, 5) A4 + A2 0 2 2 2 2 2 0 2 10 T2

50 134 143 152 232 251 341 (5, 4) A4 + A2 2 0 2 0 2 0 2 4 10 T2

51 125 134 143 151 233 242 (5, 5) A4 + 2A1 1 3 1 1 0 1 1 3 10 T2

52 123 152 234 242 251 341 (5, 4) A4 + 2A1 0 0 3 0 0 3 0 4 10 T2

53 134 143 151 233 242 341 (5, 4) A4 + 2A1 1 1 1 2 1 1 1 4 10 T2

54 131 144 153 234 242 251 (5, 4) A4 + A2 0 4 0 0 0 0 0 6 10 A1 + T1

55 124 132 142 243 351 (5, 4) D5(a1) 0 1 0 2 3 0 1 6 10 T3

56 124 133 152 242 251 341 (5, 4) 2A3 1 1 1 1 1 2 1 3 11 T2

57 125 133 152 234 241 (5, 5) A4 + A1 0 3 2 0 0 2 0 3 11 T3

58 134 143 151 233 242 (5, 4) A4 + A1 1 2 1 1 0 1 1 4 11 T3

59 133 142 234 251 341 (5, 4) A4 + A1 0 1 2 1 1 2 0 4 11 T3

60 124 132 143 232 251 341 (5, 4) D4(a1) + A2 0 2 0 2 2 0 2 2 12 T2

61 125 134 143 151 232 241 (5, 5) A3 + A2 + A1 2 1 1 2 1 1 1 1 12 T2

62 121 153 233 252 342 451 (5, 3) A3 + A2 + A1 0 0 0 0 0 0 5 0 12 2A1

63 123 134 142 232 451 (5, 4) D4 + A1 1 0 1 1 3 1 0 6 12 A1 + T2

64 133 152 234 241 (5, 4) A4 0 2 2 0 0 2 0 4 12 T4

65 124 133 142 232 251 341 (5, 4) A3 + A2 + A1 1 1 1 1 2 1 1 2 13 T2

66 124 131 153 231 242 (5, 4) D4(a1) + A1 0 3 0 0 0 0 3 1 13 T3

67 134 143 151 232 241 (5, 4) A3 + A2 2 0 1 2 1 1 1 2 13 T3

68 141 152 233 242 351 (5, 3) A3 + A2 0 0 1 0 0 1 4 0 13 A1 + T2

69 122 134 145 153 251 341 (5, 5) 2A3 5 0 0 0 5 0 0 0 14 C2

70 121 133 145 235 244 342 (4, 5) 2A2 + 2A1 0 0 0 5 0 0 0 0 14 C2

71 124 143 151 232 241 (5, 4) A3 + 2A1 1 2 0 1 0 1 2 1 14 T3

72 132 143 232 251 341 (5, 3) D4(a1) + A1 0 1 0 1 1 0 4 0 14 A1 + T2

73 124 133 142 151 232 241 (5, 4) 2A2 + 2A1 1 1 1 1 1 1 1 1 15 T2

74 124 132 143 251 341 (5, 4) A3 + A2 2 1 0 1 3 0 1 2 15 A1 + T2

75 123 152 232 251 341 (5, 3) A3 + 2A1 1 0 1 0 1 1 3 0 15 A1 + T2

76 124 135 142 153 231 (5, 5) A3 + 2A1 3 0 2 0 1 0 2 0 15 2A1 + T1

77 125 131 143 234 242 (4, 5) 2A2 + A1 0 1 0 4 0 0 0 1 15 2A1 + T1

78 131 153 231 242 (5, 3) D4(a1) 0 2 0 0 0 0 4 0 15 A1 + T3

79 124 142 153 231 (5, 4) A3 + A1 2 1 1 0 1 0 2 1 16 A1 + T3

80 133 152 232 241 (5, 3) A3 + A1 1 1 0 1 0 1 3 0 16 A1 + T3

81 121 133 244 342 (4, 4) 2A2 0 0 0 4 0 0 0 2 16 2A1 + T2

82 122 133 234 451 (5, 4) D4 0 0 2 0 4 0 0 6 16 A2 + A1 + T1

83 124 132 151 233 241 (5, 4) 2A2 + A1 0 1 2 0 2 0 1 1 17 A1 + T2
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Table 2: (Continued)

No. Canonical form Signature Support Characteristic Stabilizer
dim Type

84 123 142 151 232 341 (5, 3) 2A2 + A1 1 0 1 1 1 1 2 0 17 A1 + T2

85 124 131 143 233 242 (4, 4) A2 + 3A1 0 1 0 3 0 0 1 1 17 A1 + T2

86 123 134 142 151 231 (5, 4) A2 + 3A1 2 0 1 1 1 1 0 1 18 A1 + T2

87 122 153 251 341 (5, 3) A3 + A1 2 0 0 0 2 0 3 0 18 3A1 + T1

88 123 131 152 242 251 (5, 3) A2 + 3A1 0 2 0 0 0 2 1 0 19 2A1 + T1

89 123 134 141 232 (4, 4) A2 + 2A1 1 0 1 2 0 1 0 1 19 A1 + T3

90 122 133 251 341 (5, 3) 2A2 0 0 2 0 2 0 2 0 19 2A1 + T2

91 142 153 231 (5, 3) A3 2 0 1 0 1 0 3 0 19 3A1 + T2

92 123 132 151 241 (5, 3) A2 + 2A1 1 1 0 1 1 1 1 0 20 A1 + T3

93 121 133 243 342 (4, 3) A2 + 2A1 0 0 0 3 0 0 2 0 20 3A1 + T1

94 123 131 242 (4, 3) A2 + A1 0 1 0 2 0 1 1 0 21 A1 + T4

95 131 152 242 251 (5, 2) A2 + 2A1 0 1 0 0 0 3 0 0 22 A2 + A1 + T1

96 122 133 141 231 (4, 3) 4A1 1 0 1 1 1 0 1 0 23 2A1 + T2

97 121 132 143 154 (5, 4) 4A1 3 0 0 0 0 0 0 1 24 A3 + T1

98 122 151 341 (5, 2) A2 + A1 1 0 0 1 1 2 0 0 24 A2 + A1 + T2

99 121 132 143 (4, 3) 3A1 2 0 0 1 0 0 1 0 26 A2 + A1 + T2

100 121 342 (4, 2) A2 0 0 0 2 0 2 0 0 26 A2 + 2A1 + T2

101 122 131 241 (4, 2) 3A1 0 1 0 1 1 1 0 0 27 A2 + A1 + T2

102 121 132 233 (3, 3) 3A1 0 0 2 0 0 0 1 0 27 A2 + 2A1 + T1

103 121 132 (3, 2) 2A1 1 0 1 0 0 1 0 0 30 A2 + 2A1 + T2

104 121 341 (4, 1) 2A1 0 0 0 1 2 0 0 0 34 C2 + A3 + T1

105 121 (2, 1) A1 0 1 0 0 1 0 0 0 37 A3 + A2 + A1 + T1

106 0 48 2A4

3.2. The Z5 -graded algebra E8 . Let g be a simple Lie algebra of the type
E8 . We define its Z5 -grading by the following labelling of the affine Dynkin
diagram E

(1)
8 (cf. 2.4):

d d d d d d d d
d

1

(We omit zero labels.) From the discussion in 2.4, it is clear that the Lie algebra
g0 and its θ -representation in g1 is determined by the following Dynkin diagram
with numerical labels of the (unique) highest weight:

d d d d d d d
d

11

The precise description of the Z5 -graded algebra g may be obtained as
follows. We consider a direct sum

g = (U ⊗∧2V ∗)⊕ (
∧2U∗ ⊗ V ∗)⊕ (sl(U)⊕ sl(V ))⊕ (

∧2U ⊗ V )⊕ (U∗ ⊗∧2V )

and introduce a Lie algebra structure on it so that the above direct sum is a
Z5 -grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

The commutator map g0 × gi → gi is the natural action of sl(U) ⊕ sl(V ) on the
respective space of tensors. The commutator maps gi × gj → gi+j (i, j ∈ Z5 ) are
determined by their g0 -equivariance uniquely up to proportionality. The coeffi-
cients of proportionality are determined uniquely by choosing the identification of
gi with the respective space of tensors and verifying the Jacobi identity.
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The commutators between gi and gj are given by the formulas

[α∗ ⊗ v∗, α⊗ v] = (〈α∗, α〉/5 · 1− C(α∗ ⊗ α)) · 〈v∗, v〉
⊕ 〈α∗, α〉/2 · (〈v∗, v〉/5 · 1− v∗ ⊗ v)

[u⊗ β∗, u∗ ⊗ β] = (u∗ ⊗ u− 〈u∗, u〉/5 · 1) · 〈β∗, β〉/2
⊕ 〈u∗, u〉 · (〈β∗, β〉/5 · 1− C(β∗ ⊗ β))

[u1 ∧ u2 ⊗ v1, u3 ∧ u4 ⊗ v2] = ι(u1 ∧ u2 ∧ u3 ∧ u4)⊗ v1 ∧ v2

[u1 ∧ u2 ⊗ v, u∗ ⊗ v1 ∧ v2] = −2C(u∗ ⊗ u1 ∧ u2)⊗ ι(v ∧ v1 ∧ v2)

[u∗1 ⊗ v1 ∧ v2, u
∗
2 ⊗ v3 ∧ v4] = −u∗1 ∧ u∗2 ⊗ ι(v1 ∧ v2 ∧ v3 ∧ v4)

[u∗1 ∧ u∗2 ⊗ v∗, u∗ ⊗ v1 ∧ v2] = 2ι(u∗1 ∧ u∗2 ∧ u∗)⊗ C(v∗ ⊗ v1 ∧ v2)

(where α ∈ ∧2U ; β ∈ ∧2V ; α∗ ∈ ∧2U∗ ; β∗ ∈ ∧2V ∗ ; u, ui ∈ U ; v, vi ∈ V ;
u∗, u∗i ∈ U∗ ; v∗, v∗i ∈ V ∗ ), and the formulas dual to the last four. (That is,
vectors and bivectors are replaced by those in dual spaces, and the terms in each
commutator are swapped.)

Next we describe the root system ∆ of g relative to t. Denote by ∆k the set
of nonzero weights of t in gk . We have ∆0 = {iε− jε, εk−εl}, ∆1 = {iε+ jε+εk},
∆2 = {−iε+ εk + εl}, ∆−1 = {−iε− jε− εk}, ∆−2 = {iε− εk− εl} (i 6= j , k 6= l).

The Weyl group W0 permutes iε and εi arbitrarily. We choose iε − i+1ε,
εi − εi+1 (i = 1, . . . , 4) as simple roots of g0 . Together with 4ε + 5ε + ε5 , they
compose an extended system of simple roots of g.

An invariant inner product on t∗ can be determined by the formulas
(iε, jε) = (εs, εt) = −1

5
, (iε, iε) = (εs, εs) = 4

5
, (iε, εs) = 0 (i 6= j, s 6= t).

In particular, if
∑

ix =
∑
xs = 0, then (

∑
ixiε +

∑
xsεs,

∑
iyiε +

∑
ysεs) =∑

ixiy+
∑
xsys , and the inner products of roots of degree 1 can be computed by

the following rule:

(iε+ jε+ εs, kε+ lε+ εt) =





−1 if δ = 0,
0 if δ = 1,
1 if δ = 2,
2 if δ = 3,

(4)

where δ is δst plus the number of common elements in {i, j} and {k, l}.

3.3. A Cartan subspace. Consider regular Z5 -graded subalgebras of type A4

in g such that their degree 0 component is a Cartan subalgebra, and simple roots
and the lowest root have degree 1. They are classified by embeddings of the
extended system of simple roots A

(1)
4 in ∆1 preserving the inner product. It is easy

to see that there is a unique such subalgebra up to W0 -conjugacy, say, the algebra
A1 generated by root vectors 12e4, 34e1, 51e3, 23e5, 45e2 . The algebra A2 generated
by 13e2, 52e1, 41e5, 35e4, 24e3 is the unique subalgebra of the same kind commuting
with A1 . It follows that the elements u1 = 12e4 + 34e1 + 51e3 + 23e5 + 45e2 and
u2 = 13e2 + 52e1 + 41e5 + 35e4 + 24e3 are semisimple and commute with each other.
Hence c = 〈u1, u2〉 is an abelian subspace in g1 consisting of semisimple elements.
It can be included in a Z5 -graded Cartan subalgebra h of g constructed as follows.
The subspace hk is generated by u

(k)
1 , u

(k)
2 , where u

(k)
i is the sum of root vectors

of degree k in Ai . An easy argument from [13, 3.1] shows that c is a Cartan
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subspace. (Otherwise there exists a Cartan subspace of dimension ≥ 3, whence
the minimal algebraic torus containing it has dimension ≥ 3 · 4 = 12, whereas
rk g = 8.)

3.4. The Weyl group. Now we want to determine the Weyl group W asso-
ciated with the chosen Cartan subspace c. By definition, W is the group of linear
transformations of c generated by elements of G0 normalizing c. First note that if
a scalar transformation α · 1 belongs to W , then α10 = 1. Indeed, we may regard
ui as operators

∧2U∗ → V and consider u1 ⊕ u2 :
∧2U∗ → V ⊕ V . An element

g ∈ N0(c) acting on c as α · 1 multiplies u1 ⊕ u2 by α , hence
∧10(u1 ⊕ u2) 6= 0

by α10 ; but recall that g ∈ SL(U) × SL(V ) acts on a one-dimensional space
Hom(

∧10(
∧2U∗),

∧10(V ⊕V )) trivially. It is easy to pick elements from G0 , diag-
onal in the bases je, ej , that multiply uk by arbitrary and independent 5-th roots
of unity. Also note that a pair of monomial transformations of U and V given by
the cyclic permutation ( 1 2 4 3 ) of basic vectors je, ej combined with the multi-
plication by −1 yields a transformation r ∈ W , whose matrix in the basis u1, u2

is

(
0 1
−1 0

)
. It already follows that W is irreducible and its center is isomorphic

to Z10 .

Consider the (unique) Z5 -graded Cartan subalgebra h ⊃ c constructed
in 3.3. The automorphism θ acts naturally on h∗ and permutes the roots of g
relative to h. It is represented by an integral matrix in a base of simple roots
and has eigenvalues ω±1, ω±2 of multiplicity 2, where ω = e

2πi
5 . The minimal

polynomial µθ(t) = t4 + t3 + t2 + t + 1 is irreducible over Q. The restriction of
θ to each invariant subspace of h∗ generated by roots has an integral matrix as
well, whence its eigenvalues are ω±1, ω±2 (of equal multiplicities). It follows that
for each root α , rk{α, θα, θ2α, θ3α, θ4α} = 4 and

∑4
k=0 θ

kα = 0. We conclude

that {α, θα, θ2α, θ3α, θ4α} is the extended system of simple roots of type A
(1)
4

of a certain h-regular θ -invariant simple subalgebra A(α), whose 20 roots are
θkα + . . .+ θk+lα (k, l ≥ 0).

The 240 roots of g relative to h fall into 12 such subsystems of type A4 ,
hence we have 12 subalgebras A(α) of type A4 , A1 and A2 being among them. We
have a decomposition h = h(α)⊕ hα , where h(α) is a Cartan subalgebra in A(α)
and hα is the centralizer of A(α) in h. Since there are no outer automorphisms
of A(α) of order 5, the restriction θ|A(α) is induced by an inner automorphism
Ad gα , where gα is an element of the subgroup A(α) of G with Lie algebra A(α).
Clearly, θ(gα) = gα , whence gα ∈ G0 . We have Ad gα|h = θ|h(α) ⊕ 1|hα , and
wα = Ad gα|c ∈ W has eigenspaces h(α)1 = c ∩ h(α) and hα1 = c ∩ hα and is

represented by the matrix

(
ω 0
0 1

)
in the eigenbasis.

Thus W contains 48 (complex) reflections wk
α (k = 1, . . . , 4) of order 5,

and its center is isomorphic to Z10 . Among irreducible finite reflection groups
acting on a 2-dimensional space, only one has these properties, namely the group
No. 16 in the list of Shephard–Todd [10]. Its order is 600, and it can be represented

as W = Z5× Ĩ , where Z5 is generated by z = ω ·1 and Ĩ is the binary icosahedral
group. The above 12 reflections wα are all conjugated, and there are no other
reflections in W but wk

α .
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The binary icosahedral group is examined in detail in [7]. In the basis

u1, u2 , Ĩ is generated by the matrices (see remark 3.1 below)

c =

(
ω 0
0 ω−1

)
, r =

(
0 1
−1 0

)
, and s =

1√
5

(
ω − ω−1 ω2 − ω−2

ω2 − ω−2 ω−1 − ω

)
.

Each element w ∈ W can be expressed uniquely as w = ±zacbrisjckrl , where
a, b, k = 0, . . . , 4; i, j, l = 0, 1; and i = 1 =⇒ j = 0 =⇒ k = l = 0.

Let z1, z2 be the coordinates on c in the basis u1, u2 . Then the basic
invariants of Ĩ are

f = z1z2(−z10
1 + 11z5

1z
5
2 + z10

2 )

g =
H(f)

121
= −z20

1 − z20
2 − 228z15

1 z
5
2 + 228z5

1z
15
2 − 494z10

1 z
10
2

h =
J(f, g)

20
= z30

1 + z30
2 − 522z25

1 z
5
2 + 522z5

1z
25
2 − 10005z20

1 z
10
2 − 10005z10

1 z
20
2

where H(·) denotes the Hessian and J(·, ·) the Jacobian, and the basic syzygy is
1728f 5 − g3 − h2 = 0. The polynomial f is an eigenfunction for z of eigenvalue
ω−2 , and g, h are z -invariant. It follows that g, h are (algebraically independent)
basic invariants for W : c, which separate W -orbits.

3.5. Mixed elements. The centralizer z(u) of u ∈ c is an h-regular subalge-
bra spanned by h and by the root subspaces gα such that α(u) = 0, or equivalently,
wαu = u. The set of u ∈ c such that z(u)′ 6= 0 is a union of 12 lines in c composing
one projective W -orbit given by the equation f = 0 [7]. By 2.6, the semisimple
part u of a mixed vector x = u+ e is equivalent to a nonzero vector from one of
these lines. Hence the canonical form for u is u = λu1 , where λ is determined up
to multiplication by a 10-th root of unity.

For such u, z(u)′ = A2 , z(u)′0 is its Cartan subalgebra, and z(u)′1 is
spanned by 5 root vectors corresponding to the extended system of simple roots
(of degree 1) of A2 relative to z(u)′0 . These root vectors are just the summands
in the expression for u2 (3.3). Consider the coordinates on z(u)′1 w. r. t. this basis
of root vectors. Nilpotent orbits for the action Z0(u)0 : z(u)′1 are given by the
condition that coordinates from a certain subset are zero and other coordinates
are nonzero.

A pair of monomial transformations of U, V given by the same permutation
( 1 2 3 4 5 ) fixes ui and permutes basic vectors, their roots, and coordinates cycli-
cally. Hence certain Z0(u)0 -orbits are glued together under the action of Z0(u).
No other orbits are glued together, since the respective sets of roots cannot be
transformed into each other via an automorphism of z(u)′ . (Just look at their
inner products!)

Remark 3.1. In fact, the discussion in 3.4 determines W only up to conjuga-
tion by transposition of u1, u2 . To make the correct choice, one should determine
the set of u = λ1u1 + λ2u2 ∈ c such that z(u)0 6= 0 explicitly. Consider the
metabelian Lie algebra L = U ∗ ⊕ V with the structure tensor u. Then z(u)0 is
identified with the subalgebra of DerL∩sl(L) leaving U ∗ stable. These derivations
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are determined by their restriction to U ∗ , and the defining relations of L impose
25 linear equations on 25 matrix entries of a derivation restricted to U ∗ . This
linear system splits into five 5 × 5 subsystems. Four of them have determinant
−λ10

1 + 11λ5
1λ

5
2 + λ10

2 , and the 5-th one (involving diagonal entries) has corank 5
iff λ1λ2 = 0, and has corank 1 (and no nonzero traceless solutions) otherwise.
Thence z(u)0 6= 0 iff λ1λ2(−λ10

1 + 11λ5
1λ

5
2 + λ10

2 ) = 0, and our choice of W in 3.4
is correct.

3.6. Nilpotent elements. Consider the covering loop algebra G of g. The
mapping α 7→ (ᾱ, degα) is an embedding Q ↪→ Z∆×Z. Under this identification,
the extended system of simple roots of g gives rise to a base (iε − i+1ε, 0),
(εi − εi+1, 0) (i = 1, . . . , 4), (4ε + 5ε + ε5, 1) of Q. As explained in 2.5, each
semisimple Z-graded T -regular subalgebra s ⊂ g (given by its system of simple
roots Π(s) ⊂ ∆) is canonically embedded in G (so that Π(s)k ↪→ ∆k × {k}), and
s is complete iff its root lattice Q(s) = ZΠ(s) ⊂ Q is saturated.

There are 61 types of complete subalgebras of G (given by types of various
subsystems of Π). For some of these types, there are several (but no more than 11)
locally flat algebras, and some of these algebras admit several (but no more
than 4) non-conjugated embeddings in G. Summing up, we obtain 138 locally
flat subalgebras of G. Some of them are not complete. Excluding them, we
obtain, up to conjugacy, 105 supports of nilpotent elements, hence 106 nilpotent
orbits of G0 in g1 (including 0).

Let us give an example of computation. Consider the locally flat algebra
of type D4(a1). Its Dynkin diagram is given by the following picture, where the
simple roots of degree 1 are indicated by white nodes, and the simple root of
degree 0 is blackened:

d
d
d
tβ1 β2

β3

�
�

T
T
β4

An embedding of its system of simple roots in ∆ is given by 3 pairwise orthogonal
roots of degree 1, and one root of degree 0, whose inner product with these three
equals 1. Up to a permutation of indices, there exists a unique such subset in ∆,
namely Π(s) = { β1 = 1ε+5ε+ε3, β2 = 2ε−1ε, β3 = 1ε+4ε+ε2, β4 = 1ε+3ε+ε1 }.
The coordinates of βi , considered as elements of Q, in the base Π are given by
the rows of the following matrix:




1 1 1 0 0 0 1 1 1
−1 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 1 1
1 1 2 1 1 1 1 1 1




The invariant factors of this matrix are equal to 1. Hence the sublattice Q(s) =
ZΠ(s) ⊂ Q is saturated and the respective regular locally flat subalgebra s ⊂ g is
complete.

The sum of root vectors corresponding to the roots β1, β2 + β3, β2 + β4, β4

is a nilpotent element from the dense orbit of the θ -representation for the algebra
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of type D4(a1). Hence s is a support of e = ( 153 242 231 131 ) (in the notation
of 1.5).

The characteristic h = (diag(x1, . . . , x5), diag(y1, . . . , y5)) of e is given by
the solution of the linear system





x2 − x1 = 0
x1 + x5 + y3 = 2
x1 + x4 + y2 = 2
x1 + x3 + y1 = 2
x1 + . . .+ x5 = 0
y1 + . . .+ y5 = 0

orthogonal to all solutions of the corresponding homogeneous system. One finds
x1 = x2 = 6

5
, x3 = x4 = x5 = −4

5
, y1 = y2 = y3 = 8

5
, y4 = y5 = −12

5
. Hence

h lies in the positive Weyl chamber, and its indices are ( 0 2 0 0 0 0 4 0 ). (If
x1, . . . , x5 and/or y1, . . . , y5 were not in decreasing order, then we would apply an
appropriate pair of permutations of 1, . . . , 5 to Π(s), e, and h, so as to put them
in order.)

Finally, we obtain information on the stabilizer of e. All eigenspaces gi,k(h)
(i = 0, 1; k ≥ 0) are zero, except the following cases:

g0,0(h) = z0(h) =

{ ((
A 0
0 B

)
,

(
C 0
0 D

)) ∣∣∣∣ A,D ∈M2(C);

B,C ∈M3(C); trA+ trB = trC + trD = 0

}

g0,2(h) =

{ ((
0 X
0 0

)
, 0

) ∣∣∣∣ X ∈M2,3(C)

}

g0,4(h) =

{ (
0 ,

(
0 Y
0 0

)) ∣∣∣∣ Y ∈M3,2(C)

}

g1,2(h) = 〈 ijek | i = 1, 2; j = 3, 4, 5; k = 1, 2, 3 〉
g1,4(h) = 〈 12ek | k = 1, 2, 3 〉

Hence the dimension formula (3) yields

dim z0(e) = dim g0,0(h)− dim g1,2(h) + dim g0,2(h)− dim g1,4(h) + dim g0,4(h)

= 24− 18 + 6− 3 + 6 = 15

The Levi part of z0(e) is the stabilizer subalgebra of general position for the repre-
sentation of g0(h) = g0,0(h) in g1(h) = g1,2(h). This is the natural representation
of sl2(C)⊕ sl3(C)⊕ sl3(C)⊕ sl2(C)⊕ C2 in C2 ⊗ C3 ⊗ C3 , where the last sl2(C)
acts trivially and the torus C2 acts by homotheties via the weight (5, 2). The
stabilizer of general position of the semisimple part of g0(h) has the type A1 + T2

and is smaller than the projective stabilizer. Hence the whole stabilizer has the
type A1 + T2 + T1 = A1 + T3 .

4. Metabelian algebras of signature (6, 3)

In this section, we classify the orbits of the θ -group
∧2SL6(C) ⊗ SL3(C) or,

equivalently, metabelian Lie algebras of signature (m,n), m ≤ 6, n ≤ 3.
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4.1. Formulation of results. We retain the notation of 1.5 with m = 6, n =
3. The classification of tensors in

∧2U ⊗ V under the action of SL(U) × SL(V )
is performed along the same lines as in 3.1. Here all tensors fall into 7 families
according to the type of the stabilizer of their semisimple parts. The canonical
forms for semisimple parts are given below, and the canonical forms for nilpotent
parts are listed in tables 3–8. The notation in tables 3–8 is similar to that of
tables 1–2, with two additional remarks. First, the canonical form for nilpotent
parts in the 5-th family is represented in two ways, see 4.6.4 for details. Secondly,
the characteristics of nilpotent parts in the 6-th family are indicated by 3 numerical
indices (i. e., values of simple roots of z(u)′0 ) and values of 3 linearly dependent
weights generating the dual to the center of z(u)′0 , see 4.6.5 for details.

Here is the classification.

Family 1. This family contains only semisimple tensors. The canonical form is

u = λ1u1 + λ2u2 + λ3u3, (λ3
1 − λ3

2)(λ3
1 − λ3

3)(λ3
2 − λ3

3) 6= 0,

λ1λ2λ3((λ3
1 + λ3

2 + λ3
3)3 − (3λ1λ2λ3)3) 6= 0,

where

u1 = 12e1 + 34e2 + 56e3,

u2 = 54e1 + 16e2 + 32e3,

u3 = 36e1 + 52e2 + 14e3.

The coefficients λi are determined up to the action of a certain finite group W
described in 4.4. Two canonical forms are equivalent iff they have the same values
of

λ6
1 + λ6

2 + λ6
3 − 10(λ3

1λ
3
2 + λ3

1λ
3
3 + λ3

1λ
3
3),

(λ3
1 + λ3

2 + λ3
3)((λ3

1 + λ3
2 + λ3

3)3 + (6λ1λ2λ3)3), and

(λ3
1 − λ3

2)2(λ3
1 − λ3

3)2(λ3
2 − λ3

3)2.

The stabilizer subalgebra of u is a one-dimensional torus.

Family 2. The canonical form of a semisimple part is

u = λu2 + µu3, λ, µ, λ3 ± µ3 6= 0,

where λ, µ are determined up a permutation, simultaneous sign change and mul-
tiplication by two independent cubic roots of unity.

Family 3. The canonical form of a semisimple part is

u = λu1 + µ(u2 + u3), λ, µ, λ3 − µ3, λ3 + 8µ3 6= 0,

where λ, µ are determined up the action of a certain group of order 72 (group
No. 5 in the list of Shephard–Todd [10]). Two canonical forms are equivalent iff
they have the same values of

λ6 − 20λ3µ3 − 8µ6 and

(λ3 + 2µ3)((λ3 + 2µ3)3 + 108λ3µ6).
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Table 3: Nilpotent parts of elements of family 2

No. Canonical form Support Characteristic Stabilizer
dim Type

1 121 342 A2 2 2 1 T1

2 121 A1 2 0 2 T2

3 0 3 T3

Table 4: Nilpotent parts of elements of family 3

No. Canonical form Support Characteristic Stabilizer
dim Type

1 531 152 313 A1 2 1 0
2 0 3 A1

Family 4. The canonical form of a semisimple part is

u = λ(u2 + u3), λ 6= 0,

where λ is determined up to multiplication by a 6-th root of unity.

Table 5: Nilpotent parts of elements of family 4

No. Canonical form Support Characteristic Stabilizer
dim Type

1 121 342 531 152 313 A2 + A1 2 2 2 1 0
2 121 531 152 313 2A1 2 0 2 2 T1

3 531 152 313 A1 0 0 2 3 T2

4 121 342 A2 2 2 0 3 A1

5 121 A1 2 0 0 4 A1 + T1

6 0 5 A1 + T2

Family 5. The canonical form of a semisimple part is

u = λ(u3 − u2), λ 6= 0,

where λ is determined up to multiplication by a 6-th root of unity.

Family 6. The canonical form of a semisimple part is

u = λu1, λ 6= 0,

where λ is determined up to multiplication by a 6-th root of unity.

Family 7. This family consists of nilpotent elements.
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Table 6: Nilpotent parts of elements of family 5

No. Canonical form Support Characteristic Stabilizer

in S3Q in
∧2U ⊗ V dim Type

1 1
2x

2z + 1
6y

3 123 161 521 342 G2 2 4 1 T1

2 1
2x

2z + 1
2xy

2 123 161 521 142 322 341 A2 2 2 2 T1

3 1
6x

3 + 1
6y

3 121 342 G2(f) 0 2 3 T1

4 1
2x

2y 122 141 321 A1 1 1 4 T2

5 1
6x

3 121 A1 1 0 6 A1 + T1

6 0 0 9 A2 + T1

Table 7: Nilpotent parts of elements of family 6

No. Canonical form Support Characteristic Stabilizer
dim Type

1 143 162 233 252 351 A5 6 6 6 8 − 4 − 4 1 0
2 143 152 233 361 A4 6 6 0 2 2 − 4 2 T1

3 143 152 361 451 A3 + A1 6 0 0 − 4 2 2 2 T1

4 133 152 361 451 2A2 4 2 2 − 4 2 2 3 T1

5 133 162 243 252 2A2 0 0 0 8 − 4 − 4 3 A1

6 143 162 351 A3 6 1 1 − 2 1 1 3 T2

7 133 152 361 A2 + A1 3 3 0 − 1 − 1 2 4 T2

8 133 361 451 A2 + A1 2 1 1 − 4 5 − 1 4 T2

9 152 361 451 A2 + A1 2 1 1 − 4 − 1 5 4 T2

10 133 152 351 3A1 2 2 2 0 0 0 5 T2

11 152 361 A2 2 2 0 − 2 − 2 4 5 T3

12 133 152 2A1 2 1 1 2 − 1 − 1 6 T3

13 133 243 2A1 0 0 0 2 2 − 4 7 2A1 + T1

14 133 A1 1 1 0 1 1 − 2 8 A1 + T3

15 0 11 3A1 + T2

Table 8: Elements of family 7

No. Canonical form Signature Support Characteristic Stabilizer
dim Type

1 143 162 233 252 261 342 351 (6, 3) E7 6 6 6 6 6 6 12 1 0
2 153 162 233 242 252 261 341 (6, 3) E7(a1) 6 6 6 0 6 6 6 2 0
3 133 152 161 243 252 342 351 (6, 3) E7(a2) 0 6 0 6 6 6 6 2 0
4 143 161 233 242 251 341 352 (6, 3) E7(b) 6 0 6 0 6 0 6 3 0
5 143 152 233 261 342 351 (6, 3) E6 2 4 2 6 4 6 6 3 T1

6 123 162 252 342 361 451 (6, 3) E6 0 6 0 6 0 6 12 3 A1

7 133 142 153 161 243 252 341 (6, 3) E7(c1) 0 6 0 0 6 6 0 4 0
8 143 151 233 262 341 342 (6, 3) E6(a1) 0 6 0 6 0 0 6 4 T1

9 133 152 242 261 342 451 (6, 3) E6(a1) 4 0 2 4 2 6 6 4 T1

10 153 162 233 242 251 341 (6, 3) D6 6 1 5 1 5 1 5 4 T1

11 123 141 152 242 261 351 362 (6, 3) E7(c2) 0 0 6 0 0 0 6 5 0
12 133 152 242 261 351 451 (6, 3) D6(a1) 1 5 0 1 5 6 1 5 T1

13 143 152 161 233 242 351 (6, 3) A6 2 2 2 2 4 4 2 5 T1

14 143 152 233 242 261 341 (6, 3) D5 + A1 1 5 1 1 4 5 1 5 T1
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Table 8: (Continued)

No. Canonical form Signature Support Characteristic Stabilizer
dim Type

15 143 152 161 233 242 251 341 (6, 3) A5 + A2 2 2 2 2 2 2 2 6 0
16 123 161 241 252 342 351 (6, 3) E6(b) 2 0 4 0 2 0 6 6 T1

17 133 152 233 242 261 341 (6, 3) D6(a2) 0 1 5 0 1 1 5 6 T1

18 142 153 232 261 341 (6, 3) D5 2 4 2 0 4 6 0 6 T2

19 133 152 161 242 251 351 (6, 3) D5(a1) + A1 2 0 2 2 2 2 4 7 T1

20 152 161 233 242 251 341 (6, 3) A5 + A1 1 1 4 1 1 1 4 7 T1

21 122 133 151 243 261 342 (6, 3) E6(b) 0 0 0 6 0 6 0 7 A1

22 133 162 242 251 341 (6, 3) A5 2 1 3 1 1 1 5 7 T2

23 123 132 242 341 561 (6, 3) D5 0 6 0 0 0 6 6 7 2A1

24 143 152 161 232 251 341 (6, 3) A4 + A2 2 2 0 2 2 2 2 8 T1

25 143 152 161 233 241 342 (6, 3) A5 + A1 3 0 3 3 0 0 3 8 A1

26 131 153 162 233 242 261 (6, 3) A4 + A2 0 6 0 0 0 0 0 8 A1

27 121 153 233 252 342 451 (5, 3) A3 + A2 + A1 0 0 0 0 6 0 0 8 A1

28 133 161 242 251 351 (6, 3) D5(a1) 1 0 2 3 1 3 3 8 T2

29 123 161 162 252 341 (6, 3) D5(a1) 0 3 0 3 0 0 6 8 A1 + T1

30 123 132 242 361 451 (6, 3) A5 0 1 0 5 0 6 1 8 A1 + T1

31 123 152 232 261 341 (6, 3) A4 + A1 1 2 1 0 2 3 3 9 T2

32 143 152 161 232 251 (6, 3) A4 + A1 1 4 0 1 1 1 1 9 T2

33 143 151 232 261 341 (6, 3) A4 + A1 0 3 0 3 0 3 0 9 T2

34 141 152 233 242 351 (5, 3) A3 + A2 0 0 1 0 5 0 1 9 T2

35 152 161 233 241 342 (6, 3) A5 2 0 4 2 0 0 4 9 A1 + T1

36 123 152 161 251 342 (6, 3) D4 + A1 1 2 0 3 1 1 5 9 A1 + T1

37 123 152 161 232 251 341 (6, 3) A3 + A2 + A1 2 0 2 0 2 2 2 10 T1

38 143 151 232 243 341 (5, 3) D4(a1) + A1 0 1 0 1 4 1 0 10 T2

39 143 151 232 261 (6, 3) A4 0 4 0 2 0 2 0 10 T3

40 133 152 161 232 241 (6, 3) A3 + A2 2 1 1 1 1 1 2 11 T2

41 123 152 232 251 341 (5, 3) A3 + 2A1 1 0 1 0 4 1 1 11 T2

42 131 153 242 253 (5, 3) D4(a1) 0 2 0 0 4 0 0 11 T3

43 123 152 261 341 (6, 3) A4 2 2 0 0 2 4 2 11 A1 + T2

44 123 151 261 342 (6, 3) D4 0 2 0 4 0 2 4 11 2A1 + T1

45 121 342 561 562 (6, 2) D4(a1) 0 0 0 0 0 0 6 11 3A1

46 123 142 151 232 261 341 (6, 3) 3A2 0 2 0 2 0 2 2 12 A1

47 133 152 232 241 (5, 3) A3 + A1 1 1 0 1 3 0 1 12 T3

48 142 151 232 461 (6, 2) A3 + A1 0 0 0 1 0 1 5 12 2A1 + T1

49 133 142 151 232 241 (5, 3) 2A2 + A1 1 0 1 1 2 1 1 13 T2

50 142 151 232 261 341 (6, 2) 2A2 + A1 0 1 0 1 0 1 4 13 A1 + T1

51 122 153 161 251 341 (6, 3) A3 + 2A1 3 0 0 0 3 3 0 13 2A1

52 123 132 161 241 351 (6, 3) 2A2 + A1 1 0 2 0 1 3 0 14 A1 + T1

53 123 131 162 242 251 (6, 3) 2A2 + A1 0 3 0 0 0 0 3 14 2A1

54 142 153 161 231 (6, 3) A3 + A1 3 0 1 0 2 2 0 14 2A1 + T1

55 122 153 251 341 (5, 3) A3 + A1 2 0 0 0 4 2 0 14 2A1 + T1

56 123 131 152 242 251 (5, 3) A2 + 3A1 0 2 0 0 2 0 2 15 A1 + T1

57 123 141 232 351 (5, 3) 2A2 0 0 2 0 2 2 0 15 A1 + T2

58 131 162 242 251 (6, 2) 2A2 0 2 0 0 0 0 4 15 2A1 + T1

59 142 153 231 (5, 3) A3 2 0 1 0 3 1 0 15 2A1 + T2

60 123 142 151 231 (5, 3) A2 + 2A1 1 1 0 1 1 1 1 16 T3

61 131 152 242 251 (5, 2) A2 + 2A1 0 1 0 0 2 0 3 16 A1 + T2

62 122 341 561 (6, 2) A3 0 1 0 0 0 2 4 16 C2 + A1 + T1

63 122 161 251 341 (6, 2) A2 + 2A1 0 1 0 1 0 2 2 17 2A1 + T1

64 121 133 243 342 (4, 3) A2 + 2A1 0 0 0 3 0 0 0 17 3A1

65 142 151 231 (5, 2) A2 + A1 1 0 0 1 1 1 2 18 A1 + T3

66 123 131 242 (4, 3) A2 + A1 0 1 0 2 0 0 1 18 A1 + T3

67 122 133 141 231 (4, 3) 4A1 1 0 1 1 0 1 0 20 2A1 + T1

68 121 342 (4, 2) A2 0 0 0 2 0 0 2 21 3A1 + T2

69 122 131 241 (4, 2) 3A1 0 1 0 1 0 1 1 22 2A1 + T2

70 121 132 143 (4, 3) 3A1 2 0 0 1 0 0 0 23 A2 + A1 + T1

71 121 132 233 (3, 3) 3A1 0 0 2 0 0 0 0 25 2A2

72 121 341 561 (6, 1) 3A1 0 0 0 0 0 3 0 26 C3 + A1

73 121 132 (3, 2) 2A1 1 0 1 0 0 0 1 26 A2 + A1 + T2

74 121 341 (4, 1) 2A1 0 0 0 1 0 2 0 27 C2 + 2A1 + T1

75 121 (2, 1) A1 0 1 0 0 0 1 0 32 A3 + 2A1 + T1

76 0 43 A5 + A2

4.2. The Z3 -graded algebra E7 . Let g be a simple Lie algebra of the type
E7 . We define its Z3 -grading and the respective θ -representation by the following
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labelling of the affine Dynkin diagram E
(1)
7 (cf. 2.4):

d d t d d d
d

1 d
11

(We omit zero labels and blacken the unique simple root of positive degree. The
upright digit indicates the degree of this root, and italic digits indicate numerical
labels of the highest weight of the θ -representation.)

The precise description of the Z3 -graded algebra g may be obtained as
follows. We consider a direct sum

g = (
∧2U∗ ⊗ V ∗)⊕ (sl(U)⊕ sl(V ))⊕ (

∧2U ⊗ V )

and introduce a Lie algebra structure on it so that the above direct sum is a
Z3 -grading

g = g−1 ⊕ g0 ⊕ g1.

The commutator maps gi × gj → gi+j are determined as in 3.2. Here are the
precise formulas:

[α∗ ⊗ v∗, α⊗ v] = (〈α∗, α〉/6 · 1− C(α∗ ⊗ α)) · 〈v∗, v〉
⊕ 〈α∗, α〉/2 · (〈v∗, v〉/3 · 1− v∗ ⊗ v)

[u1 ∧ u2 ⊗ v1, u3 ∧ u4 ⊗ v2] = 2ι(u1 ∧ u2 ∧ u3 ∧ u4)⊗ ι(v1 ∧ v2)

[u∗1 ∧ u∗2 ⊗ v∗1, u∗3 ∧ u∗4 ⊗ v∗2] = −2ι(u∗1 ∧ u∗2 ∧ u∗3 ∧ u∗4)⊗ ι(v∗1 ∧ v∗2)

(where α ∈ ∧2U ; α∗ ∈ ∧2U∗ ; ui ∈ U ; v, vi ∈ V ; u∗, u∗i ∈ U∗ ; v∗, v∗i ∈ V ∗ ).
Let us describe the root system ∆ of g relative to t. Denote by ∆k the set

of nonzero weights of t in gk . We have ∆0 = {iε− jε, εi−εj}, ∆1 = {iε+ jε+εk},
∆−1 = {−iε− jε− εk} (i 6= j ).

The Weyl group W0 permutes iε and εi arbitrarily. We choose iε − i+1ε
(i = 1, . . . , 5), εj−εj+1 (j = 1, 2) as simple roots of g0 . Together with 5ε+6ε+ε3 ,
they compose an extended system of simple roots of g.

An invariant inner product on t∗ can be determined by the formulas
(iε, jε) = −1

6
, (iε, iε) = 5

6
, (εs, εt) = −1

3
, (εs, εs) = 2

3
, (iε, εs) = 0 (i 6= j, s 6= t).

In particular, we have (
∑

ixiε+
∑
xsεs,

∑
iyiε+

∑
ysεs) =

∑
ixiy+

∑
xsys when-

ever
∑

ix =
∑
xs = 0. The inner products of roots of degree 1 can be computed

by formula (4).

4.3. A Cartan subspace. Consider regular Z3 -graded subalgebras of type A2

in g such that their degree 0 component is a Cartan subalgebra, and simple
roots and the lowest root have degree 1. They are classified by embeddings of
the extended system of simple roots A

(1)
2 in ∆1 preserving the inner product.

Up to W0 -conjugacy, there is a unique such subalgebra, say, the algebra A1

generated by root vectors 12e1, 34e2, 56e3 . Consider also an algebra A2 generated by

54e1, 16e2, 32e3 , and A3 generated by 36e1, 52e2, 14e3 . Making use of (4), it is easy to
see that (A1,A2,A3) is the unique, up to W0 -conjugacy, triple of subalgebras
of the above type commuting with each other. It follows that the elements
u1 = 12e1 +34e2 +56e3, u2 = 54e1 +16e2 +32e3, u3 = 36e1 +52e2 +14e3 are semisimple
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and commute with each other. Hence c = 〈u1, u2, u3〉 is an abelian subspace in
g1 consisting of semisimple elements. It can be included in a Z3 -graded Cartan
subalgebra h = c∗⊕ 〈c〉⊕ c of g, where c = (diag(1,−1, 1,−1, 1,−1), 0) ∈ g0 , and
c∗ = 〈u1, u2, u3〉 ⊂ g−1 is generated by semisimple elements ui ∈ Ai obtained from
ui by lifting the indices. (The ui are sums of root vectors of degree −1 in Ai .)
The same argument as in 3.3 shows that c is a Cartan subspace.

4.4. The Weyl group. In order to find the Weyl group W associated with c,
we first collect sufficiently many linear transformations of c induced by elements
of G0 normalizing c. It is easy to pick elements from G0 , diagonal in the bases

je, ej , that multiply uk by arbitrary and independent cubic roots of unity. The
permutation ( 1 2 )( 3 4 )( 5 6 ) of basic vectors je combined with the multiplication
by i induces a linear transformation of c transposing u2, u3 and leaving u1 fixed.
Other transpositions of uk can be obtained in the same way. It follows that W
contains a subgroup G(3, 1, 3) of monomial transformations in the basis uk , whose
nonzero matrix entries are cubic roots of unity. In particular, W is irreducible.
Also note that a pair of monomial transformations of U and V given by permuta-
tions ( 1 2 )( 5 4 )( 3 6 ) and ( 2 3 ) of basic vectors combined with the multiplication
by i and −1, respectively, yields −1 ∈ W .

Consider the root system of g relative to h. The automorphism θ acts
naturally on h∗ and permutes the roots. It is represented by an integral matrix in
a base of simple roots and has eigenvalues 1, ω, ω−1 , where ω = e

2πi
3 . Moreover,

the restriction of θ to each invariant subspace of h∗ generated by roots has an
integral matrix, too, whence eigenvalues ω, ω−1 occur with equal multiplicities.

The root system is divided in two subclasses. The first one consists of roots
α such that α(c) = 0. Since dim z(c) = 79, there are 72 such roots. The second
subclass consists of remaining 54 roots β , which satisfy β(c) 6= 0. Each root α
in the first subclass has nonzero projections on θ -eigenspaces of eigenvalues ω±1 ,
and α + θα + θ2α = 0. It follows that rk{α, θα, θ2α} = 2 and {α, θα, θ2α} is the

extended system of simple roots of type A
(1)
2 of a certain h-regular θ -invariant

simple subalgebra A(α), whose 6 roots are ±θkα (k = 0, 1, 2).

The 72 roots of the first subclass fall into 12 such subsystems of type A2 ,
hence we obtain 12 subalgebras A(α) of type A2 , including A1,A2,A3 . We have a
decomposition h = h(α)⊕ hα , where h(α) is a Cartan subalgebra in A(α) and hα

is the centralizer of A(α) in h. (Note that c ∈ hα .) The same reasoning as in 3.4
shows that there exists an element gα ∈ G0 such that Ad gα|h = θ|h(α) ⊕ 1|hα , and
wα = Ad gα|c ∈ W has eigenspaces h(α)1 = c ∩ h(α) and hα1 = c ∩ hα = Kerα|c
and is represented by the matrix




ω 0 0
0 1 0
0 0 1




in the eigenbasis.

Thus W contains 24 reflections w±1
α of order 3, and −1. Among irre-

ducible finite reflection groups acting on a 3-dimensional space, only one has these
properties, namely the group No. 26 in the list of Shephard–Todd. The order of W
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is 1296, and it is generated by −1, the subgroup G(3, 1, 3), and a 3-fold reflection

s =
−i√

3




ω ω2 ω2

ω2 ω ω2

ω2 ω2 ω




(in the basis uk ), see [10]. The above 12 reflections wα are conjugated, and there
are no 3-fold reflections in W other than w±1

α .

However, W contains in addition 9 reflections of order 2. They can be
described as follows. Let β be a root from the second subclass. Suppose that
β|c∗⊕c 6= 0; then β has nonzero projection on each eigenspace of θ . It follows that
rk{β, θβ, θ2β} = 3. We claim that θkβ are pairwise orthogonal. Indeed, if their
inner products are equal to −1, then rk{β, θβ, θ2β} = 2. If their inner products
are equal to 1, then { θkβ−θk+lβ | l = 1, 2 } is a root subsystem of type A2 in the
first subclass. Since all such root subsystems are conjugated (by elements of G0

normalizing c), each one of them originates from a subsystem {±β,±θβ,±θ2β}
of the second subclass, as above. Hence 12 subsystems of type A2 in the first
subclass give rise to at least 12 · 6 = 72 roots in the second subclass, whereas it
contains only 54 roots. Our claim is proved. It follows that {±θkβ} is a root
system of type 3A1 , where θ acts by a cyclic permutation of components.

The 54 roots of the second subclass fall into 9 such subsystems. (If there
is a root β such that β|c∗⊕c = 0, then there are exactly two such roots. But this
cannot happen, because the number of roots in the second subclass not belonging
to these subsystems is divisible by 6.) Hence we obtain 9 subalgebras B(β) of
type 3A1 , and θ acts on each B(β) by a cyclic permutation of its components. As
above, we have a decomposition h = h(β)⊕hβ , where h(β) is a Cartan subalgebra
in B(β) and hβ is the centralizer of B(β) in h. (Note that c ∈ h(β).) Let B(β)
be the subgroup of G corresponding to B(β). Take a θ -invariant element gβ from
the normalizer of h(β) in B(β) such that Ad gβ|h(β) = −1, Ad gβ|hβ = 1. We have
gβ ∈ G0 , and rβ = Ad gβ|c ∈ W is a reflection of order two. These 9 reflections rβ
are conjugated and all 2-fold reflections in W are obtained in this way.

Among B(β), there is a subalgebra B0 constructed as follows. Let Eij
denote (the linear operator on U given in the basis ie by) the (i, j)-th matrix
unit. Put

e0 = E12 + E34 + E56, f0 = E21 + E43 + E65, h0 = c,

e1 = 53e1 + 15e2 + 31e3, f1 = 46e1 + 62e2 + 24e3, h1 = u3 − u2,

e−1 = 46e1 + 62e2 + 24e3, f−1 = 53e1 + 15e2 + 31e3, h−1 = u3 − u2.

Then B0 = 〈 ek, fk, hk | k = 0,±1 〉 is a graded h-regular semisimple subalgebra
of type 3A1 , deg ek = deg fk = deg hk = k ∈ Z3 , and the representations
(B0)0 : (B0)±1 are isomorphic to the adjoint representation of (B0)0

∼= sl2(C)
under the identifications e0 7→ e±1, f0 7→ f±1, h0 7→ h±1 .

Let z1, z2, z3 be the coordinates on c in the basis u1, u2, u3 . The basic
projective invariants of W are

f = z6
1 + z6

2 + z6
3 − 10(z3

1z
3
2 + z3

1z
3
3 + z3

2z
3
3)
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g = (z3
1 + z3

2 + z3
3)(z3

1 + z3
2 + z3

3 + 6z1z2z3)

× (z3
1 + z3

2 + z3
3 + 6ωz1z2z3)(z3

1 + z3
2 + z3

3 + 6ω2z1z2z3)

p = (z3
1 − z3

2)(z3
1 − z3

3)(z3
2 − z3

3)

q = z1z2z3(z1 + z2 + z3)(z1 + ωz2 + ω2z3)(z1 + ω2z2 + ωz3)

× (z1 + z2 + ωz3)(z1 + ωz2 + z3)(ωz1 + z2 + z3)

× (z1 + z2 + ω2z3)(z1 + ω2z2 + z3)(ω2z1 + z2 + z3)

(see [10]) connected with the basic syzygy

6912q3 − 4g3 + 186624p4 + f 6 − 6f 4g − 864f 3p2 + 9f 2g2 + 2592fp2g = 0.(5)

The polynomials p, q are products of mirror functionals of all 2-fold and 3-fold
reflections, respectively. It is easily shown that p is invariant under all wα , and
each rβ multiplies it by −1. Similarly, q is invariant under all rβ , and each wα
multiplies it by ω−1 . It follows that f, g, h = p2 are (algebraically independent)
basic invariants for W : c, which separate W -orbits.

4.5. Nilpotent elements. Our next task is to classify nilpotent elements. We
proceed as in 3.6 using the methods of 2.5. The root lattice Q of the covering loop
algebra G is embedded in Z∆ × Z, so that the extended system of simple roots
of g gives rise to a base Π = { (iε − i+1ε, 0), (εj − εj+1, 0), (5ε + 6ε + ε3, 1) | i =
1, . . . , 5; j = 1, 2 } of Q. There are 37 types of complete subalgebras of G (given
by types of various subsystems of Π). For some of these types, there are several
(but no more than 6) locally flat algebras, and some of these algebras admit several
(but no more than 4) non-conjugated embeddings in G. Summing up, we obtain
93 locally flat subalgebras of G. Some of them are not complete. Excluding them,
we obtain, up to conjugacy, 75 supports of nilpotent elements, hence 76 nilpotent
orbits of G0 in g1 (including 0).

4.6. Mixed elements. The centralizer z(u) of u ∈ c is an h-regular subal-
gebra spanned by h and the root subspaces gα such that α(u) = 0. The latter
equality is equivalent to wαu = u or rαu = u if α belongs to the first or second
subclass of the root system, respectively. Therefore u is a semisimple part of a
mixed element iff u lies on mirror hyperplanes of some reflections from W .

In this subsection, we use the following shorthand terminology. The mirror
hyperplane of an s-fold reflection will be called an s-mirror. Linear functionals
defining 2- or 3-mirrors in c (mirror functionals) are easily obtained by decom-
posing p and q into linear factors.

The collection of mirrors containing u may belong to one of the following
types.

4.6.1. One 3-mirror. The set of such u is determined by the conditions p(u) 6=
0, q(u) = 0, g(u) 6= 0. Passing to a conjugate, we may assume that the equation of
the mirror is z1 = 0 =⇒ z(u)′ = A1 , z(u)′0 is its Cartan subalgebra, and z(u)′1 is
spanned by three summands of u1 , which are the root vectors corresponding to the
extended system of simple roots (of degree 1) of A1 relative to z(u)′0 . These roots
and root vectors are permuted cyclically by a pair of monomial transformations
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of U, V given by permutations ( 1 3 5 )( 2 4 6 ), ( 1 2 3 ). The respective element of
G0 fixes u and glues together some nilpotent orbits of the action Z0(u)0 : z(u)′1 .
Finally, nilpotent orbits for Z0(u) : z(u)′1 are determined by the condition that
a certain number of coordinates (in the basis of root vectors) vanish and other
coordinates are nonzero.

4.6.2. One 2-mirror. The respective subset of u ∈ c is determined by the
conditions p(u) = 0, q(u) 6= 0. We may assume that the equation of the mirror
is z2 = z3 =⇒ z(u)′ = B0 , z(u)′0 = 〈e0, f0, h0〉 ∼= sl2(C), and z(u)′1 = 〈e1, f1, h1〉
is isomorphic to the adjoint representation of sl2(C). Hence there is a unique
nilpotent orbit for the action Z0(u) : z(u)′1 —the orbit of e1 .

4.6.3. One 3-mirror and one 2-mirror. The respective subset in c is determined
by the equations p(u) = 0, q(u) = 0, f 2(u) = 4g(u). We may assume that the
equations of the mirrors are z1 = 0, z2 = z3 =⇒ z(u)′ = A1 ⊕B0 , and nilpotent
orbits for the action Z0(u) : z(u)′1 are direct products (or sums, is a reader prefers)
of nilpotent orbits of the above two types.

Remark 4.1. If p = q = 0, then the syzygy (5) transforms into (f 2− g)2(f 2−
4g) = 0, so that either f 2 = 4g or f 2 = g . The first possibility has been just
considered, and the second one is considered below (4.6.5).

4.6.4. Four 3-mirrors. The respective subset of c is determined by the condi-
tions p(u) 6= 0, q(u) = 0, g(u) = 0. We may assume that the equations of the
mirrors are z1 = 0, z1 + z2 + z3 = 0, ωz1 + z2 + z3 = 0, ω2z1 + z2 + z3 = 0 =⇒
u = λ(u3−u2). The centralizer gu = z(u) is a graded reductive subalgebra of type
D4 +T3 described as follows. First, its center is z(gu) = 〈h−1, c, h1〉. Further, con-
sider a 3-dimensional space Q = 〈x, y, z〉 and let ι1, ι2, ι3 be three embeddings of
Q in U ⊕V mapping the triple (x, y, z) to (1e, 3e, 5e), (2e, 4e, 6e), and (e1, e2, e3),
respectively. Then sl(Q) is embedded diagonally in sl(U) ⊕ sl(V ) via ι1, ι2, ι3 ,
and S3Q is embedded in

∧2U ⊗ V by mapping, for q1, q2, q3 ∈ Q,

q1q2q3 7→
∑

(i1 ,i2,i3)

ι1(qi1) ∧ ι2(qi2)⊗ ι3(qi3),

where the sum is taken over all permutations of (1, 2, 3). Similarly, S3Q∗ is
embedded in

∧2U∗⊗V ∗ . One verifies that z(u)′ = S3Q∗⊕sl(Q)⊕S3Q is a graded
subalgebra of type D4 , whose grading is determined by the following labelling of
the affine Dynkin diagram D

(3)
4 :

d d d1<

It is known (and easy to verify using the methods of 2.5, see [15, 5.3],
[14, §5]) that there are 5 nonzero nilpotent orbits for the action (Z(u)′)0

0 : z(u)′1 ,
whose characteristics cannot be transformed into each other via an automorphism
of z(u)′0 , see table 6. Hence these orbits are not glued together under the action
of Z0(u) and are exactly nilpotent orbits for Z0(u) : z(u)′1 .
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4.6.5. Two 3-mirrors and three 2-mirrors. The respective subset of c is deter-
mined by the equations p(u) = 0, q(u) = 0, f 2(u) = g(u). We may assume
that the equations of the mirrors are z2 = 0, z3 = 0, z2 − z3 = 0, z2 − ωz3 =
0, z2 − ω2z3 = 0 =⇒ u = λu1 . The centralizer gu = z(u) is a graded reduc-
tive subalgebra of type A5 + T2 described as follows. For its center, we have
z(gu) = 〈u1, u1〉. Let U1 = 〈1e, 2e〉, U2 = 〈3e, 4e〉, U3 = 〈5e, 6e〉. We identify
V with

∧2U∗1 ⊕
∧2U∗2 ⊕

∧2U∗3 by mapping e1 7→ 12e , e2 7→ 34e , e3 7→ 56e and
thus embed gl(U1) ⊕ gl(U2) ⊕ gl(U3) in gl(U) ⊕ gl(V ). There are also natural
embeddings
⊕

(i,j,k)

Ui ⊗ Uj ⊗
∧2U∗k ↪→

∧2U ⊗ V and
⊕

(i,j,k)

U∗i ⊗ U∗j ⊗
∧2Uk ↪→

∧2U∗ ⊗ V ∗

(the direct sums are taken over all cyclic permutations of (1, 2, 3)). One verifies
that

z(u)′ =
⊕

(i,j,k)

U∗i ⊗ U∗j ⊗
∧2Uk ⊕

(
(sl(U)⊕ sl(V )) ∩

⊕
gl(Ui)

)

⊕
⊕

(i,j,k)

Ui ⊗ Uj ⊗
∧2U∗k

is a t-regular subalgebra of type A5 , whose grading is determined by the following
labelling of the affine Dynkin diagram A

(1)
5 :

d
d
d��
T
T d
d
dTT
�
�

1

1

1

We may assume that characteristics of nilpotent orbits for Z0(u)0 : z(u)′1
lie in the positive Weyl chamber of t, and we indicate them by 6 indices, where
the first triple is given by the values of the simple roots 1ε− 2ε, 3ε− 4ε, 5ε − 6ε
of z(u)′0 and the second triple is composed of the values of the weights 1ε + 2ε−
2ε1, 3ε + 4ε − 2ε2, 5ε + 6ε − 2ε3 , which generate the dual to the 2-dimensional
center of z(u)′0 .

A pair of monomial transformations of U, V determined by permutations
( 1 3 5 )( 2 4 6 ), ( 1 2 3 ) fixes u and permutes simple components sl(Ui) of z(u)′0
and both triples in each characteristic cyclically. On the contrary, an outer auto-
morphism transposing two simple components of z(u)′0 cannot be induced by an
element of Z0(u). (That is why the elements No. 8 and 9 in table 7 are not equiv-
alent.) Indeed, suppose for example that a pair (a, b) ∈ SL(U) × SL(V ) fixes u
and permutes U1 and U2 leaving U3 stable. Then we must have

a(12e) = λ34e, a(34e) = µ12e, a(56e) = ν56e,

b(e1) = λ−1e2, b(e2) = µ−1e1, b(e3) = ν−1e3

=⇒ det a = λµν = 1, det b = −(λµν)−1 = 1. A contradiction! It is also clear
that an element of Z0(u) normalizing each sl(Ui) leaves each Ui stable, whence
belongs to Z0(u)0 . Therefore two nilpotent orbits for the action Z0(u)0 : z(u)′1 are
glued together under the action of Z0(u) iff their characteristics are obtained from
each other by a cyclic permutation of both triples. This remark allows to complete
the classification of nilpotent orbits for the action Z0(u) : z(u)′1 .
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