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Abstract. We classify those finite dimensional Lie algebras, over a field
k of characteristic zero, whose cohomology with trivial coefficients has
dimension 2. We show that the only such algebras are the 3-dimensional
simple algebras apd the semi-direct products 11 X ¢ k, where 1 is a nilpotent
Lie algebra and ¢@: 1 — 0 is a derivation which induces a non-singular map

in each cohomology space H'(n) ,for 2 > 0.

1. Introduction

Let g be a Lie algebra of finite dimension > 2 over a field k of characteristic
zero. We consider the cohomology with trivial coefficients H(g) = H(g,k), and
the total cohomology o(g) = dim H(g) = Eii:rgg dim H(g). Since H°(g) = k,
one has o(g) > 0, and it is well known that Lie algebras have trivial Euler
characteristic [9], and so o(g) is even. Thus o(g) > 2. If g is a 3-dimensional
simple Lie algebra, then g = (z,y,z | [z,y] = z,[y,2] = az,[z,z] = By), with
a,B # 0 (see [13]); thus H°(g) = H*(g) = k and H'(g) = H?*(g) = 0, and
so o(g) = 2. For other examples of algebras g with o(g) = 2, consider a
nilpotent Lie algebra n, let ¢: n — n be a derivation and consider the semi-direct
product g = n x4 k. Recall that ¢ induces a derivation ¢: H(n) — H(n) in the
cohomology algebra. Let ¢; denote the restriction of ¢ to H'(n). According to
6], there is a vector space isomorphism: H'(g) 2 ker ¢; @ ker ¢;—q, for all 1 > 1.
Hence o(g) = 2 if and only if ¢; is non-singular for all ¢+ > 0. In this case, we
say that ¢ is non-singular in cohomology. The main aim of this present note is
to prove the following:

Theorem. If o(g) = 2, then either g is simple of dimension 3, or g = nxgyk
for some nilpotent Lie algebra n and deriwation ¢: n — n which s non-singular
in cohomology.

The above theorem may be regarded as a classification of the simplest
case of Lie algebras g for which o(g) is not a multiple of 4 (see [4]).
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Recall that the cohomological dimension of g is the largest integer cd(g)
such that HCd(g)(g,k) # 0. It is well known that cd(g) < dimg and cd(g) =
dimg if and only if g is unimodular. Algebras with ed(g) = dimg — 1 are
classified in [1]. We have:

Corollary. cd(g) =1 if and only if g = nxgsk for some nilpotent Lie algebra
n and derwation ¢: n — n which s non-singular in cohomology.

This note is organized as follows. In the next section we prove the
Theorem and its Corollary. The main question left open by these results i1s: which
nilpotent Lie algebras admit a derivation which is non-singular in cohomology?
In Section 3, we give some remarks concerning this problem.

2. Proof of the Theorem and its Corollary

Proof of the Theorem. Assume that o(g) = 2. Let v denote the radial of g
and consider the natural projection 7: g — g/t. Since g has a Levi-subalgebra, 7
is a split extension. Let m denote the dimension of g/t. Note that either m = 0,
or m > 3. As g/t is unimodular, H™(g/t) = k. Counsider the pull-back map
7 A(g/t) = A(g) and the map induced in cohomology 7#: H(g/t) — H(g).
Since 7 is a split extension, 7# is injective, and so H™(g) is non zero.

If g is unimodular, then by Poincaré duality, H4™9(g) = k, and hence
Hi(g) = 0 for all 0 < i < dimg. Thus either m = 0 or m = dimg; that is, g
is either solvable or semi-simple. If g is semi-simple, then H3(g) is non-trivial
[14]. In this case, g has dimension 3, and g is simple. If g is solvable, then g
has a codimension one ideal.

If g is not unimodular, then {z € ¢ | tr(ad(z)) = 0} is a codimension
one ideal.

From the above, it remains to consider the case where g possesses a codi-
mension 1 ideal, h say. Choose z € g\h. The adjoint map ad(z): h — § induces
a derivation of the cohomology algebra H(h); for each i > 0, let ¢;: H'(h) —
Hi(h) be the resulting linear map. By [6], o(g) = 23 5o dimker ¢;. Hence, as
ker o = H%(g) = k and o(g) = 2, one has ker ¢; = 0 for all 7 > 1; that is, ¢ is

non-singular in cohomology. It remains to show that b is nilpotent. We have:

Lemma. If a Lie algebra b admats a derivation ¢ which 1s non-singular in
cohomology, then b is nilpotent.

Proof. Suppose that h admits such a derivation ¢. Let r denote the radial
of ) and consider the natural pIO_]e(,tIOIl m:h — h/r. Since r is a (,hdld(,tellbtl(,

ideal, ¢ induces a derivation qD on h/r. Since h/r is semi-simple, qD 1S an inner
derivation. In particular, qb has zero trace. Let k = dim(h/r). As qb has zero
trace, the map ¢ induced by ¢ in H¥(h/r) is trivial. We have the commutative
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diagram:

HY(h) — HM)

S oo
He(h/r) 2= HE(h/r)

Since 7% : H(h/r) — H(h) is injective, it follows that ¢ has non-trivial kernel.
Hence k = 0; that is § is solvable.

Consider the natural projection 7: h — h/[h, h]. Recall that there is an
isomorphism f: H'(h) — h/[h,b], such that f¢; = ¢'f, where ¢' is the map
induced by ¢ on h/[h,h]. Since ¢; is non-singular, ¢’ is non-singular. Let n
denote the nil radical of f; that is, n is the largest nilpotent ideal of h. It is well
known that n contains the derived algebra [h,h] of § [3]. Consider the natural

projection p: b/[h, h] = h/n.

b/[h,5] —=— b/[h,b]

| |7

bm 2% p/n

It is well known that every derivation of h maps § into n [3]. Hence the map ¢
induced by &' on h/n is identically zero. Since ¢’ is surjective, it follows that
n="h. Hence § is nilpotent. ]

Proofof the Corollary. If cd(g) = 1, then dim H'(g) = 0 for all 7 > 1, while
dim H°(g) = 1 and dim H'(g) = o(g) — 1. Thus, since the Euler characteristic
of g is zero, we have o(g) = 2. The Corollary then follows from the fact that
for a simple 3-dimensional Lie algebra g, cd(g) = 3. [ ]

3. Remarks and Questions

Remark 1. Recall that if f: g — g is Lie algebra homomorphism, then
f induces an algebra homomorphism f*: H(g) — H(g). Let f; denote the
restriction of f* to H'(g). It is well known and easy to prove that if f* is
an isomorphism, then f is non-singular [11]. In fact, this result only relies on
f1 and fo. The following result is also elementary, but it requires that ¢, is
non-singular for all ¢+ > 0. To our knowledge, it doesn’t seem to have previously
appeared in the literature.

Proposition. If g s a complex Lie algebra, and ¢: g — g is a derivation
which 1s non-singular in cohomology, then ¢ is itself non-singular.
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Proof. Suppose that ¢: g — g i1s non-singular in cohomology, and that ¢ is
singular. By replacing ¢, if necessary, by A¢ for some nonzero A € C, we may
assume that for all + > 0, none of the eigenvalues of ¢; is an integer multiple of
27i. Let f = exp ¢ and consider the zeta function

¢(T) = [[ det(r = Tfi) 0™

It is easy to verify that for all + > 0, f; = exp ¢; and so f; does not have 1 as
an eigenvalue. Hence (¢(T) has a simple pole at T = 1, resulting from the i =0
term. According to Deninger and Singhof [5, Lemma 2.1], one has

- T
Cf(T) = epodet(l — f”)—u
=1 a

As ¢ is singular, f has 1 as an eigenvalue, and hence so too does f* for all p.
Hence exp Zzo=1 det(1 — f“)% = 1, which is a contradiction. ]

By the Borel-Serre-Jacobson theorem [12], if a Lie algebra g admits a
non-singular derivation, then g is nilpotent (see [2] for a recent generalization).
For complex Lie algebras, we could have used this, together with the Proposition,
instead of the Lemima in the proof of the Theorem. However, we do not know if
the Proposition holds over arbitrary fields of characteristic zero.

Remark 2. Abelian Lie algebras possess derivations which are non-singular in
cohomology. Indeed, let n = k™. In this case H'(n) = A’(n). Let ¢: n—n bea
linear map none of whose characteristic numbers is zero. Obviously the induced
map ¢;: Hl(n) — Hl(n) is non-singular for all ¢ > 0.

Positively graded Lie algebras possess derivations which are non-singular
in cohomology. Let n be a graded Lie algebra; n = ©F_ n;, where [n;,n;] C n;y;,
for all 7,7 > 1, and n; = 0 for all 2 > k. Consider the derivation ¢ of n such
that for all ¢, the restriction of ¢ to n; is the dilation: ¢(z) =iz for all = € n,.
Notice that the grading on n induces a grading on H'(n) and the induced map
b Hz(n) — Hz(n) is also a direct product of non-trivial dilations. In particular,
¢; is non-singular for all 7 > 0.

In particular, notice that 2-step nilpotent Lie algebras are positively
graded and hence they possess derivations which are non-singular in cohomology.

Remark 3. A non-singular derivation in a Lie algebra may induce a singular
derivation in cohomology. For example, consider the 3-dimensional Heisenberg
algebra hy = (z,y,z | [z,y] = z). The derivation ¢: hy — h; defined by setting
¢(z) = 2z,¢(y) = —y,¢(2) = z is non-singular, but the induced map @2 is
singular.

Remark 4. A derivation and the derivation induced in cohomology may both
be non-singular, while the derivation induced in the exterior algebra is singular.
For example, consider the 4-dimensional algebra g = hy &k = (z,y,2z,w |
[z,y] = z). Consider the non-singular derivation ¢: g — g defined by setting
d(x) =2z,0(y) = 3y, d(2) = bz, ¢(w) = —dw. It is easy to see that ¢ induces a
non-singular derivation in cohomology, but the induced map in A%g* is singular.
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Remark 5. Recall that Jacobson [12] originally asked whether every nilpotent
Lie algebra admits a non-singular derivation and that a counter-example was
provided by Dixmier and Lister [7]; their 8-dimensional algebra is characteris-
tically nilpotent (that is, all its derivations are nilpotent and thus singular). A
7-dimensional characteristically nilpotent algebra was given by Favre [8]. It is
now known that characteristically nilpotent Lie algebras are quite common (see
[10,15]). By the above Proposition, characteristically nilpotent Lie algebras do
not possess derivations which are non-singular in cohomology. Alternatively, one
can just observe that if ¢: g — g is a nilpotent derivation, then for all + > 0
the induced map ¢;: Hi(g) — H'(g) is nilpotent and thus singular. It is also
easy to exhibit a Lie algebra which is not characteristically nilpotent, but whose
derivations are all singular in cohomology. Let § be Favre’s algebra:

f=(v1,...,27 |[x1, 2] = zig1,for all 1 <i <6,

(29, 23] = ws, [v2, 24] = [22,25] = —[23, 24] = 27)

Counsider the 8-dimensional Lie algebra g = f & k, and let ¢: g — g be an
arbitrary derivation. Using calculations similar to those of [8], it is easy to see

that the induced map ¢1: H'(g) — H'(g) is singular.

Remark 6. Every derivation ¢: g — g induces a derivation ¢: 9/Z(g) —
9/Z(g), where Z(g) is the centre of g. Not surprisingly, it is possible that ¢ and
é are both non-singular, and b is non-singular in cohomology, but ¢ is singular
in cohomology. For example, let g = hy and let ¢ be the derivation considered
in Remark 3. Perhaps less obvious, there are examples where ¢ is non-singular
in cohomology but b is singular in cohomology. Let g be the 6-dimensional Lie
algebra determined by the following relations:

[:L'l,{l,'g] = I3, [ZL‘l,:L'g] = T4, [:L'l,{l,'4] = Ts5, [ZL'Q,CL'5] = g, [.’];3,.’1,'4] = —Tq.

Let ai,...,as denote the basis of g* dual to z,...,z¢. One finds that the
cohomology of g has basis

Qq, Q3
a1 as, Q03
10405, Q20306
1040506, 2030404
103040506, 203040504

10203040 5058.

Consider the derivation ¢ defined by setting ¢(z1) = 4z1, ¢(x3) = —7z2. One
verifies easily that ¢ is non-singular in cohomology. Now consider g/Z(g). By
abuse of language, we denote its basis and dual basis respectively by z1,..., x5
and aq,...,as. The relations are [z1,x2] = x3, [r1, 23] = 24, [x1,24] = 25, and
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the cohomology of g/Z(g) has basis

a1, G2
a105, 203, 304 — Q205
Q1a40s5, Qa0304, 10205 — 10304
1030405, Q2030405

a102030405.

A simple calculation shows that qg(ozlagaga4a5) =0.

We finish with the following question:

Question.  If a nilpotent Lie algebra g possesses a non-singular derivation,

then does g possess a derivation which is non-singular in cohomology?
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