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Capelli elements for the orthogonal Lie algebras
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Abstract. For the central elements in the universal enveloping algebra
of the orthogonal Lie algebra given by R. Howe and T. Umeda, Newton
type and Cayley-Hamilton type identities are given, and their images under
the Harish-Chandra homomorphism are determined. These results show
that these central elements can be regarded as the counterparts of the
Capelli elements. The calculation of the images under the Harish-Chandra
homomorphism clearly reveals the fact that these central elements coincide
with those given with the Sklyanin determinant.

Introduction

The Capelli elements are well-known central elements in the universal enveloping
algebra of the Lie algebra gl
invariant theory. They are defined as sums of determinants of the generators
of gl,. Also in the universal enveloping algebra U(o0,) of the orthogonal Lie

»» which played an important role in the classical

algebra 0, , a set of central elements is given with determinant in a similar way
as the Capelli elements (the Appendix of [6]). Their properties have not been
studied so minutely as the Capelli elements so far. In this paper, we give the
following results for these central elements: (i) Newton type and Cayley-Hamilton
type identities, and (ii) the calculation of the images under the Harish-Chandra
homomorphism. These results show that these central elements have strong
similarities to the Capelli elements not only in their form but properties. From
(ii), we also clearly see that they are essentially identical to the central elements
given with the Sklyanin determinant in [10].

We work over a fixed field K of characteristic 0. We realize the orthogo-
nal Lie algebra o, as the Lie algebra consisting of the alternating matrices. Put
A;; = E;; — Ej;, and arrange a matrix A = (Az‘j)lgi,jgn € Mat(n,U(0y)) from
these generators of 0,,. Furthermore, we consider the submatrix A;r = (Aij)i jer
for an index set I C {1,2,...,n}. The sum of determinants of submatrices

Cor = Y det(As +diag(k,k—1,...,—k+1))
|7|=2k
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1s known to be invariant under the adjoint action of the orthogonal Lie group
Oy, hence central in U(o0,,) ([6], [9]). More precisely, the set {Ca |0 < 2k < n}
generates the subalgebra U(0,)?" consisting of the invariants under the adjoint
action of O,,. This definition is very similar to that of the Capelli elements. Here
we define the determinant of a matrix ® = (q)ij)lﬁi,jﬁn whose entries are not
necessarily commutative by the following alternating sum, which is often called
the “column-determinant”:

(1) det(®) = Y sign(0)®oey1®aizy2 - Lo(nyn-
oeS,

Another set of generators of U(0,)?" is given with the trace. Take the
trace of the power of the matrix A:

tr(A") = Z Aiviy Aigiy - Ai i -
i1 iz, i

This tr(A") is known to be invariant under the adjoint action of O, ([3]).
Furthermore the set {tr(A")|0 <r < n} generates U(On)O" .

The first result of this paper is the following relation between these two
sets of generators of U(0,)%":

Theorem A. (Newton’s formula for 0,,) The following equality holds as
U(0,)9" -coefficient formal power series in \:

S-S (- G-9)

r=

Here D(A) and N(A) are defined by the following polynomials in A with
coefficients Cyp.:

D(N) = Y ComoaidFAL,
k=0
(2) m—1 .
N(A) = (2k + 2)Cam—_zp 2 \FAEL

End

=0

for n = 2m, and

D(\) = Emj Com—2k(N — 1/2)MFT(\ — 1/2)k,
k=0

(3) m
NA) =Y 2k + 1)Cam—zi(A — 1/2)F (A — 1/2)

for n = 2m + 1. Here the symbols A and M mean respectively the rising and
falling factorial functions:

M= AA+1)--(A+k=1), M=XA=1)---(A=k+1).
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Theorem A is a counterpart of Newton’s formula for symmetric functions
and its analogues for gl,, given in [21] (see also [15], [14]). In fact, considering the
case that the matrix in question is replaced by a matrix with commutative entries,
we can regard our Cy;’s and tr(A”)’s as analogues of the elementary symmetric
functions and the power sum symmetric functions in the eigenvalues respectively.
In classical Newton’s formula, the denominator on the left-hand side is the
characteristic polynomial of a matrix, and the numerator is its differentiation.
In the gl,, case, these are given respectively as a Capelli type determinant with
parameter A\, and its backward difference. In our case of 0,,, the relation between
N(A) and D()) is a bit more complicated:

N = ;75(P) ~ DA - 1)

for n = 2m, and

N(\) =D\ =D\ —1)
for n = 2m + 1 with D(/\) = A_—%D(/\). More explicit relations between Cay’s
and tr(A")’s are given in Theorem 5.2 and Corollary 5.3.

In the case of gl,,, an analogue of the Cayley-Hamilton theorem is known
([10], [21], [17]). Also in our case of 0, , we have a similar result:

Theorem B. (The Cayley-Hamilton theorem for o,) The following
equality holds in Mat(n,U(o,)):

D(A—(%—l)[):o.

These results imply that D()) is the “characteristic polynomial” of
the matrix A. It is interesting that D()\) is expressed as a “symmetrized
determinant” of the matrix A\I — A (Proposition 2.2).

The proofs of Theorems A and B are similar to those in the gl, case

given in [21]. Namely our main subject is to construct the “cofactor matrix”
A(X), which satisfies the following relation (Proposition 4.2):

(4) A(N) (A - (g - 1) . /\I> — D\

Theorems A and B are immediately shown from this relation (§5).

The cofactor matrix A(N) is explicitly described with the Pfaffian by
progressing the exterior calculus in [9]. This calculation is based on the following
two results: the first is the expression

(5) Cor = Y  Pf(Ap)?

|T|=2k

given in [9], and the second is an explicit description of the cofactor matrix for
Pf(A) (§3). Such a computation utilizing the Pfaffian is one of the key points of
this paper.
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Theorems A and B can be extended to the orthogonal Lie algebra realized
with any non-degenerate symmetric matrix (§6). In fact, we can naturally
define the counterparts of A and D(\), which satisfy Theorems A and B. This
generalization is based on the fact that our Cy;’s and D(\) are written with
the “symmetrized determinant”, which is invariant under the conjugation (§§1
and 2).

For the characteristic polynomial DT(\) for the split realization of the
orthogonal Lie algebra, we have the following theorem as another application of
the cofactor matrix:

Theorem C. The image of DY(\) under the Harish-Chandra homomorphism
~ 1s given by

~(DT()\)) = { (A = Ffy) - (V= Fm), (n = 2m),

(A= 1) (V¥ = F)o- (V= F2,), (0 =2m +1)

Here, {Fi1,... ,Fnm} is the canonical basis of the Cartan subalgebra.

From these Theorems A, B and C, we clearly see that our DT()\) is
identical to a central element C'(\) given with the Sklyanin determinant in [10].
In fact, the counterparts of these theorems in terms of C(\) are given in the
framework of the twisted Yangians (see [14] and [10]). It is interesting that such
similar results are deduced from two different motives.

It should be noted that this equality DT(\) = C'()\) is also seen from
the expression (5) of C; above and the recent result in [13]. Once we have
this identity, our theorems can be deduced from the known results in [14] and
[10]. However, our method of cofactors is quite elementary and produces these
theorems directly from a unified point of view. We also remark that the techneque
in this paper can be applied to obtain a new Cayley-Hamilton type formula for
differential operators related with the Skew Capelli elements in U(gl,) [8].

The author is deeply grateful to Professor Toru Umeda for his valuable
advice, guidance and encouragement. The author also thanks Professor Hiroyuki
Ochiai and Professor Masato Wakayama for fruitful discussions.

1. Expressions of Pfaffians and determinants with the exterior algebra

We start with the expressions of the Pfaffians and the determinants in the exterior
calculus, which are valid for matrices with non-commutative entries. From these
expressions, some fundamental properties of the Pfaffians and the determinants
are naturally deduced. Most of contents of the present and the next sections are
discussed in [9].

Consider an n x n matrix ® whose entries are elements of an associative
algebra A. The exterior algebra A,, is the associative algebra generated by the
n elements eq,es,..., e, subject to the relations e;e; + ¢;¢; = 0. Hereafter, we
calculate in the extended algebra A, ® A, in which the two subalgebras A, and
A commute with each other. The elements e1,e3,... ¢, are thus considered
to be formal (anti-commuting) variables to make “generating functions” with
coefficients in A.
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We often use the symbol of the divided power: z(*¥) = %:L‘k Note
that the binomial expansion is simply expressed with this symbol: (z + y)("’) =

1.1. For an alternating matrix ® = (@ij)lsl"jsgm of size n = 2m, the Pfaffian
Pf(®) is defined by

1 )
Pf(®) = S Z sign(0) @ o(1)0(2) Po(3)0(4) " Po(zm—1)0(2m)-
) 0662711

To express this in the exterior calculus, we form an element 6¢ in A, ® A as

7

1 1
{9(1;. = §€CI)te = 5 Z eiejCI)ij

ij=1
with e = (e1,...,€en). The Pfaffian Pf(®) is expressed with this fs as follows:
(1.1) €1+ en PE(®) = 65,

This relation is easy to see from the definition of the Pfaffian.

1.2. The determinant defined by (1) is often called “column-determinant” com-
pared with the name “row-determinant” ([9], [19]). This can be expressed with
the element ; = Z?:l e;®;; as follows:

(12) elendet(@) :¢1¢2¢n

We introduce another kind of determinant, which should be called the
“symmetrized determinant” or the “double-determinant”:

1 . .
Det(®) = — Y sign(o)sign(0")Po(1)er (1) a2)0(2)  * Pamyor(n):
© (0,0')EG, X6,

Furthermore consider the following quantity with scalar parameters wy,... ,uy:

Det(®; uy,ug, ..., up)
1 . .
= Z sign(o) sign(o')® 1)o7 (1) (1) - Po(n)or(n) (Un),

) (0,0)EG, xXG,

where @;;(u) = ®;; + d;ju. To express this new determinant in terms of the
exterior calculus, we must double the anti-commutative variables. Let As, be
the exterior algebra generated by the anti-commutative variables ¢;, e} (1 =

1

,...,n). Form the elements Z¢ and 7 in Ay, ® A as
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with e’ = (e},... ,¢),). Then we can express the symmetrized determinant as
(1.3) erey - epey, Det(®) = Eé,n),
(1.4)

616/1 . eneln Det(®;uy,ug,... ,uy) = E(E@ +urT)(Ee + uat) - (Ze + unt).
Since the factors (Z¢ 4 u;7)’s are commutative, we see that Det(®; uq,... ,up)
does not depend on the order of the parameters. Note that det(®) = Det(®),

when the entries of ® are commutative.

Remark. The expressions of the Pfaffians and the determinants above are
generalized to the following expressions of the subpfaffians and the principal
minors. For an alternating matrix ¥ and an n X n matrix ®, we have

(1.5) Z ei iy PE(TT) = 9‘(1116)
\I|=2k

with T ={i1,... ,i2x} , and

(1.6) ele;---ene/n Z Det(®r; uq,uz,... uy)
|7|=v

1 - ) - n—v
= ;(:@ +urT)(Ze + uat) - - (Za + u, )7,

1.3. The Pfaffians and the symmetrized determinant have the following invari-

ances under the actions of GL,, = GL,(K):

Proposition 1.1. The following equality holds for g € GL, :
Pf(g®'g) = det(g) Pf(®).
Proposition 1.2. The symmetrized determinant is wnvariant under the
conjugation by g € GLy, :
Det(g®g ™" ; ut,... ,un) = Det(®; ur,... ,un).

More generally we have

Z Det((g®g ™" )r; ut,... ,u,) = Z Det(®r; wy,...,uy).

[|=v |T|=v
Proposition 1.3. The following equality holds:

Det("®; uy,... ,un) = Det(®; uy,... ,up,).

These propositions are naturally deduced from the expressions of the
Pfaffian and the determinant in the exterior calculus by using the invariance of
the exterior algebra given in Lemma 1.4 below.

Consider the natural action of ¢ € GL,, on the vector space K" spanned
by the anti-commutative variables eqy,... ,e,. This action is naturally extended
to an automorphism ¢, of the exterior algebra A, , and A, ® A. Similarly, the
action of a € GLa, on the vector space K*" spanned by {e;, el |1 < i < n}
is extended to an automorphism a, of the exterior algebra Ay, and Ay, ® A.
Note that the exterior algebras A, and A, have standard graded structures:
A =P, AS{‘), Aoy = iio Ag];). The following is an elementary fact for the
exterior algebras:
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Lemma 1.4.
(1) For ¢ € A © A and g € GL,,, the equality g.(p) = det(g)p holds.
(ii) For ¢ € Agznn) ®@ A and o € GLy,,, the equality a.(p) = det(a)p holds.
Proof of Proposition 1.1. By definition, the following relation holds:
Ogpig = egq)tgte = (eg)CI)t(eg) = _q*eCI)te = g.0s.
In particular, since g4 1s an automorphism, we have

0\ = g, 00" = det(g)6\™.

g®tg —

Here, the second equality is seen from Lemma 1.4, because ngm) 1s of top-degree
in A, ® A. Then our formula is immediate from the expression (1.1) of the

Pfaffian. ]

Propositions 1.2 and 1.3 are similarly proved by considering the following
two types of elements of GLj,. We put

) _ 0
g = dlag(g,tg 1) = (g ‘ _1> € GLay,
0 %
for g € GL, , and define an involution ¢ € GLa, by t(e;) = € and ¢(€}) = ¢;.
We often write the action of this ¢ on ¢ € Ay, @ A as 14(¢) = ¢’ simply. Note
that det(ay) =1 and det(s) = (—)".

Proof of Proposition 1.2. A direct calculation leads us to the following
relations:

Sgpg-1 = (0g)s=s, (ag)ur =T.

Since (ayg)s Is an automorphism, we have

(Zgag-1 +urT) - (Sgag-1 +u,7)7" " = (ag)s(Zs +urr) - (Zo + u,7)7" "
=(Z +urr) - (59 +u,7)r" "

Here, the second equality is seen from Lemma 1.4, because det(ay) = 1. This

implies our formula by (1.6). [ ]

Proof of Proposition 1.3. The following relations are easily seen:

—_ —_—
Sy — TS, T = —T.

Noting these, we apply the involution /

=1 to p=(Z +urr) - (6 + un7).
Then we have on one hand ¢’ = (—)"(th; + ulT) cee (E@ + unT) by a direct
calculation. On the other hand, since ¢ is of top-degree, we see ¢’ = det(t)p =

(—)"¢ from Lemma 1.4. Thus our formula holds by the equality (1.4). ]

2. Determinants for the matrix A

In this section, we apply the consideration in the previous section to the ma-

trix A, and give two expressions of D(\) respectively with the symmetrized
determinant and the Pfaffian.

2.1. The following relation holds between the column-determinant and the
syminetrized determinant for the matrix A:
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Proposition 2.1. (]9, Proposition 3.2]) The following equality holds:
det(A + diag(u,u —1,... ,u = n+1)) =Det(A; v,u—1,... ;u—n+1).

This is easily checked by using the following commutation relation [9,
Lemma 3.1]:

(2.1) Yilu + 1)Yj(u) +j(u+ )i (u) = =4, - 204.

n

Here we put o;(u) = > ., e;Aij(u) = ; + uej.
Applying Propositions 1.3 and 2.1 to the submatrices Ay, we obtain the
following expressions of Ca, because Ay is alternating:

(2.2) Cor = Y det(As +diag(k,k—1,...,—k+1))
|I|=2k
= ) det(A; +diag(k — 1,k —2,...,—k))
|7|=2k
= ) Det(Ar; kk—1,...,—k+1)
|7|=2k
= ) Det(Ar;k—1,k-2,...,k).
|T|=2k

It is reasonable to put Cor41 = 0. In fact, we have

Y det(Ajtdiag(k,k—1,...,—k)) = > Det(Ar; k,k—1,...,—k) =0.
[T|=2k+1 [T|=2k+1

Our D(\) defined as a linear combination of Cs’sin (2) and (3) can be expressed
simply with the symmetrized determinant just like a characteristic polynomial:

Proposition 2.2. The following equality holds:

Det(A\I—A;m—1,m—2,...,—m+1,0), (n =2m),
D(\) = —
) A /\1/2Det(/\I—A;m—%,m—g,...,—m+%,0),(n=2m—}—1).

Here, the dots indicate a sequence of numbers descending by 1.

Proof. Suppose that n = 2m. By induction, we see the binomial expansion

2m

ot it = 3 (2 (s ) i)
v=0

for the polynomials fyi(u; h) defined by
flp(ush) = (u+kR)(w + (k= 1h) - (u — (k = 1)h),

far(ush) = (u+ (k= Dh)(u + (k = 2)h) - (v = kh),
Faipr(ws ) = (u+ k) (u+ (k= D) - (u = kh).
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Using this, we have

2m

(2.3) fom(E +A7;7) =

v

>f2m 1/ = T (/\T;T)

2m

ANgERANGES
A~

v

)f m—u = T Vf:t(/\ 1)
= (2m)! 26]6/1 crenel Com—nk - fQik(/\; 1).
k=0

Here, we used the relation
fEE D)™ = 01(2m — v)leré - enel, Oy,

which follows from (1.6) and (2.2). Sum up the both sides of this (2.3) over the
indices +, —, and divide by 2. Then, we obtain

(E+A+m=-0n)(E+A+m=2)1)---(E4+A=m+1)7)- (Z4 A1)

m

’ / k\k

= (2m)! Z er€y €n€,Com_op - A"A%
k=0

This means our formula by (1.6). In the case of n = 2m + 1, since the proof is
almost the same, we omit it. ]

From the proof, we see another expression of D()\) with two column-
determinant:

Corollary 2.3. The following equality holds:

HO\) + H(A - 1), (n = 2m),
2D =1 A _/\1/2{H(/\) FHO =1}, (n=2m+1).
Here we put
H()) = det(A + ding(5, 5 = 1. . =2 +1) + M),

Remark. Theorem A can be written with this H(/\) in a form which does not
depend on the parity of n (§5).

Remark. It is known that Pf(A) and Z|I|:V Det(Ar; uy,ug,...,u,) are in-
variant under the adjoint actions of SO, and O,, respectively. This fact is easily
seen from Propositions 1.1 and 1.2 by using the following relation for the adjoint
action of the orthogonal Lie group O, on the matrix A [9]:

Ad(g)A = (gAijg_l)ISi,an ='gAly™! ='gAy,
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where g € O,,. This follows from the relation
(2.4) Ad(9)E = (9Eijg™ )i<ijcn = 9E'9™"

for E = (Ejj)i1<i,j<n € Mat(n,U(gl,)) and g € GL,, because A =FE —'E.
2.2. The following expression of Cyy is given in [9]:

(2.5) Cor= Y  Pf(A7)”.

|I|=2k

Using the expression (1.5) of the subpfaffians, we can rewrite this as the expres-

sion with 6 = 04 and@’—ef,_\:l 'A'e’ :22” 1 z]

(2.6) erel - enel Cof = (_)kg(k)gl(k)T(n—zk)_

The cofactor matrix for D()) is constructed in §4 by combining this expression
of Cyr and the cofactors for Pf(A) given in the next section.

3. The cofactor matrix for the Pfaffian Pf(A)

In this section, we introduce the cofactor matrix for the Pfaffian Pf(A) as a clue
to the construction of the cofactors of the characteristic polynomial D(\).

We first recall the cofactor matrix for the Pfaffian in the classical sit-
uation [4]. For an alternating matrix ® of size n = 2m whose entries are
commutative, we define a matrix I's by

(3.1) €1 eam(Ta)ij = —ngm_l)eiej.

Here (I's),; is the (7, j)-entry of the matrix I's . From (1.5), we see that (I's);;
is equal to the subpfaffian Pf(®(; ;) up to sign. Here ®; ;) is the alternating
submatrix obtained by deleting the :th and jth rows and :th and jth columns
from ®. We note that this definition is rewritten as

1 (m—1)
€1+ eamle = —'€ <§eCI>te> e.

We call this matrix I's the cofactor matrix for the Pfaffian Pf(®). In fact, the
product of I's and @ is known to equal to the “scalar matrix” Pf(®)I:

(3.2) Is® =T = PI(P)].
For the Pfaffian Pf(A) of our matrix A = (Aij)lgmsgm, whose entries

are non-commutative, we also define its cofactor matrix I'4 by the same formula
(3.1). Then the following relation holds corresponding to (3.2):
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Proposition 3.1.  The following equality holds in Mat(2m, U(o2m)):
TaA'= AT 4 = Pf(A)I,
where A" = A — (m — 1)I. This relation is rewritten in the exterior calculus as
—6" Vegiha(—m + 1) = 6456,

where Yo (u) = Z?:l €idia(u) = Yo + uey.
Proof. (i) The case of o = 3. We put 6,) = %Zij;éoz eiejA;j, so that
6 = 9((1) —eqat)o . By a direct calculation we see that 6((1) and ey (u) commute.

Our assertion is deduced from the binomial expansion of (™) = (B —eat/)a)(m) .
In fact, since 027;) =0 and (eatha)® = 0, we have

6 = (6(a) — catia)™ = —GEZZ)_l)ea¢a = 0" Vegipo(—m + 1)

as desired. The last equality is easily seen, because the influence of the terms of
6 and ¥, (u) containing the variable e, is killed by the factor e, :

(3.3) bea = O(a)€a, Catha = €atalu) for any u.

(ii) The case of a # . The following expansion holds in a similar way
as in (i):

(m—1) B e(m—2)€a¢a.

glm—1) _ (9(a) _ €a¢a)(m_1) _ g(a) -

Hence, we have
(3.4) 6 Degiha(u) = 607 egthalu) = 6im > eatbacatba(u).

(g_l)eﬂea.

Here, on one hand, the first term on the right-hand side is equal to u9(
In fact, since this is of top-degree, and the factor 6521)_1)6,9 does not contain the
variable €, , we see that, in the factor t,(u) = Zzzl €p
€aAaa(u) = uey survives. On the other hand, the second term is computed as

Apa(u), only the term

follows. Putting 1 = j = a in the formula (2.1), we have

Yo(u+ 1)po(u) = -6,
and in particular
CatPathal(u) = —eag(a)
by the relations (3.3). Hence the second term on the right-hand side of (3.4) is

equal to 953_2)0@)%6& =(m — 1)653_1)6/96&. Thus, we have

6 Degip(u) = (u+m— )80 Vegea,

and our goal G(m_l)elglba(—m + 1) = 0 in particular. ]

The second equality in Proposition 3.1 is generalized to the following
formula for arbitrary natural number n not necessarily even:
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Corollary 3.2. The following formula holds as an equality in Ap @ U(0y,)
for distinct indices B1,... , Bn—2k+1:
e(k_l)eﬂl €6y """ eﬂn—2k+1¢a(_k + 1)
B { (_)TL‘I’ie(k)eﬂl...e/ﬂ\i...eﬂn_zk-l_l’ a:ﬂz’
07 «a ¢{517527"' 7ﬁn—2k+1}-
Here €5, means that eg, is omitted.

Proof. We can assume that o # 3, for p # i. Applying the second equality
in Proposition 3.1 to the submatrix Ay with

12{1727 7n}\{ﬁ17"' 7@7"' 7ﬁn—2k+1}a

we have

0 Veg a(—k +1) = —0ap,8"
with 6 = D pgel Ep€qApg and ;/;a(u) =D el epApa(u). Then, we obtain our

formula multiplying the both sides of this equality by eg, --- €3, -~ €g,_,.,, . In
fact, we have
eeﬂl U e/E e elgn—2k+1 = eeﬂl e e/lé\l e elgn—2k+17
¢a(u>eﬂ1 T e/ﬂ\i T CBn—aktr T dja(“)‘eﬂl T e/ﬂ\i T B okt u

4. The cofactor matrix for D(\)

In this section, we construct the cofactor matrix A(A) for D(A) using the
cofactors for Pf(A) given in the previous section. The main results in this
paper are obtained as applications of this cofactor matrix.

Put the matrices B, ’s in Mat(n,U(0,)) for 0 <v <n—1 as

B, (_)k+1g(k)gf(k)T(n—Zk—l)eieg7 (v = 2k),
v)i) — (_)ke(k+1)6/(k)7_(n—2k—2)ege/. (1/ = 9% + ]_)

VR

!

!
€1€7 €y,

Here (B,);; is the (1, j)-entry of the matrix B,. Moreover we put B, = 0. Note
that this definition is rewritten as

(Bar)ij= Y, +Pf(Angy) PR(An)),
|I|=2k+1,i,j€l

Z +Pf(Ar) P(Anyi ), (0 #7)
(Bak+1)ij = § |I|=2k+2,i,j€T

0, (i = )
Here, the sign in each term is determined by ¢, j and I. We define the matrix
A(X) by the following linear combination of these B, ’s:

n—1
> Bayoahy (M), (n = 2m),
v=0

A(/\) - n—1
Y Ba_yahf(A—1/2), (n=2m+1).
v=0
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Here h,:,t(/\) are polynomials of degree v defined by

M) — ARAE (1 = 2k), () = AFAE (1 = 2k),
/ NHINE - (y = 2k 4 1), ! NAEEL - (1 = 2k + 1).

We easily see the following relations from the expression (2.6) of Cay:
Proposition 4.1. The following relations hold:
tI‘(BQk) == —(n - 2]{7>Cgk, tr(ng+1) == 0
In particular, the trace of the matriz A(N) is equal to —N(\):
tr(A(N)) = =N(N).

We call this A()\) the cofactor matrix for D(A). In fact, the product
of A(AN) and A — (n/2 —1)I — A is equal to the “scalar matrix” D(A)I as is
seen 1n the following proposition. Newton’s formulas and the Cayley-Hamilton
theorem are obtained as corollaries of this relation (§5).

Proposition 4.2. The following equality holds:
AN (A" = M) = (A" = MN)A(N) = DM,
where A'=A —(n/2 -1)I.

For the proof of Proposition 4.2, we use the following three lemmas. In

these, Lemmas 4.3 and 4.5 are based on the cofactors for Pf(A).
Lemma 4.3.  We have

el(k—l)T(n—2k+1)¢;(_k + 1) — —9/(k)T(n_2k)€]‘,
Gl(k_l)T(n_Qk)eg¢/<(—k + 1) _ —el(k)T(n_Qk)(Si]‘ N Gl(k)T(n_Zk_l)e;e]‘.

j
where dvg(u) =Y etAii(u) = Lb; + u,e;-.
Lemma 4.4.  We have

e(k)el(k—l)T(n—Qk)e;e; — 9(’“_1)9’(’“)7'("_2’“)6,;6]-.

Lemma 4.5. We have

G(k)ﬁl(k)T("_Qk_U(eie;- + elej) + (n — Qk)ﬁ(k)ﬁl(k_UT("_Qk)ege;- =0.

Proof of Lemma 4.3. We can reduce this lemma to Corollary 3.2 by applying

the involution ¢, = and expanding the powers of 7 =) ]

n !
p=1Ep€p -



476 ItoHn

Proofof Lemma 4.4. Our assertion is deduced from the special case of n = 2k
by applying to the submatrices Ar of A for |I| = 2k. In fact, we have

H(k)ﬁl(k_UT("_Zk)ege; — Z G(Ik)elj(k_1)€2€; . 7_[(17,—2]6)’
|T|=2k, i,5€TI

e(k—l)el(k)r(n—Zk)eiej _ Z G(Ik—l)ell(k)ele] ) 7_[(22—2]«:)7
|T=2k, i jeT

where 67, 8} and 77. are defined by

' o '
0 = E epeqApq, 07 = E €€y ipg, TIc:E €p€y-

p,q€l p,q€l p&€l

Therefore, we may assume that n = 2k without loss of generality. We start with
the application of the involution ¢, =/ to ¢ = 9(]“)9’(’“_1)6269. On one hand,
a direct calculation leads us to ¢’ = 9’(k)9(k_1)eiej. On the other hand we see
¢ = (—)"p = ¢ from Lemma 1.4. Thus we have

(4.1) H(k)el(k_l)e;e; = Gl(k)H(k_l)eie]'.

Here, the factor #/(%) on the right-hand side is central in Ay, ® U(0,,). In fact,
as is seen in (1.1), the coefficient of #'(F) is equal to the Pfaffian Pf(A), which

is central in U(o0,). Hence, we can exchange §'®) and §(*~1) on the right-hand
side of (4.1). Thus our assertion has been proved. ]

Proof of Lemma 4.5. We assume that ¢ # j, because our assertion is
obviously true in the case of ¢+ = 5. Moreover we can assume that n = 2k 4+ 1 as
in the proof of Lemma 4.4. In this case, our formula is equivalent to

(4.2) H(k)é?'(k)eie;- = Gl(k)ﬁ(k)eie; — 6(’“)6'(’“_1)7'6269.

In fact, we see that G(k)ﬁl(k)egq = —9'(]“)9(]“)@69 by calculating the action of the

involution ¢, ="' to 9(’“)9'(’“)6261- in two ways as in the proof of Lemma 4.4. This
(4.2) is proved by computing the element ¢ = 9(]“)9’(]“)6,;69 as follows. Note the
relations

(4.3) 0 e; = =60 Veippie;, §W el = —0FVejaple].

These are immediate from Corollary 3.2, because we have e;1;(u) = €;4; for any

u. Using this (4.3), we have

@ = g(k)gl(k)eie;, — g(k)eigl(k)e;, — —G(k)eiﬁl(k_l)eﬁb{e'-

[ I

Here, the factors 8F¢; and #/(F—De! are anti-commutative. This is seen from
the fact that the coefficient of 8(F)¢; is equal to the Pfaffian Pf(A;) for the
submatrix A(;y = (Apq)p,gi, Which commutes with A,, for p,q # 7. In fact,

the coefficients of §/(*=Ve! are generated by {A,, |p,q # i}. Hence we have

© = Gl(k_l)egﬁ(k)eiwge}
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Furthermore we consider the commutation relation between ) and il
[0, eiipl] = 64 Vejuhir.

This is easily seen from the direct calculations [6, e;1!] = e;1);7 and [0, e;4;] = 0.
Thus, we have

w = 9/(k_1)e;9(k)ei¢>£e;- = Hl(k_l)ege“b;e(k)e} + Gl(k_l)egﬁ(k_l)eﬂbﬁe;
= Gl(k)H(k)eie;- — 6’(’“)6(’“—1)76269.
On the last equality, we used (4.3) again. This implies (4.2), hence our formula.m

Now we are ready to prove Proposition 4.2. Combining the three lemmas
above, we have the following relation among B,’s, C,’s and A:

Proposition 4.6. The following equalities hold in Mat(n,U(0,)):

BQk(A — ]{'I) = BQk(A/ + (n/? —k— ].)I) = B2k+1,
BQk+1(A — (?’I — k- 2)[) = B2k+1(Al — (?’1/2 — k- ].)I) == ng+2 + Czk+2[.

Proof. Using Lemma 4.3 and then Lemma 4.4, we have the following equality:

(—)k+19(k)9/(k)7—(n_2k_1)€i¢;(—k) _ (_)ke(k)el(k—}-l)T(n—2k—2)€i€j
— (—)ke(k+1)Gl(k)T(n_Zk_2)€2€;-.

Our first formula is immediate from this together with the definition of B,,.

To show the second formula, we calculate the quantity

© = (_)ke(k+1)9/(k)7_(n—2k—2)e§¢}(_k‘>.

In the case of 1 = j, we have the following by Lemma 4.3:

o= (_>k+19(k+1)6/(k+1)7_(n—2k—2) 4 (_)ke(k—i-l)el(k—}-l)T(n—2k—3)eieg.

In the case of ¢ # j, applying Lemma 4.3 and then Lemma 4.5, we have

@ = (—)FTLekFD gr(k+1) (n—2k=3) 1

— (_)ke(k-l-l)9/(k-|—1)7_(n—2k—3)eie; + (_)k(n 9k — 2)9(k+1)9/(k)T(n_2k_2)€2€;.

By the definition of B, and the expression (2.6) of Csj, these equalities imply
Bapy1(A — kI) = Bogyo + Copyol + (n — 2k — 2)Bogy1.

Our second formula is immediate from this. ]



478 ItoHn

Proof of Proposition 4.2. The proposition is obtained as a linear combina-

tion of the relations in Proposition 4.6. Assume that n = 2m. By the definition
of A()\) and Proposition 4.6, we have

A(/\)(A’ — /\I)
m—1 m—1
— { Y Bamoak—2 AL Y Bz,n_zk_lxkxﬁ} (A= (m—1)I =\
k=0 k=0
m—1 _
= {Bam-2k—2(A —(m —k —1)I) 4+ Bapm—2k—2 - (—k — /\)}/\k/\ki
k=0
m—1

+ N {Bom-ok—1(A = (n— (m —k—1) = 2)T) + Bom—oi—1 - (k — \)JAFAE

= {BZm—Zk—l/\k/\ki - Bzm—zk—z/\k-l_l/\ki}
k=0
m—1 . .
+ {(Bzm—zk + sz—‘zkf)/\k/\E — Bym—_2k—1 /\k/\ki}
k=0
m—1

Coam o INEAE — BONTA™ 4 B,

k=0
This coincides with D(A)I as desired, because By = —I and By, = 0. The
proof for the case of n = 2m + 1 is similar. ]

In the remainder of this section, we present some supplementary formulas
for the cofactor matrix A(\).
In the case that n = 2m is even, we can still factorize the cofactor matrix
A(X). Define a matrix Y (\) by
m— —
Y(A) =Y Bam-ak—2 AL,

k=0

—

Then we have the following relation:

Proposition 4.7. When n = 2m, we have
Y(N(A"+ M) = A(N),
and in particular
Y\ (A" + M)A — \I) = DMV

This can be checked in a similar way as Proposition 4.2 by using Propo-
sition 4.6.

For odd n = 2m + 1, such a factorization of the cofactor matrix A(/\)
is not available. We have the following proposition instead of Proposition 4.7.

Define a matrix Y (\) by

Y(\) = mi: Bom—ai—s (A — 1/2)FFT (A — 1/2)F
k=0
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Proposition 4.8. When n =2m + 1, the following equalities hold:
V(M (A 4+ M)+ A(1/2) = A(N),

(A — mI)Y(\)(A' + AI)(A' — \I) = D(\)(A — mI).

Here, the second equality is immediately follows from the first, because

we have (A —mI)A(1/2) = D(1/2)I = 0.

5. Newton’s formulas and the Cayley-Hamilton theorem for o,

As corollaries of Proposition 4.2 for the cofactor matrix A(X) for D()\), we have
Newton’s formulas and the Cayley-Hamilton theorem for o, .

Theorem 5.1. (Newton’s formula for o, (1)) The following equality holds
as U(oy,)-coefficient formal power series in A:

% = ; AT T (AT,

Here, we put A' = A — (n/2-1)I.

Remark. This Theorem 5.1 is rewritten with a column-determinant H(\) by
using Corollary 2.3:

A HWN-HA=2) S Cier
/\—1/2'H(/\)—|—H(/\—1):ZA tr(A™).

r=0

This expression does not depend on the parity of n.

Theorem 5.2. (Newton’s formula for o, (2)) A relation between Cay’s
and tr(A")’s is given in the form

S (4 5 -)0) (4= 1)) - -2
O LI YR

From this Theorem 5.2, we can deduce an explicit expression of Cy with
tr(A")’s by induction:




480 ItoHn

Corollary 5.3. The central element Chr s expressed as the following
determinant of degree k:
Q1,1 2
Q22 Q21 4 O
(_>k2kk!02k:det Q33 Q32 Q3,1
; ; ; . 2k -2
Qrk Q-1 Qrr—2 ... Q1

Here, we put Qa3 = tr((A" + (n/2 — a)[)’@(A’ —(n/2 — a)[)ﬁ)
Proof of Theorem 5.1. Multiplying the both sides of the equality in Propo-
sition 4.2 by (M — A')~! from right, we have

—A(N) = DW\)(M — A" = D()) i ATITTAT

Then, taking the trace of the both sides, we obtain the theorem. In fact, the
trace of A()\) is equal to —N(\) as is seen in Proposition 4.1. ]

Proof of Theorem 5.2. Define B, € Mat(n,U(0,)) by
k

Bot = Bor + Yy Cop—ni( A" + (n/2 = E)I)' (A’ = (n/2 = K)I),
=0
Boky1 = Bokg1 + Y Cox—ai( A+ (n/2 =k = 1)I)'T (A = (n/2 — k)I)L.
=0

Using Proposition 4.6, we see the relations
Bor(A' + (n/2 — k = )I) = Bygys,
Bori1(A' — (n)2 — k — 1)I) = Byjis.
Then, since By =By +1I = 0, we see that B, =0 by induction. Taking the
trace, we come to the theorem by Proposition 4.1. ]

Since B, = 0, we see that B, = D(A') from the definition of B,. Thus,
the equality B, = 0 in the proof of Theorem 5.2 implies the following theorem:

Theorem 5.4. (The Cayley-Hamilton theorem for o,) The following
equality holds i Mat(n,U(o,)):

D(A") =0.

Remarks. (1) Theorems 5.1 and 5.2 are equivalent. In fact, Theorem 5.2 is
directly deduced from Theorem 5.1 by comparing the coefficients of the powers
in \.

(2) Another Newton type identity in U(o0,) is given in [12]. This has the same
form as Theorem 5.1 except that N(\) and D(\) are given with another certain
“single” determinant det instead of the column-determinant. This means that
our (Cs’s are equal to this determinant det. This fact will be also deduced
more clearly in §7 by calculating the image of D(\) under the Harish-Chandra
homomorphism.
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6. Relation to other realizations of the orthogonal Lie algebras

We have discussed on the orthogonal Lie algebra o, realized as the Lie algebra
consisting of the alternating matrices, and constructed some identities in its
universal enveloping algebra. In this section, we extend these results to the
realization of the orthogonal Lie algebra with any non-degenerate symmetric
matrix. For this general realization, we can naturally arrange a matrix F' in a
similar way as A, and will see that this F satisfies Newton type and Cayley-
Hamilton type identities, which are described with the symmetrized determinant.

Fix a non-degenerate symmetric matrix S € Mat,,(K), and consider the

orthogonal Lie algebra defined with this S
o(S)={X cgl,|'XS +SX =0}

According to the embedding of the Lie algebras o(S) and o, into gl,,, we regard
the universal enveloping algebras U(o(.S)) and U(o0,) as subalgebras of Ul(gl,).
Consider an involution ig : X — ST'X S of gl,, so that X —ig(X) € o(S) for
any X € gl,,. Then the elements F;; = E;; —ig(FE;;) span o(S). We arrange a
matrix F' = (Fij)lgi,jgn from these. This F' is expressed with E = (Eij)lgi,jgn
as

F=FE-Ad(S")E=FE-SES™.

Here we used the relation (2.4). In particular, the matrices F'S and S™'F are
alternating.

The two orthogonal Lie algebras 0, and 0(.9) are related with each other
as follows. Fix a matrix s € Mat, (K) such that S = %ss. (Such an s can be taken
by extending the ground field K.) Then the restriction of the automorphism
Ad(s™"): X = s7'Xs of gl,, gives a natural isomorphism 0, 5 0(S). By this
isomorphism, the matrix A is mapped to Ad(s7!)A = s~ F' as is seen from
the relation (2.4). Then, we obtain the images of Pf(A), Cyr and tr(A"):
(6.1)

Ad(s7H) Pf(A) = det(s) ! Pf(FS) = det(s) Pf(S™'F),

Ad(s™")Cok = > Det(Fyskk—1,...,—k+1), Ad(s™")tr(A") = tz(F").
|I|=2k

These are easily checked by using Propositions 1.1, 1.2 and the invariance of
the trace under the conjugation. We can express Dp(\) = Ad(s™!)D(\) and
Np(\) = Ad(s7')N()) as linear combinations of the symmetrized determinants
in similar ways as (2) and (3). Moreover Dg(\) is written as follows by Propo-
sitions 1.2 and 2.2:

Det(\—F;m—1,m—2,...,—m+1,0), (n =2m),
Dr(M)=9 X—1/2 1 3 1
3 Det(AI—F,m—i,m—?...,—m+§,0),(n:2m—l—l).

Newton’s formulas and the Cayley-Hamilton theorem given in §5 still

hold by replacing D(\), N(A) and A respectively by Dg()\), Nrp(\) and F':
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Theorem 6.1. (Newton’s formula for o(S)) The following equality holds
as U(0(9))-coefficient formal power series in \:

JVF(/\) o
Dp(\)

Y AT (FT,
r=0

>

where F!' = F — (77/2 — 1)[.

Theorem 6.2. (The Cayley-Hamilton theorem for o(S)) The following
equality holds i Mat(n,U(0(S5))):

Dp(F') = 0.
In the remainder of this section, we rewrite the cofactor matrices for
Pf(A) and D(\) and their equalities in terms of the matrix F'. First, let us
consider the cofactor matrix for Pf(S™'F) in the case of n = 2m. We define
the matrix T's-1p by

m—1
el - en(rs_lF)ij = —6;_1};‘)61‘6]‘

with Og-1p = %eS_lFte = %2?1:1 eiej(ST'F);;. We have the following

relation corresponding to Proposition 3.1:
Proposition 6.3. The following equality holds:

Tg-1pS~'F' =Pf(S™'F)I.

Proof. We apply the isomorphism Ad(s™"): 0, ¥ 0(S) to the following ex-
pression of Proposition 3.1 in the exterior calculus:

(m—1)
1
(6.2) —'e <§eAte> e-A'=e e, PI(A)]
Then, since Ad(s™')A = sS™' F's, the left-hand side is mapped to

1 (m-1)

—ls~1Hes) <§(es)S_lFt(es)) (es)- ST F's.

This is equal to the following by Lemma 1.4:

1 (m—1)

—det(s)s e (565_1Fte> e-STIF'
= —¢ey - repdet(s)’s ' Tg p ST F'ls.

This implies our assertion. In fact, the isomorphism Ad(s™') maps the right-

hand side of (6.2) to €1 - €, det(s) Pf(S_lF) as is seen in (6.1). ]
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We can similarly rewrite the cofactor matrix for D(\) in terms of F

using Lemma 1.4. We put the matrices R, ’sfor 0 <v <n—1 as
(6.3)

1€ enel (Ry)iy = { (_)k+105qulpﬁglf)1FT%ijk?)eie;‘a (v = 2k),
()R, 7Tl (v =2k 4 1),
and define Ag-1p(\) by
n—1
Z Rp—y-1h, (M), (n = 2m),
v=0

As-p(N) =14 "
Y Raoyalbf(A=1/2), (n=2m+1),
v=0

where 0_, p = %e’S‘lFte’, and 7g-1 = eSS '%’. Then, we have the following

proposition corresponding to Proposition 4.2. This is deduced from Proposi-
tion 4.2 in a similar way as Proposition 6.3.

Proposition 6.4. The following equality holds:
Agoip(N)S™HF' — NI) = det(S™H)Dr(M]I.

Moreover we define Yg-1p(\) by

3
L

R2m—2k—2/\z/\ﬁa (77 = 2777)7

e
Il
o

(6.4) Ys-ap(A) =

3
L

Rom—si—z (A= 1/2T (A= 1/2)% . (n=2m +1).

~
I
o

We have following propositions respectively corresponding to Propositions 4.7

and 4.8:
Proposition 6.5. When n = 2m, the following equality holds:
Yoo1 p(AN)STHF' + AI)(F' — \I) = det(S™1)Dr (M.
Proposition 6.6. When n =2m + 1, the following equality holds:
(F —mI)Ys 1 p(\)STHF' + \NI)(F' — M) = det(S™")Dp (N (F — mlI).

Finally, we note the counterpart of (2.6) in terms of F', which we use

in §7:
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Proposition 6.7. The following equality holds:

6]6{1 ---ene;det(s_l) Z Det(-Ffa kak_]-a 7_k+]‘>
|[T|=2k

k k n—2k
(0l

7. Image of D(\) under the Harish-Chandra homomorphism

In this section, we work on the split realization of the orthogonal Lie algebra,
and consider the image of the characteristic polynomial D¥(\) = Dp()\) under
the Harish-Chandra homomorphism. From this result, it turns out that our
D¥(\) = Dp(}) is identical to a central element C()\) given with the Sklyanin
determinant in [10].

For a reductive Lie algebra g, the Harish-Chandra homomorphism is
defined as follows. Fix a triangular decomposition of g

g=n_a3hIng.

This leads us to the following direct sum decomposition of U(g) as a vector space
by the Poincaré-Birkhoff-Witt theorem:

Ulg) =U(h) © (n-Ulg) + Ulg)n4).
Denote by ~ the projection of U(g) onto U(h) along this decomposition. The

restriction of 4 to the centralizer U(g)? of f) gives an algebra homomorphism.
Moreover we consider the rho-shift T_,, the automorphism of U(h) determined

by h 5 H— H — p(H). Here p is the element of h* defined by
1
p(H):itrn+(adH), for H €.

The composition ¥ = T_, 0y gives an algebra homomorphism on U(g)?. More-
over this 7 is known to give an algebra isomorphism ZU(g) ~ U(h)W, where
ZU(g) is the center of U(g), and U(h)"W is the subalgebra of U(h) consisting
of the invariants under the action of the Weyl group W. We call this 7 the
Harish-Chandra homomorphism.

Hereafter we work on the orthogonal Lie algebra realized with the sym-
metric matrix So = (63 n41-5)1<ij<n:

O(S()) = {X € g[n |tXSO + S5 X = 0}
This 0(So) is spanned by Fj; = E;j — Enq1—jnt1—i. Let n_ b and ny be the
Lie subalgebras spanned by the elements Fj; such that + > 3, 1 = 7, 1 < j
respectively. Then these give a triangular decomposition of 0(Sy):
0(So) =n_@hdng.

The rho-shift T_, acts on the basis {F;; |1 <1 <n/2} of b as

I_,Fi = Fii — g + 1.

The images of Pf(S;'F) and Dp(\) under 5 are given as follows. We
note that Proposition 7.1 has been known. (For example see [25, §127] or [10,
p. 942].)
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Proposition 7.1.  When n = 2m 1s even, the image of Pf(SO_]F) under the
Harish-Chandra homomorphism s given by

F(PH(Sg ' F)) = (=)"Fi1Fy2 - Fonpm.

Theorem 7.2. The wmage of Dp(\) under the Harish-Chandra homomor-
phism s qiven by

(N = Ffy) - (A = Fl), (n = 2m),

¥(Dr(N)) = { (/\_ %) (/\2 _F121)...(/\2 _ngm), (n=2m+1).

These can be proved by induction in the following way. The Lie subalge-
bra generated by {F;; |2 <i,j < n—1} isregarded as the orthogonal Lie algebra

0(50) realized with the symmetric matrix Sy = (So)(1n) = (Jint1-j)2<ij<n—1-
For this 0(5”0), we can consider the matrix F = F(ln) = (Fij)25i,j5n—1 and its
characteristic polynomial Dg(\), or the Pfaffian Pf(go_lﬁ) as for 0(Sp). The
triangular decomposition of 0(Sy) is naturally given by restricting that of o(So).

We will prove Proposition 7.1 and Theorem 7.2 reducing their assertions to the
case of 0(Sy). For this reduction, we use the cofactors for Pf(So_lF) and Dp()).

Proof of Proposition 7.1. Apply v to the (n,n)-entry of the both sides of
the equality in Proposition 6.3. Then, we have

’Y(Pf(S()_lF)) = Z’Y((FsglF)ni(F/)n—iJrl,n) = ’7((FSO—1F)H1)(_F11 —(m—1)).

In fact, (F')p—it1,n belongs to ny for i # 1. Here, (I'g—1 p)n1 is equal to the

Pfaffian Pf(go_] I*:’) This fact is easily seen from the following expressions in the
exterior calculus by noting that 6.-1 peye; = 01 peqer:
0] 0

eren(Tgmip)m = =00 lener,  exroen PE(STIF) = 6000,

- . .
where Gso_lF =3 EZSiijn—l eiejFrniq1-; ;. Hence, applying T_,, we have

F(PE(S ' F)) = F(PE(Sg ' F)) - (—Fun).

Thus our task has been reduced to the calculation of the image of the Pfaffian
Pf(So_lF) of degree n — 2. The proposition is proved by induction. ]

To prove Theorem 7.2 similarly, we need the following relation between
the (n,1)-entry of the matrix Y¢—1 () given in (6.4) and the characteristic
0

polynomial D () for the submatrix F':

Lemma 7.3. The following equality holds:

Y((Rar)n1) = det( };1)7( N Det(Fy; bk —1,...,~k+ 1)).
|T|=2k
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In particular, we have
V(Y1 p(N)m) = det(Sg)7(Ds (V).

Proof. By (6.3) and Proposition 6.7, the lemma is rewritten in terms of the
exterior calculus as

(7.1) (6(’“) 0’(k) T(n—2k—1)en€/1) (e(k) é/(k) %(n 2k—2)

! !
€1e_€npt
S;'FUS;VF St S;'F S F st 160 €n€1);

where

~ 1
!/ _ 11 L. ~ _
GS—1F = 5 E eiean+1_l’]’ ’/"So_l = E [ €n+1 i

2<i,j<n—1 2<i<n—1

We put w, = Y 1, €/ Fyt1-;n, so that 9{5,0_1Fe’1 = (égo_lF—e'nw;Z)e'l . By a direct

!

: : VAV
/. are commutative. Since (enwn) =0,

calculation, we see that 9&_1}? and e/ w
0

we have the binomial expansion

g'" e (~’ —elw )(k)ene1 = Gl(k)

/(k 1)/
ST Fne]— So—lF n]_e

6(.066.
'F nH

Here, the second term belongs to the subspace As, @ U(g)ny , so that we have

(]) ) _(n=2k-1) ) gm _(n=2k=1)_
(7.2) (es FHS FTs €1) = (95 FHS TpTs ne).

To complete the proof, we consider another binomial expansion

Ak n—2k—1 1k ~ n—2k—
9;0_2}?7';_ )e €ne 1—95( 2F(TS—1+6]6 )( 2 1)
= Hl(k)F~é7i 2k=1)g €n€l +9/S(k)F~é71 2k 2)ele;ene’l.

Here, the first term in the last line vanishes, because this is of degree n in the

n — 1 variables ej,... e, ;. Then, since O4-1pe1€, = 01 peren, we have
0 0

gb gk (n—2k-1) e _gR g (n—2k-2)

! !
E1E_En€Eq.
S;'FUSTUF Sy S;'FUST'R syt 1%nnt1

From this and (7.2), we have (7.1) as desired. ]
Proof of Theorem 7.2. The following is the key equality of the proof:

(7.3)
det(Sy ' )y(Dr(N))

= (Vg s WD) (<P = (5= 1) +3) (Fu = (5 -1) = ).

In the case of n = 2m, this is directly obtained by applying ~ to the (n,n)-
entry of the both sides of the equality in Proposition 6.5 as in the proof of
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Proposition 7.1. In the case of n = 2m+1, we can similarly deduce the following
from Proposition 6.6:

= (—Fu - m)’Y((Yso—lp(/\))m) (—Fu — (g — l) + /\> (—Fn — (g — 1) — /\) .

This leads us to (7.3) again. In fact, we can remove the factor (—Fyj; —m) from
the both sides, because U(0(Sp)) is an integral domain.

Since y((Yg-1p(A))n1) is equal to det(go_l)'y(Dﬁ(/\)) by Lemma 7.3,
applying T_, to (7.?’)), we have

det(Sg " )T(DF (V) = det(S5 ' F(Dp(\)(=Fin +N)(=Fii = ).

Thus our task is reduced to the calculation of (D z())). The theorem is proved
by induction. ]

Finally, we comment the relation between our D () and the Sklyanin
determinant in the twisted Yangians. In [10], a central element C'()) in U(0(.So))
is given with the Sklyanin determinant. The image of this C'(\) under the Harish-
Chandra homomorphism is equal to the image of Dp(\) given in Theorem 7.2,
as is calculated in [10]. This implies that our Dp()\) = Ad(s™")D(\) is identical
to this C(\). Thus, we obtain relations among the three type of determinants,
i.e., the column-, symmetrized and Sklyanin determinants.

Remark. The fact that our Dp()) is identical to C(\) is seen also from the
following equality, which is obtained by applying the isomorphism Ad(s™') to
(2.5):

det(Sy") Y Det(Frikk—1,...,—k+1)= >  Pf(S; ' F)r)*
|I|=2k |I|=2k

In fact, the coefficients of C(\) have the same expressions [13].
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