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Abstract. This is a collection of results on the use of infinitesimal orbital
symmetries of first-order ordinary differential equations. Some of these

results are classical, dating back to Lie and Bianchi, and some new results
are added.

1. Introduction

Sophus Lie’s work on symmetries of differential equations (see [11], for instance)
has been rediscovered and revived in recent years, and it forms the foundation for
a wealth of new results. It seems that most of the recent work in the tradition of
Lie has been focussed on partial differential equations or on ordinary differential
equations of higher order. In contrast, this article deals exclusively with first-
order ordinary differential equations and their (infinitesimal orbital) symmetries.
We present several results of Lie and his school, sometimes rephrased to fit the
given situation, and add some new results.

We will consider autonomous, analytic ordinary differential equations
ẋ = f(x), which are defined on an open and connected subset U of Kn (with
K standing for the real or complex numbers). To every vector field f we assign
the Lie derivative Lf which sends any scalar-valued function ψ to the function
Lf (ψ) defined by Lf (ψ)(x) := Dψ(x)f(x). Specifically, we are interested in
(orbital) symmetries of first order differential equations. As is well-known (see
[17], for instance), an analytic vector field g (defined on some open subset Ũ
of U ) generates a local one-parameter group of orbital symmetries of such a
differential equation (thus, the transformations map solution orbits of ẋ = f(x)
to solution orbits, not necessarily preserving the parameterization) if and only if
there is an analytic function λ such that [g, f ] = λf on Ũ . (The Lie bracket of
vector fields is defined as usual: [g, f ] (x) = Df(x)g(x)−Dg(x)f(x). It follows
that L[g,f ] = LgLf − LfLg .) In the case λ = 0 the parameterizations will
also be preserved. Symmetries of a non-autonomous equation ẋ = h(t, x), as
introduced by S. Lie, correspond to orbital symmetries of the “autonomized”
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system ṫ = 1, ẋ = h(t, x). Moreover, f and µf , with µ analytic and µ(x) 6= 0
for all x in an open subset Ũ of U , have the same orbits, hence the same
orbital symmetries on any open subset of Ũ . In this sense, it is harmless to pass
from f to µf . It should also be noted that orbital symmetries of ẋ = f(x)
stand in correspondence with the symmetries of the linear, homogeneous partial
differential equation Lf (φ) = 0. Several of Lie’s results (cf. Lie [11], Bianchi [2],
Engel/Faber [3]) were originally stated for the latter type.

The vector fields g satisfying [g, f ] = λf on some open Ũ ⊆ U form a
Lie algebra but not necessarily a finite dimensional Lie algebra, and moreover,
even a finite set of such vector fields will not, in general, generate a finite
dimensional Lie algebra of vector fields. To illustrate this, consider the simple
case f = (1, 0, . . . , 0)t . Then

[g, f ] = λf iff g(x) =

(
γ(x)

ĝ(x2, . . . , xn)

)
,

with ∂γ/∂x1 = λ . In general, due to the straightening theorem, a similar
observation holds locally for any differential equation near a nonstationary point.
Therefore, it would be unnatural to restrict attention to finite dimensional Lie
algebras of infinitesimal orbital symmetries. (Things are different in the case of
higher-order ordinary differential equations, where the infinitesimal symmetries
automatically form a finite dimensional Lie algebra. This is due to a geometrically
motivated restriction imposed on the admissible symmetries of the equivalent
first-order system; a discussion can be found in Gaeta [4].)

The “multiparameter systems of infinitesimal orbital symmetries” to
be discussed here are finite involution systems of vector fields generating local
one-parameter groups of orbital symmetries. Recall that a set g1, . . . , gr of
analytic vector fields defined on an open, connected subset U of Kn is called
an involution system if there are analytic, scalar-valued functions µijk on U
such that [gi, gj] =

∑
k µijkgk for all i and j . Any finite set h1, . . . , hs of

analytic vector fields on U can be extended to a (finite) set that is in involution
on an open-dense subset U∗ of U . To see this, consider the hi as elements
of an n -dimensional vector space over the field L of all meromorphic functions
on U . If some [hi, hj ] is not a linear combination of h1, . . . , hs (equivalently,
there is a point y in Kn such that [hi, hj ] (y) is not a linear combination of
h1(y), . . . , hs(y)), augment the given set by this vector field. Due to finite
dimension over L , this process will terminate. (If convenient, it may also
be assumed that the vector fields forming the involution system are linearly
independent over L .) If, additionally, [hi, f ] = λif for analytic λi , 1 ≤ i ≤ s , a
similar property will also hold for the Lie brackets [hi, hj ] , and therefore for the
involution system generated by the hi .

Let us introduce a little more notation. For an open-dense U ∗ ⊆ U ,
let NU∗(f) be the set of all vector fields g on U ∗ such that [g, f ] = λf for an
analytic function λ on U∗ , and let CU∗(f) be the set of all vector fields g on
U∗ such that [g, f ] = 0. These will be called, respectively, the normalizer and
centralizer of f on U∗ . Both the normalizer and the centralizer of f are Lie
algebras over K , and also modules over the ring of first integrals of f on U ∗ . (It
is said that ψ is a first integral of f if Lf (ψ) = 0. The module property follows
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from the general rule [ψg, f ] = ψ [g, f ]− Lf (ψ)g .) Using this language, it may
be said that this article is about subalgebras of NU∗(f), resp. CU∗(f) which are
also finitely generated submodules. The exposition will include several classical
results, due to Lie and Bianchi. (Sources for these are Lie [11], Engel/Faber [3],
Bianchi [1], and Hermann [8], and more details can be found in these references.
For a general overview of symmetries of differential equations we refer to Olver
[12], [13]. A short account of Lie’s method for first-order ordinary differential
equations in dimension two can also be found in Ince [9].) We will discuss the
use of such systems of infinitesimal (orbital) symmetries to obtain nontrivial
information about (and possibly simplify) ẋ = f(x).

Specifically, we will discuss the use of infinitesimal symmetries to find
solution-preserving maps to equations of smaller dimension, and, ideally, to ob-
tain solutions of ẋ = f(x) by “algebraic” operations and quadratures alone.
(Since “integration” is an ambiguous term in our context, we will use the term
“quadrature” to describe the determination of antiderivatives.) It has to be
emphasized, though, that this is not the only useful application of symmetries.
For instance, there is a large body of work (from various perspectives) on the
influence that a compact linear symmetry group has on the qualitative behav-
ior of a differential equation; see Golubitsky et al. [5], [6], and Scheurle [15],
among others. Hadeler [7] discusses qualitative features of equations admitting
the (non-compact) symmetry group R+ . Bluman and Kumei [2] briefly mention
that local one-parameter groups of symmetries stabilize certain invariant sets,
like separatrices of real equations in dimension two. As will be shown here, or-
bital symmetries enforce the existence of certain invariant sets for a differential
equation under very general circumstances. (This result may be seen as a gener-
alization of the familiar ”stratification of phase space” in the case of a compact
linear symmetry group.) Therefore, even if Lie’s general local reduction proce-
dure (which relies on non-constructive tools like the inverse function theorem)
cannot be carried out for a given equation, one still gets nontrivial information
in a relatively easy way. (Occasionally there will be a comment on the computa-
tional aspect of a general result, but we will not discuss this systematically.) A
few examples and applications will be presented in the final section.

We will not discuss the (serious) problem of how to determine infinitesi-
mal symmetries of first order ordinary differential equations. It is a regrettable
fact that there is no general computational approach to these, and this distin-
guishes the class of first-order ordinary differential equations. We will usually
assume that some symmetries are known (and note that it is frequently possible
to start with a set of symmetries-to-be and then construct the symmetric vector
fields). Most of the examples we discuss will therefore have a prescribed set of
symmetries, although, as will be indicated, it is sometimes possible to find these
symmetries in a constructive manner.

2. Reduction of dimension via invariants

Throughout this section let ẋ = f(x) be given on U , and vector fields g1, . . . , gr
on U such that [gi, f ] = λif , and [gi, gj] =

∑
k µijkgk for all i and j , with
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the λi and µijk analytic on an open(-dense) U∗ ⊆ U . Denote by s the rank of
g1, . . . , gr over the field L . In this section it will be assumed that s < n .

A well-known theorem of Frobenius states that there is an open and
dense subset U∗∗ of U∗ and analytic functions φ1, . . . , φn−s on U∗∗ that are
independent (i.e., their functional matrix has rank n − s everywhere) common
first integrals of g1, . . . , gr . Moreover, any point of U∗∗ has a neighborhood such
that every common first integral of g1, . . . , gr in this neighborhood is a function
of the φj . ¿From [gi, f ] = λif it follows that LgiLf − LfLgi = λiLf , and in
particular LgiLf (φj) = λiLf (φj) for all i and j . This property is the basis of
the following “reduction of dimension theorem”, which goes back to Lie [11]; see
also Engel/Faber [3] and Hermann [8].

Proposition 2.1. Assume that [gi, f ] = 0 for i = 1, . . . , r .

(a) Then every point of U∗∗ has a neighborhood such that the restriction of Φ :=
(φ1, . . . , φn−s)t is solution-preserving from ẋ = f(x) to an equation ẋ = h(x)
on an open subset of Kn−s .

(b) Moreover, for every point of U ∗∗ there is a neighborhood and analytic func-
tions φn−s+1, . . . , φn such that Ψ := (φ1, . . . , φn)t is invertible and solution-
preserving from ẋ = f(x) to an equation ẋ = f ∗(x) , with

f∗(x) =




f∗1 (x1, . . . , xn−s)
...

f∗n−s(x1, . . . , xn−s)
f∗n−s+1(x1, . . . , xn)

...
f∗n(x1, . . . , xn)




.

Here, the gi are transformed to g∗i = (0, . . . , 0, ∗, . . . , ∗)t , with zeros in the first
n − s entries. Furthermore, one has [g∗i , f

∗] = 0 , and the g∗i are locally in
involution.

Proof. (a) We have LgiLf = LfLgi for all i . Therefore, whenever ψ is a
common first integral of the gi then so is Lf (ψ), and hence it can be expressed
as a function of the φj in a neighborhood of every point of U ∗∗ . It follows that
the entries of DΦ(x)f(x) are common first integrals of the gi , and this shows the
existence of h such that DΦ(x)f(x) = h(Φ(x)) for all x in this neighborhood.
The proof of part (b), with arbitrary φn−s+1, . . . , φn such that φ1, . . . , φn are
functionally independent at the point in question, is similar. Since solution-
preserving maps preserve Lie brackets, the final assertions follow.

Remark 2.2. The results of (2.1), with the exception of the last statement, also
hold for vector fields of the form f+

∑
σigi , with analytic functions σi on U , and

thus for a larger class of vector fields than those admitting the gi as infinitesimal
symmetries. Therefore, the proposition does not use all the information available
from the symmetries.

To extend the procedure to the orbitally symmetric case (with the λi
not necessarily zero), we use the following auxiliary result.
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Lemma 2.3. Assume that [gi, f ] = λif for i = 1, . . . , r , and let ψ be a
common first integral of the gi such that Lf (ψ) 6= 0 . Then

[
gi,

1

Lf (ψ)
f

]
= 0 for 1 ≤ i ≤ r.

Proof. The bracket conditions imply LgiLf (ψ) = λiLf (ψ), thus

Lgi(Lf (ψ))−1 = −Lf (ψ)−2LgiLf (ψ) = −λi(Lf (ψ))−1,

and the assertion follows.

This transfer from normalizer to centralizer (on a smaller, but still open
and dense subset of U where Lf (ψ) has no zeros) is not quite satisfactory in
some respects. For instance, the zero set of Lf (ψ) contains all the stationary
points of f , where interesting local behavior may occur.

The exceptional case that every common first integral of the gi is also
a first integral of f has been excluded in the lemma. This exceptional case
occurs if and only if f is a linear combination of the gi over L . (An equivalent
characterization is that for all y in an open-dense subset of U , f(y) is a linear
combination of g1(y), . . . , gr(y) over K .)

Proposition 2.4. Let the hypotheses and notation be as at the beginning of
this section. Furthermore, assume that there is a common first integral ψ of
g1, . . . , gr such that Lf (ψ) 6= 0 , and let Û := {z ∈ U∗∗ : Lf (ψ)(z) 6= 0} .

(a) Then every point of Û has a neighborhood such that the restriction
of Φ := (φ1, . . . , φn−s)t is locally orbit-preserving from ẋ = f(x) to an equation
ẋ = h(x) on an open subset of Kn−s .

(b) Moreover, for every point of Û there is a neighborhood and analytic
functions φn−s+1, . . . , φn such that Ψ := (φ1, . . . , φn)t is invertible and locally
orbit-preserving from ẋ = f(x) to an equation ẋ = f ∗(x) , with

f∗(x) =




f∗1 (x1, . . . , xn−s)
...

f∗n−s(x1, . . . , xn−s)
f∗n−s+1(x1, . . . , xn)

...
f∗n(x1, . . . , xn)




.

The g∗i still satisfy [g∗i , f
∗] = λ∗i f

∗ , with λ∗i = λi ◦Ψ .

Proof. This follows from (2.1) for (Lf (ψ))−1f . (The cautious phrase “locally
orbit-preserving” is only necessary for the complex case. If K is the real number
field then Φ resp. Ψ map solution orbits of ẋ = f(x) on Û to solution orbits of
the respective image equations.)

Note that the assertion remains true with h = 0, resp.

f∗ = (0, . . . , 0, ∗, . . . , ∗)t

if every common first integral of the gi is also a first integral of f , but then it
does not provide any new information.



254 Walcher

Remark 2.5. Finding common first integrals of the gi may not be a simple
matter, although the proof of Frobenius’ theorem (see Hermann [8]) is, up to some
point, constructive provided that the vector fields in question can be integrated
in an elementary manner. The following observation may be useful in the case
that all [gi, f ] = 0: If ψ is a common first integral of the gi , then the same is true
for Lf (ψ), and repeated application of Lf to some nonempty set of common first
integrals of g1, . . . , gr will produce an independent set ψ1, . . . , ψq (with q ≤ s)
of common first integrals such that every Lf (ψj) can locally be expressed as a
function of ψ1, . . . , ψq . It is obvious that a variant of (2.1) works in this situation.
Thus, it is not necessary to know a maximal independent system of common first
integrals from the start.

Under certain circumstances it is possible to carry out the reduction of
dimension step-by-step. We only discuss the case of infinitesimal symmetries;
the orbital symmetry case follows with (2.3).

Proposition 2.6. Assume that, in addition to the general hypotheses,
[
gi, f

]

= 0 for all i , and furthermore that there is a p < r such that [gi, gj] =
µij1g1 + · · ·+ µijpgp for all i ≤ p and all j .

(a) Then g1, . . . , gp are in involution on U∗ . Let γ1, . . . , γn−q (with q denoting
the rank of g1, . . . , gp over L) be a functionally independent system of common
first integrals of g1, . . . , gp on the open-dense subset U ∗∗ of U∗ . Then every point
of U∗∗ has a neighborhood such that every Lgj (γk) is a function of γ1, . . . , γn−q
in this neighborhood.

(b) Let Γ : U∗∗ → Kn−q be defined by Γ(x) := (γ1(x), . . . , γn−q(x))t . Then

there are analytic vector fields f̃ , g̃p+1, . . . , g̃r on an open and dense subset Ũ

of Γ(U∗∗) ⊆ Kn−q such that DΓ(x)f(x) = f̃(Γ(x)) , and DΓ(x)gi(x) = g̃i(Γ(x))
for p + 1 ≤ i ≤ r . Moreover,

[
g̃i, f̃

]
= 0 , and the g̃i are in involution on an

open and dense subset of Ũ .

Proof. (a) The hypothesis implies in particular that g1, . . . , gp are in involu-
tion. For all i ≤ p , all j , and for 1 ≤ k ≤ n− q one has

LgiLgj (γk) = LgjLgi(γk) + µij1Lg1
(γk) + . . .+ µijpLgp(γk) = 0,

thus Lgi(γk) is again a first integral of g1, . . . , gp .

(b) The existence of f̃ and the g̃j follows as in (2.1). Since solution-preserving

maps respect Lie brackets, it is also clear that f̃ and the g̃j commute. For
j, l ≥ p+ 1 one gets

[g̃j, g̃l] (Γ(x)) = DΓ(x) [gj, gl] (x) =

r∑

m=1

µjlm(x)DΓ(x)gm(x)

=
r∑

m=p+1

µjlm(x)g̃m(Γ(x)),

as DΓ(x)gm(x) = 0 for m ≤ p . Therefore, Γ being locally onto, every [g̃j, g̃l] (z)
is a linear combination of the g̃m(z) (with m > p) for all z in an open and dense
subset of Ũ , and the g̃j are in involution.
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This opens up the possibility to employ common first integrals of the g̃j
in the next step, and thus obtain a stronger version of (2.1). One interesting
special case for which (2.6) is applicable is when the gi span a finite dimensional
Lie algebra over K , and g1, . . . , gp span an ideal of this algebra. In this case,
Bianchi [1] refined the result, using composition series of the Lie algebra. (One
may, in general, have to modify the given involution system in order to apply
(2.6). Note that “linear combinations” with first integrals of f as coefficients are
allowed.)

Let us recall the reduction procedure in presence of a single infinitesimal
orbital symmetry. If [g, f ] = λf , and g is such that one knows (locally) a
solution-preserving map Ψ from ẋ = (1, 0, . . . , 0)t to ẋ = g(x), then this
same map is solution-preserving from ẋ = f ∗(x) := µ(x)f̃(x2, . . . , xn) to ẋ =
f(x), with ∂µ/∂x1 = λ . Since f̃ depends only on x2, . . . , xn , the solution of
ẋ = f̃(x) amounts to solving an n − 1-dimensional differential equation and
quadratures. From this every solution of ẋ = f ∗(x) is obtained by another
quadrature. (Note that, due to the straightening theorem, a map Ψ with the
desired properties exists locally near every nonstationary point of g . To carry out
the procedure, however, one needs to know Ψ explicitly.) The above “reduction of
dimension plus quadratures” has no counterpart in the multi-parameter situation,
in general. There is, however, one special case worth mentioning:

Proposition 2.7. Let the hypotheses and notation be as at the beginning of
this section, and assume furthermore that g1 6= 0 and [g1, gj] = µ1j1g1 for all j .
Let Ψ be an invertible analytic map from an open V ⊆ Kn to a neighborhood
of some point of U∗ such that Ψ is solution-preserving from ẋ = (1, 0, . . . , 0) to
ẋ = g1(x) .

Then there are analytic vector fields g∗2 , . . . , g
∗
r and f∗ on V such that

Ψ is solution-preserving from ẋ = f ∗(x) to ẋ = f(x) , and from ẋ = g∗j (x) to
ẋ = gj(x) for all j . Moreover,

g∗j (x) =

(
γj(x)

ĝj(x2, . . . , xn)

)
and f∗(x) = µ(x)

(
φ(x2, . . . , xn)

f̂(x2, . . . , xn)

)
.

The ĝj are in involution on a suitable open subset V̂ of Kn−1 , and there

are analytic λ̂j on V̂ such that
[
ĝj , f̂

]
= λ̂j f̂ for 2 ≤ j ≤ r .

Proof. The existence of the vector fields on V follows from invertibility of
Ψ, and it was seen above that f∗ has the asserted form. Now [g1, gj] = µ1j1g1

implies
[
g∗1 , g

∗
j

]
= µ∗1j1g

∗
1 , or ∂g∗j /∂x1 = µ∗1j1 · (1, 0, . . . , 0)t , whence entries

number 2, . . . , n of g∗j are independent of x1 .

A simple computation shows that

[
g∗j , g

∗
l

]
=

(
?

[ĝj , ĝl]

)
,

with the Lie bracket in the last entry being taken in Kn−1 , and it follows that
the ĝj are in involution. Similarly, it follows that

[
ĝj, f̂

]
= λ̂j f̂ if µ has no zeros

in a neighborhood of the point under consideration.
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Thus, g1 reduces the solution of ẋ = f(x) to solving a differential equa-
tion in dimension n − 1, plus quadratures, and the remaining symmetries from
g2, . . . , gr survive for the reduced differential equation. This latter property is the
important one. The following consequence (when applied to finite-dimensional
solvable Lie algebras) is sometimes called “Bianchi’s theorem”.

Corollary 2.8. In addition to the hypotheses of (2.7), assume that

[g2, gj] = µ2j1g1 + µ2j2g2

...
...

[gr−1, gj] = µr−1,j,1g1 + . . .+ µr−1,j,r−1gr−1

for all j , and that g1, . . . , gr has rank r over L.

Then solving ẋ = f(x) can (locally) be reduced to solving an (n − r)-
dimensional differential equation and quadratures.

It seems that Bianchi formulated this only for finite dimensional solvable
Lie algebras, although in other parts of [1] he also considered general involution
systems. The proper formulation of Bianchi’s theorem for higher-order differ-
ential equations was first given by Olver; cf. [12], Thm. 2.64. (We remark that
whenever the condition on the orbit dimensions of the prolongated actions in
this theorem is not satisfied then one necessarily gets a nontrivial first integral
by (4.2), which also allows a reduction of the order.)

Even if the vector fields at hand can be explicitly integrated, it may be
troublesome or even impossible to implement any of the reduction procedures
discussed in this section. The implicit function theorem and the inverse func-
tion theorem are the basis for many of the results presented here, and these are
not constructive. One may be able to actually carry out a variant of the reduc-
tion from (2.1), for instance, if all the functions and vector fields involved are
polynomial, and one uses a more subtle approach. For (compact) linear sym-
metry groups, this procedure is quite familiar, see Rumberger/Scheurle [14] and
Scheurle [15], for instance, where the symmetric vector fields are quite general,
and qualitative features are of primary interest. (In the case of compact lin-
ear symmetry groups qualitative investigations are greatly facilitated by the fact
that the reducing map is proper.) Hadeler [7] discusses qualitative features of
homogeneous vector fields, with the (non-compact) symmetry group R+ . The
case of orbital linear symmetries is dicussed in [10].

3. Invariant sets

This section is motivated by the well-known strategy to find group-invariant
solutions (cf. Olver [12]), and also by the “stratification of the phase space” of
differential equations admitting a (compact) linear symmetry group, see Gaeta
[4], Golubitsky et al. [5], [6], and Scheurle [15].

In this section it will be assumed that f and g1, . . . , gr are analytic
vector fields on U , and that [gi, f ] = λif with analytic functions λi on U . (We
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do not assume that the gi are in involution.) The basic question we are interested
in is the following: What invariant sets does ẋ = f(x) necessarily admit as a
consequence of the existence of the gi?

One answer is the following.

Theorem 3.1. (a) The set

Y := {y ∈ U : f(y), g1(y), . . . , gr(y) are linearly dependent in Kn}

is invariant for ẋ = f(x) .

(b) If, in addition, all [gi, f ] = 0 then

Z := {z ∈ U : g1(y), . . . , gr(y) are linearly dependent in Kn}

is invariant for ẋ = f(x) .

Proof. (i) We will use the following invariance criterion (see [17], for instance):
Let ρi and σij (1 ≤ i, j ≤ q ) be analytic on U , and Lf (ρi) =

∑
j σijρj for all

i . Then the set of common zeros of ρ1, . . . , ρq is invariant for ẋ = f(x).

(To see this, let v(t) be a solution of ẋ = f(x). Then w(t) :=
(ρ1(v(t)), . . . , ρq(v(t)))

t
solves a homogeneous linear differential equation. Thus,

w(0) = 0 implies w(t) = 0 for all t .)

(ii) We also need an auxiliary result from (multi-)linear algebra. Denote by
ν1, . . . , νn the dual basis of Kn , thus νi ((x1, . . . , xn)t) = xi , and fix some q ≤ n .

Let 1 ≤ i0 < . . . < iq ≤ n be a strictly increasing sequence of integers,
and consider the map

∆i0,...,iq : (Kn)
q+1 → K, ∆i0,...,iq(v0, . . . , vq) = det (νik(vl))k,l .

This map is multilinear and alternating, and (by the universal property of the

Grassmann algebra) every multilinear and alternating map from (Kn)
q+1

to K
is a linear combination of such ∆i0,...,iq .

Now let B : Kn → Kn be a linear map, and j0 < . . . < jq fixed. Then
it is easy to verify that

δB : (v0, . . . , vq) 7→
q∑

i=0

∆j0,...,jq (v0, . . . , vi−1, Bvi, vi+1, . . . , vq)

is multilinear and alternating, and therefore a linear combination of the ∆i0,...,iq .
Moreover, the coefficients are linear functions of the entries of B .

(iii) We now prove part (a). Note that Y is the common zero set of all
ρi0,...,ir (x) := ∆i0,...,ir (f(x), g1(x), . . . , gr(x)). Fix j0 < . . . < jr , and abbreviate
∆ := ∆j0,...,jr , and ρ := ρj0,...,jr . By multilinearity of the determinant, the Lie
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derivative of ρ is as follows:

Lf (ρ)(x) = Dρ(x)f(x)

= ∆ (Df(x)f(x), g1(x), . . . , gr(x))

+
∑

i

∆ (f(x), g1(x), . . . , gi−1(x), Dgi(x)f(x), gi+1(x), . . . , gr(x))

= ∆ (Df(x)f(x), g1(x), . . . , gr(x))

+
∑

i

∆ (f(x), g1(x), . . . , gi−1(x), Df(x)gi(x), gi+1(x), . . . , gr(x))

−
∑

i

∆ (f(x), g1(x), . . . , gi−1(x), λi(x)f(x), gi+1(x), . . . , gr(x)) ,

since [gi, f ] = λif . The last term vanishes, and the remaining sum can, according
to (ii), be expressed as a linear combination of the ρi0,...,ir , with the coefficients
being linear in the entries of Df(x), and hence analytic on U . Now the criterion
from (i) applies.

(iv) The proof of (b) is an easier variant of (iii).

Since any intersection, or set-theoretic difference, of invariant sets is
invariant, we get

Corollary 3.2. Let q ≤ r . In the situation of (3.1 a), the set

Yq := {y ∈ U : rank (f(y), g1(y), . . . , gr(y)) = q + 1}
is invariant for ẋ = f(x) . In the situation of (3.1 b), the set

Zq := {z ∈ U : rank (g1(y), . . . , gr(y)) = q}
is invariant for ẋ = f(x) .

If λi 6= 0 then Z is not, in general, invariant for ẋ = f(x). A simple
example is given by g(x) = x and f a nonzero constant. Here we have [g, f ] =
−f , while Z = {0} is not invariant for ẋ = f(x). To illustrate that (3.1) can be
useful, consider

f(x) :=



x2

1 − x2x3

2x1x2

2x1x3


 , g(x) :=




x1

3x2

−x3


 , and h(x) :=



x1x2

x2
2

−x2
1


 .

It is easy to verify that g and h normalize f , and therefore the set of zeros of

ρ(x) := det (f(x), g(x), h(x)) = −x2

(
x2

1 + x2x3

)2

is invariant for ẋ = f(x), due to (3.1). Thus we have found the invariant plane
x2 = 0 and the (less obvious) invariant cone x2

1 +x2x3 = 0. Application of (3.1)
to f and g alone turns out to produce the invariant straight lines x1 = x2 = 0,
x1 = x3 = 0, and x2 = x3 = 0, and so on.

In the recent article [16] by Ünal, the result of (3.1) is proven (from a
somewhat different perspective) in the special case r = n− 1 (see [16], Theorem
1), and some examples are given.

The following may also be worth recording.
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Remark 3.3. If the gi are in involution on U∗ ⊆ U , then the sets Yq ∩ U∗
and Zq ∩ U∗ are invariant for all gi . The proof of this is similar to the one of
(3.1) and (3.2).

Let us briefly return to the situation of §2, assuming that the gi are
analytic on U , and the µijk analytic on U∗ . Then U \U∗ is contained in Z , as
an application of Cramer’s rule over L shows. Thus, if all λi = 0 then (2.1) takes
care of the points in U∗ while (3.1) and (3.2) take care of Z (and there are local
coordinates on Zq \ Zq−1 which allow, in principle, to transfer the restriction of
ẋ = f(x) to an open subset of Kq ). Thus, the points in U \ U∗ are actually
quite interesting. Moreover, the equations of the invariant sets determined so far
can actually be computed.

The following result works for arbitrary solution-preserving maps, whe-
ther they are determined from symmetries or not.

Proposition 3.4. Let the analytic differential equation ẋ = h(x) be defined
on V ⊆ Km , and Φ : U → V be solution-preserving from ẋ = f(x) to ẋ = h(x) .
Then every set Wq := {x ∈ U : rankDΦ(x) = q} is invariant for ẋ = f(x) .

Proof. Denote by F (t, y) (resp. H(t, y)) the solution of ẋ = f(x), x(0) = y
(resp. ẋ = h(x), h(0) = y ). Then F and H are analytic, and, by definition,
Φ(F (t, y)) = H(t,Φ(y)). Differentiate this with respect to y to obtain

DΦ(F (t, y))D2F (t, y) = D2H(t,Φ(y))DΦ(y),

with D2 symbolizing the partial derivative with respect to the second variable.
Now, D2F (t, y) solves a linear differential equation with the identity matrix as
initial value, and hence is always invertible, and a similar observation holds for
D2H . Therefore, the rank of DΦ(F (t, y)) is equal to the rank of DΦ(y) for all
t .

A look at (2.1)ff. may give the impression that this is not a useful result,
since the rank of Φ is, by construction, constant on the set under consideration.
But in fact one often obtains nontrivial information. For instance, assume that

U ⊆ K4 and that Φ(x) :=
(x2

1+x2
2

x2
3
+x2

4

)
is solution-preserving from ẋ = f(x)

to some equation ẋ = h(x). Then the intersections of U with the planes
defined by x1 = x2 = 0, resp. x3 = x4 = 0 are invariant for ẋ = f(x), as
the criterion from (3.4) shows. (Such a situation occurs, for instance, if f is
so(2) × so(2)-symmetric, but there are more general equations admitting this
solution-preserving map; see (2.2).) It should also be noted that in the case of a
finite linear symmetry group, with Φ constructed from a set of generators of the
invariant algebra, (3.4) yields all the strata.

To finish this section, let us investigate how first integrals of f behave
in presence of the gi . As will be seen, this may yield an approach to finding new
invariant sets from given ones.

Proposition 3.5. (a) If ψ is a first integral of f on U then so is every
Lgi(ψ) .
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(b) Any functionally independent set of first integrals of f (on an open-dense
subset of U ) can be extended to a functionally independent set ψ1, . . . , ψp of first
integrals of f such that every Lgi(ψj) is locally a function of the ψl .

Proof. Part (a) is a consequence of LgiLf − LfLgi = λiLf , while part (b)
follows from repeatedly applying the Lgi to the given set.

Corollary 3.6. Let the hypotheses and ψ1, . . . , ψp be as in (3.5) on the open
and dense subset U∗ of U , with p ≥ 1 .

(a) Then for every point of U ∗ there is a neighborhood and functions ψp+1, . . . , ψn
such that Ψ := (ψ1, . . . , ψn)

t
is invertible on this neighborhood. There are vec-

tor fields f∗ , g∗1 , . . . , g
∗
r such that DΨ(x)f(x) = f∗(Ψ(x)) , and DΨ(x)gi(x) =

g∗i (Ψ(x)) . Moreover,

f∗(x) =




0
...
0

f̂(x)


 , and g∗i (x) =




γi,1(x1, . . . , xp)
...

γi,p(x1, . . . , xp)
g̃i(x)


 .

(b) There is a q ≤ p (actually, q is the rank of the matrix (γi,k(x1, . . . , xp)) in
an open and dense subset V of the given neighborhood) and linear combinations
g∗∗q+1, . . . , g

∗∗
r of the g∗i (with analytic first integrals of f as coefficients) such

that

g∗∗j (x) =




0
...
0

ĝj(x)


 for j > q.

(c) Fix z ∈ V . Then

[
f̂(z1, . . . , zp, xp+1, . . . , xn), ĝj(z1, . . . , zp, xp+1, . . . , xn)

]

= λ̂j(xp+1, . . . , xn)f̂(z1, . . . , zp, xp+1, . . . , xn)

(the bracket is taken in Kn−q ) for all j > q . Moreover, if the gi are in involution
then the ĝj(z1, . . . , zp, xp+1, . . . , xn) are in involution.

Proof. In part (a), the existence of the ψl (with l > p) is clear, as is the
existence of the g∗i and of f∗ . The special form of f∗ follows from ψ1, . . . , ψp
being first integrals, while the special form of the g∗i is a consequence of (3.5).
Part (b) follows with Gauss’ algorithm (over L) applied to the g∗i . (In case
γ1,1 6= 0 the first step is to change g∗j to g∗j − (γj,1/γ1,1)g∗1 (j > 1) to create
zeros in the first entry. Note that the coefficients are indeed first integrals of f .)
Part (c) follows from simple computations.

There is the usual problem with this proposition: It may be impossible to
carry out the necessary coordinate transformations explicitly. A weaker version,
which avoids this problem, can be stated as follows: Whenever σ is a first
integral of f and, for instance, Lg1

(σ) 6= 0, then g̃j := Lg1
(σ)gj − Lgj (σ)g1
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(for j ≥ 2) is also contained in the normalizer of f and admits the first integral
σ . Moreover the g̃j are in involution on an open and dense subset of U if the
gi are in involution on an open and dense subset of U . In this sense, there
are infinitesimal symmetries of f that allow restriction to the level sets of σ .
Obviously, this process can be continued.

4. First integrals from involution systems

At the end of §3 it has been shown how given first integrals of f can be put to
use in presence of infinitesimal symmetries. In this section we will see that first
integrals of f may actually be found from an involution system of infinitesimal
symmetries.

Throughout this section we will assume that f, g1, . . . , gr are analytic
vector fields on U , that [gi, f ] = λif for all i , with analytic λi , that [gi, gj] =∑
k µijkgk , with analytic µijk , on an open and dense subset U∗ of U , and that

g1, . . . , gr are linearly independent over L .

We will distinguish two cases. The first (which will be referred to as
“nondegenerate”) is characterized by the condition that f, g1, . . . , gr are linearly
independent over L, and its discussion goes back to Lie [11]; see the exposition in
Engel/Faber [3]. The second (“degenerate”) case is that f, g1, . . . , gr are linearly
dependent over L, and it seems that it was not discussed so far. (From the point
of view of linear partial differential equations this is understandable.) In any
case, it will turn out that there is a systematic reduction to the case of finite
dimensional Lie algebras of infinitesimal (orbital) symmetries, by way of first
integrals.

Proposition 4.1. In the nondegenerate case, the following holds:

(a) The µijk are first integrals of f .

(b) If not all the µijk are constant then there exist functionally independent first
integrals φ1, . . . , φq (with q > 0) on an open-dense U ∗∗ ⊆ U∗ with the following
property: For each point of U ∗∗ there is a neighborhood and analytic functions
φq+1, . . . , φn such that Φ := (φ1, . . . , φn)t is invertible on this neighborhood,
and solution-preserving from ẋ = f(x) to ẋ = f ∗(x) , and from ẋ = gi(x) to
ẋ = g∗i (x) , 1 ≤ i ≤ r . Moreover,

f∗(x) =




0
...
0

f̂(x)


 and g∗i (x) =




γi,1(x1, . . . , xq)
...

γi,q(x1, . . . , xq)
g̃i(x)


 ,

and
[
g∗i , g

∗
j

]
=
∑
k µ
∗
ijkg

∗
k , with the µ∗ijk functions of x1, . . . , xq . Furthermore,

there is an integer p ≤ q and linear combinations g∗∗j of the g∗i (j > q ), with
the coefficients being functions of x1, . . . , xq , and

g∗∗j (x) =




0
...
0

ĝj(x)


 .
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(c) Fix z in this neighborhood. Then the ĝj(z1, . . . , zq, xq+1, . . . xn) form a finite
dimensional Lie algebra of infinitesimal orbital symmetries for

f̂(z1, . . . , zq, xq+1, . . . xn)

on a suitable open subset of Kn−q .

Proof. As to part (a), we have [[gi, gj] , f ] = αijf , with suitable αij , from the
Jacobi identity, and [[gi, gj] , f ] =

∑
k [µijkgk, f ] =

∑
k µijkλkf−

∑
k Lf (µijk)gk .

The linear independence of f, g1, . . . , gr over L now shows Lf (µijk) = 0. Parts
(b) and (c) follow from an application of (3.6) to a maximal functionally indepen-
dent subset of the µijk . The assertion about finite dimension in (c) follows from
the fact that the coefficients occurring in the involution systems are functions of
x1, . . . , xq .

Thus, a “proper” involution system may provide more readily accessible
information about ẋ = f(x) than a finite dimensional Lie algebra of infinitesimal
symmetries. Actually, the argument of (4.1) is also useful for certain finite
dimensional Lie algebras.

Remark 4.2. The dimension of a finite dimensional Lie algebra of vector fields
on U is greater than or equal to the dimension over L of the corresponding
involution system. The latter is equal to the “generic” dimension of the local
group orbits, and it is equal to the dimension of the Lie algebra if and only if
the local group action is semi-regular on an open and dense subset of U . In all
other cases, (4.1) yields nontrivial first integrals.

For a specific example, consider the vector fields

g1(x) =




0
−x3

x2

0


 and g2(x) =




0
0
−x4

x3




on K4 . These generate a three-dimensional Lie algebra (isomorphic to so(3)),
and the corresponding involution system has dimension 2 over L, as follows from
[g1, g2] = x4

x3
g1 + x2

x3
g2 . Therefore, every vector field f that is defined on an

open subset U of K4 and admits the infinitesimal orbital symmetries g1 and
g2 also admits the first integrals ρ1(x) = x4

x3
and ρ2(x) = x2

x3
, provided that the

nondegeneracy condition holds. It follows that

f(x) =




φ(x)
µ(x)x2

µ(x)x3

µ(x)x4


 = µ(x)



ψ(x)
x2

x3

x4


 ,

with analytic functions µ , φ and ψ on an open-dense subset of U . (A simple
computation shows that the gi are infinitesimal orbital symmetries if and only if
ψ is a common first integral of the gi .) There are other methods to obtain this
result, in particular since the gi are linear vector fields, but the method from
(4.1) seems straightforward and useful in quite general circumstances.
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Now let us turn to the degenerate case. It follows from the general
hypothesis of this section that there are analytic functions β1, . . . , βr on an open
and dense subset U∗ of U such that f =

∑
i βigi . (We will assume that f 6= 0.)

The following can be said in this situation.

Proposition 4.3. (a) Assume that β1 6= 0 . Then all βi/β1 (i > 1) are first
integrals of f , and passage to the orbit-equivalent vector field f̃ := β−1

1 f yields
f̃ =

∑
i β̃igi , with all β̃i first integrals of f̃ . If all λi = 0 then all βi are first

integrals of f .

(b) If all βi are first integrals of f then all βlµijk − βkµijl are first integrals of
f .

Proof. Part (a) follows from 0 = [f, f ] =
∑

[f, βigi] = −αf +
∑
Lf (βi)gi ,

with α :=
∑
βiλi . The linear independence of the gi over L forces Lf (βi) = αβi

for all i , and from this the assertion follows. Part (b) follows similarly: There
are analytic functions λij such that [[gi, gj] , f ] = λijf ; on the other hand
[[gi, gj] , f ] =

∑
[µijkgk, f ] = (

∑
µijkλk)f −∑Lf (µijk)gk , whence Lf (µijk) =

νijβk , and Lf (βlµijk) = νijβkβl .

This gives rise to a (rather obvious) application of (3.6), which will not
be written down explicitly, but a brief look at the case when no nonconstant
first integrals can be gained from this procedure may be in order. First, we
may assume that all βi are constant, and then there is no loss of generality
in assuming that f = g1 . Part (b) then shows that all µijk with k > 1 are
constants.

In a sense, it is possible to reduce the degenerate to the nondegenerate
case, as the following shows. For a given set of vector fields gi , however, this
may not be the most advisable strategy.

Proposition 4.4. Let the hypotheses and notation be as in (4.3). Let φ be
analytic on U such that Lf (φ) 6= 0 , and define g̃i := gi − (Lgi(φ)/Lf (φ)) f .

Then the system g̃1, . . . , g̃r has rank r− 1 over L, and [g̃i, f ] = λ̃if for suitable
analytic λ̃i , 1 ≤ i ≤ r .

If g̃2, . . . , g̃r are linearly independent over L then they are in involution.
Moreover, there is a nonzero analytic function σ on an open-dense subset of U
such that [g̃i, σf ] = 0 for i > 1 .

Proof. By construction, the g̃i have the common first integral φ , and [g̃i, f ] =
λ̃if . If g̃2, . . . , g̃r are linearly independent over L then f, g̃2, . . . , g̃r are linearly
independent over L, since a relation f =

∑
i>1 β̃ig̃i contradicts Lf (φ) 6= 0.

Hence f, g̃2, . . . , g̃r are in involution, and therefore, for all i, j ≥ 2 there are ν̃ij
and µ̃ijk such that [g̃i, g̃j] = ν̃ijf +

∑
k>1 µ̃ijkg̃k , and L[g̃i,g̃j ](φ) = 0 shows that

ν̃ij = 0. The last assertion, with σ = 1/Lf (φ), follows from (2.3).

In case f = g1 , elementary linear algebra shows that µ̃ijk = µijk
whenever i, j, k ≥ 2.
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5. Some examples and applications

5.1. Equations in dimension three with two infinitesimal symmetries.
It is well-known that knowledge of a nontrivial infinitesimal (orbital) symmetry
g of an equation ẋ = f(x) on U ⊆ K2 reduces the determination of a first
integral to a quadrature, since an integrating factor can be constructed from g ;
cf. Olver [12], Theorem 2.48. (Furthermore, up to determining the inverse of a
certain transformation, the solution of ẋ = f(x) is thus reduced to quadratures.)
Here we will discuss the case of an equation ẋ = f(x) on U ⊆ K3 , with two
given normalizer elements g, h . We will always assume that f, g and h are
linearly independent over L. (This excludes pathological cases like h = g + ρf ,
which should not qualify as a second nontrivial infinitesimal symmetry.) We will
take the traditional point of view that ẋ = f(x) is ”solved” as soon as there are
two independent first integrals, and that necessary coordinate transformations
do not cause problems. It seems unnatural to assume a priori that g and h are
in involution, and therefore we will not do so. The discussion of the degenerate
case in §4 turns out to be quite useful here.

By Cramer’s rule over L, there are analytic α, σ and τ on an open and
dense subset of U such that [g, h] = αf + σg + τh . Then (4.3 b) shows that
Lf (σ) = Lf (τ) = 0, and it was shown in (3.5) that applying Lg or Lh to a first
integral of f will again produce a first integral of f . Now there are three cases
to be distinguished.

In the first case, there are two functionally independent first integrals of
f among σ, τ, Lg(σ), Lg(τ), Lh(σ), Lh(τ). (If there are less than two in this
list, then further applications of Lg or Lh are to no avail.) In this case, we
consider ẋ = f(x) as essentially solved.

In the second case the above list contains one, and only one, independent
first integral of f , say σ , and g̃ := Lg(σ)h−Lh(σ)g is a nonzero vector field that
normalizes f , yet is not a multiple of f over L. (This would only be possible if
Lg(σ) = Lh(σ) = 0, a contradiction to the linear independence of f, g and h
over L.) In appropriate local coordinates one has

f =

(
0
f̂

)
and g =

(
0
ĝ

)
,

and the problem has been reduced to dimension 2.

The third case is characterized by σ = const. and τ = const. Conse-
quently, if one defines J := {µf : µ analytic} , then (K · g + K · h+ J ) /J is a
two-dimensional Lie algebra over K, and we can assume that σ = 0, τ = ε , with
ε ∈ {0, 1} .

Now assume, with no loss of generality, that x1 is not a first integral
of f , and define g̃ := g − (Lg(x1)/Lf (x1)) f , and h̃ := h − (Lh(x1)/Lf (x1)) f ,

according to (4.4). Then g̃ and h̃ normalize f , and
[
g̃, h̃
]

= εh̃ , as follows

from (4.4) and the observation thereafter. Moreover, we may assume (by going

to (1/Lf (x1))f , if necessary) that [g̃, f ] =
[
h̃, f

]
= 0. Note that Lf (x1) is,

by (2.5), a common first integral of g and h , and thus a function of x1 alone.
(If the normalization according to (2.3) has been carried out then one even has
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Lf (x1) = 1.) Thus far we have (dropping the tilde)

g =

(
0
ĝ

)
, h =

(
0
ĥ

)
, f(x) =



φ1(x1)
φ2(x)
φ3(x)


 .

As far as ĝ and ĥ are concerned, this is a two-dimensional system, with x1 as a

parameter, and for every fixed value of x1 one has
[
ĝ, ĥ
]

= εh . Here 1/ det(ĝ, ĥ)

is an integrating factor for ĥ , and thus determining a first integral for ĥ is a
quadrature problem. This is also a first integral for h , and it is necessarily
functionally independent from x1 . Thus a suitable coordinate transformation
leads to h = (0, 0, ∗)t , and then to h = (0, 0, 1)t . (These transformations can
be chosen so that they fix the first coordinate. One should use a new name for
the transformed h , but there is little danger of confusion.) Using [h, f ] = 0 and
[g, h] = εh , one obtains

f =




φ1(x1)
φ2(x1, x2)
φ3(x1, x2)


 , g =




0
γ2(x1, x2)
γ3(x)


 , h =




0
0
1


 .

Note that solving ẋ3 = φ3(x1, x2) requires only quadratures once x1 and x2 are
determined. Now [g, f ] = 0 forces

[(
φ1(x1)

φ2(x1, x2)

)
,

(
0

γ2(x1, x2)

)]
= 0,

and this is, once again, a two-dimensional problem. Thus, up to quadratures and
coordinate transformations, the equation ẋ = f(x) has been solved.

5.2. Involution systems of rank 2. The simplest nontrivial case of multi-
parameter symmetries occurs when ẋ = f(x) admits two infinitesimal orbital
symmetries g and h on U ⊆ Kn such that f, g and h are linearly independent
over L, and g and h are in involution. (In particular, n ≥ 3.) Therefore we
will take a closer look at involution systems g, h such that g and h are linearly
independent over L, and [g, h] = σg + τh . Locally, near any point y such that
g(y) and h(y) are linearly independent, there are n − 2 common first integrals
(due to Frobenius’ theorem), which, after a coordinate transformation, may be
taken as x3, . . . , xn . Moreover, h can be straightened, hence there is no loss of
generality in assuming that

h =




1
0
0
...
0



, g =




γ1

γ2

0
...
0



, and [g, h] = −




∂γ1/∂x1

∂γ2/∂x2

0
...
0



,

with γ2 6= 0, and

σ = −∂γ2/∂x1

γ2
, τ =

(∂γ2/∂x1) γ1 − (∂γ1/∂x1) γ2

γ2
.
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It is sometimes useful to further normalize g , while leaving h and the common
first integrals intact. The admissible transformations are of the form

Ψ(x) =




x1 + ψ1(x2, . . . , xn)
ψ2(x2, . . . , xn)
ψ3(x3, . . . , xn)

...
ψn(x3, . . . , xn)



,

as is easily verified, and one has DΨ(x)g(x) = ĝ(Ψ(x)), with the entries of ĝ sat-
isfying γ1(x) + (∂ψ1/∂x2)(x)γ2(x) = γ̂1(Ψ(x)), (∂ψ2/∂x2)(x)γ2(x) = γ̂2(Ψ(x)),
and γ̂i = 0 whenever i > 2.

We will not attempt a detailed study of rank 2 involution systems, but
we will look at a few special cases. There is no need to discuss the finite
dimensional Lie algebra case, with σ and τ constant (and σ = 0 w.l.o.g.).
Here (2.7) and (2.8) are applicable. In the following it will always be assumed
that σ or τ is not constant. As was seen in sections 3 and 4, both σ and
τ are first integrals of f , and application of Lg and Lh produces more first
integrals. In fact, for this reason there are rank 2 involution systems which do not
occur as systems of infinitesimal orbital symmetries of a nonzero vector field f .
For example, let γ2 = exp

(
−
(
x1x2 + x2

1x3 + . . .+ xn−1
1 xn + xn+1

1

))
, and hence

σ = x2 + 2x1x3 + . . .+ (n− 1)xn−2
1 xn + (n+ 1)xn1 . Now σ and all ∂kσ/∂xk1 are

first integrals of any vector field f admitting the infinitesimal orbital symmetries
g and h , and this set contains n independent functions, forcing f = 0.

In any case, whenever the procedure outlined above produces at least
two independent first integrals, the intuitive expectation that there should be
a reduction of dimension by at least two is satisfied. Let us therefore consider
the “borderline” case when this procedure yields exactly one first integral, up
to functional dependence. We may assume that σ is not constant. If Lg(σ) =
Lh(σ) = 0 then restricting to a level set of σ will lead to the finite dimensional
Lie algebra case, with the dimension reduced by one. If Lg(σ) 6= 0 then h̃ :=
Lg(σ)h−Lh(σ)g still normalizes f , and admits the first integral σ . Furthermore[
g, h̃
]

= σ̃g + τ̃ h̃ and σ̃ = 0 follows from L[g,h̃](σ) = Lh̃Lg(σ)− LgLh̃(σ) = 0.

(Recall that Lg(σ) is locally a function of σ on an open-dense subset of U , and
is therefore annihilated by Lh̃ .) Therefore we may assume that [g, h] = τh , with
τ not constant. (The case Lg(τ) 6= 0 works similarly.)

Locally, we have h = (1, 0, . . . , 0)t , and g = (γ1, γ2, 0, . . . , 0)t after
a suitable choice of coordinates, and ∂γ2/∂x1 = 0, τ = −∂γ1/∂x1 . Since
γ2 is a function of x2, . . . , xn only, there is a function ψ2 of x2, . . . , xn such
that (∂ψ2/∂x2)γ2 = 1. Therefore, after applying the invertible transformation
Ψ(x) = (x1, ψ2(x2, . . . , xn), x3, . . . , xn)t , there remains g = (γ1, 1, 0, . . . , 0)t .

Now Lh(τ) = ∂τ/∂x1 is locally a function of τ if and only if there
are functions ρ (of n − 1 variables) and ν (of one variable) such that τ(x) =
ν(x1 + ρ(x2, . . . , xn)). (To see “if”, note that ν ′ is locally a function of ν
near any point z such that ν ′(z) 6= 0. The other implication follows from
solving an elementary differential equation ∂τ/∂x1 = β(τ), with x2, . . . , xn as
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parameters.) Therefore, locally τ(x) = µ′(x1 + ρ(x2, . . . , xn)), and γ1(x) =
−µ(x1 + ρ(x2, . . . , xn)) + σ(x2, . . . , xn), with suitable functions µ and σ . With
Lg(τ) = µ′′(x1 + ρ) (−µ(x1 + ρ) + σ + ∂ρ/∂x2), and the observation that µ′′

and µ are locally functions of µ′ , it follows that Lg(τ) is locally a function of τ
(equivalently, of x1 + ρ) if and only if σ+ ∂ρ/∂x2 is. But this is possible only if
σ + ∂ρ/∂x2 = c = const. , as differentiation with respect to x1 shows. We have
found

h(x) =




1
0
0
...
0



, g(x) =




−µ(x1 + ρ(x2, . . . , xn))− (∂ρ/∂x2)(x2, . . . , xn) + c
1
0
...
0



,

and one may assume c = 0.

Let us take a brief look at a vector field f centralized by both g and h :
Such a vector field is independent of x1 (due to h), and admits the first integral
ψ := x1 + ρ . Evaluating [g, f ] = 0 shows that, in addition, the last n− 1 entries
of f are independent of x2 . Thus,

f(x) =

(
φ(x2, . . . , xn)

f̂(x3, . . . , xn)

)
,

and this, together with the first integral condition, is necessary and sufficient.
The solution of such an equation requires solving a differential equation in Kn−2

for x3, . . . , xn , then a quadrature (for x2 ). Since ψ is a first integral, the first
entry of a solution can be found from x1+ρ(x2, . . . , xn) = const. So it may be said
that the first integral saves one quadrature, compared to the usual procedure.

Perhaps a “concrete” example is in order. On K3 , consider

f̃(x) :=




x1 + x2
1x3

2x1 + x2 + x1x2x3 − x3
1x

2
3

−2x3 − 2x1x
2
3


 ,

g̃(x) :=




x3
1x3

x2
1x2x3 + x1

−x2
1x

2
3


 , h̃(x) :=




x1

x2

−x3


 .

Then a simple verification shows that g̃ and h̃ centralize f̃ , while
[
g̃, h̃
]

=

−x2
1x3h̃ . (Admittedly, this example has been built in an artificial manner, but it

should be noted that there is a manageable access to g̃ and h̃ : One can restrict
the search to centralizer elements that are polynomials of a prescribed degree,
and determining these amounts to solving a finite system of linear equations.
The unusual feature here is that one can find nontrivial polynomial vector fields
centralizing f̃ .)

The map Ψ(x) := (exp(x1), x2 exp(x1), x3 exp(−x1))t straightens h̃ ;
more precisely, DΨ(x)h(x) = h̃(Ψ(x)), with h(x) = (1, 0, 0)t . (Although there
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are many straightening maps, this one may be considered natural.) Furthermore,
Ψ transforms g̃ to g , and f̃ to f , with

g(x) =



x3 exp(x1)

1
0


 , and f(x) =




1 + x3

2− x2
3

−x3 − x2
3


 ,

as a routine computation shows. The equation ẋ = f(x) can easily be solved by
elementary functions, and applying Ψ produces the general solution of ẋ = f̃(x).
(There also is the first integral x2

1x3 for f̃ .)

5.3. Can there be too much reduction? From the point of view of (2.2),
this can happen: If the gi admit no common first integrals then this proposition
is not applicable, and it is also of little use when there is only one common first
integral, up to functional dependence, in the orbitally symmetric case. (It can be
easily achieved that, say, the first entry of f is independent of x2, . . . , xn : Just
divide f by a suitable scalar function.) Let us see that things cannot be too bad
even in this situation. (Hypotheses and notation are as in §2, except that there
is no restriction on s .) Assume that there are no first integrals to be gained from
the strategies discussed in §4, and that we deal with the nondegenerate case of §4,
with the gi centralizing f ; compare (4.4) to see that there is no loss of generality
in these assumptions. Then the gi span a finite dimensional Lie algebra L of
vector fields, of dimension r < n , and the local group orbits generically are r -
dimensional. If r = n− 1, and thus there are no useful common first integrals of
the gi , structure theory of finite dimensional Lie algebras is helpful: The radical
is a solvable ideal, and thus yields a preliminary reduction by (2.8), which requires
only quadratures and finding inverses of transformations. By (2.6) and (2.7), the
quotient modulo the radical still survives as algebra of infinitesimal symmetries
for the reduced vector field. In the semisimple case, one can always resort to
(maximal) toral subalgebras, or to solvable subalgebras, and obtain at least a
partial reduction. There seem to be no serious problems in such situations.
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