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A proof of property (RD) for
cocompact lattices of SL(3,R) and SL(3,C)
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Abstract.  We prove that cocompact lattices in SL3(R) and SL3(C) have
property (RD) of Jolissaint. This property asserts that functions on these
groups which are I?> with some polynomial decay belong to the reduced
C*-algebra. Ramagge, Robertson and Steger proved the same result for
cocompact lattices in SLs of p-adic fields and we use the same method.

In this article we prove that discrete cocompact subgroups of SL3(R) and SL3(C)
satisfy property (RD) of Jolissaint (this property was introduced in [4, 5, 7]).
The author originally proved the result for SL3(R) and the case of SL3(C) is
due to the referee. The argument is a very close imitation of the argument
of [9] : in this article Ramagge, Robertson and Steger prove a general result
(stated below) implying property (RD) for finetely generated discrete subgroups
of SL3(F), with F a finite extension of @Q,. Our result is a special case of a
conjecture of Valette which claims that any discrete group acting isometrically,
properly and cocompactly either on a Riemannian symmetric space or on an affine
building has property (RD) ([2] page 74).

Up to now property (RD) has been proved for free groups by Haagerup
in [3], and then for hyperbolic groups by de la Harpe in [1], using [5]. Recently,
in [9], Ramagge Robertson and Steger have proved property (RD) for any discrete
group acting freely on the vertices of an A' x A" or A? building by type-rotating
automorphisms and this provided the first example of higher rank groups with
property (RD). Our article is just an adaptation of [9] to SL3(R) and SL3(C) and
it doesn’t bring any new idea. On the other hand a new idea is needed in order to
prove property (RD) for cocompact lattices in Lie groups or p-adic groups of rank
more than 1 and other than S/7Ls.

I thank Yves Benoist for many fruitful discussions.

1. General facts about property (RD)

Let T' be a discrete group. A length [ on T' is a function [ : I' — R, such that
1(1)=0, l(¢g7") =1l(g) and I(g1g2) < (g1) +1(g2). We write T', = {g € T',l(g) <
r}.
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256 LAFFORGUE

Definition 1.1.  ([7]) We say that I' satisfies (RD) with respect to a length [ if
there is a polynomial P such that, for any r € Ry, fi, fo € CI' with suppf; C T,
we have | f; f2”12(r) < P(T)HflHz?(r)”fz”z?(r)-

It is enough to check the inequality for fi, fo € RyI.

Let us notice the following fact : if I' satisfies (RD) with respect to a
lenght [, there is a polynomial P such that, for any r € Ry and for any f € CI'
with suppf € TI';, one has || f|lz@) < || fllexay < P(r)||flle@y. This very good
estimate for the norm in C*(I') has an important consequence : C*(I') has the
same K-theory as a much simpler algebra, that we introduce now.

Proposition 1.2.  If T satisfies (RD) w.r.t. [, if s € Ry is big enough,
the completion H*(I') of CI' for the norm ||f|| = (Eger|f(g)|2(1 + l(g))2s)1/2
is a Banach subalgebra of C}(T') which is dense and closed under holomorphic
functional calculus.

In [6] this is proved for the Jolissaint algebra H*(T') = [ H*(T"). We give an

adaptation of the proof to our case.

Proof. Let P be the polynomial in the definition. Take any s € Ry such that
s > deg(P).

a) We prove that H*(I') is a subspace of CY(I'). We denote by xo the char-
acteristic function of {g¢,l(¢g) € [0,1[} and for any n € N* we denote by x, the
characteristic function of {g,l(g) € [2"7",2"[}. For any f € CI', |fllcxm) <
Yonmo I xallexmy < 3020 P Xalley < Cllfllasm) with © = (P(1)* +
Yoo (P21 + 2”_1)_5)2) ? by the Cauchy-Schwarz inequality.

b) We prove that H*(T') is an algebra. For any f;, f, € CI' and for any g € I’

we have

((fix (@) (L+19)" < Y 2| filg)] | f2(g2)| (1 + Ugn))* + (1 +1(g2))°)

91,92, s.t.
9192=9

and therefore

g |(fr* f2)(9)|(1+1(9)

()

9'—>< Z 28‘f1(91)Hf2(92)‘(1+l(91))s>

91,92, s.1. 12(F)
9192=9

IN

+ ge( > QS\fl(gl)HfQ(gz)\(l+1(92>)5>

91,92, s.t. lz(r)
9192=9

The two terms are analoguous and for the first one we have

< 2°C| hllwm | fll#rem)

()

H9H< > zs\fl(gl)HfQ(gz)‘(lH(gl))s)

91,92, s.t.
9192=9

by part a).
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c) Let t €]deg(P), s[. We first prove two intermediate results.

a) HY(T') is an algebra by part b) and H*(T") is stable under holomorphic func-
tional calculus in H'(T"). The proof is as follows. Since H*(T') is dense in H'(T"),
if € H*(T') has an invertible image in H'(I'), there exists y € H*(T') such that
the norms in H'(TI') of 1 — 2y and 1 — yx are arbitrary small. Therefore we only
have to prove that, for any f € H*(I'),

. nil/n T ny1/n
7}520 I/ HHs(r) = nh_{go I/ HHt(F)-
For any ¢ € I' we have

M@l < D gl 1f(ga)l

g1,-9n €T,
g1y 9n=4g

and if g = g1, gns (14+1(9))™" < n (14 1g0)™" + -+ (1 4 1(g2))"™").
Therefore

1 @y = g = (L+ U9 " (@) ey < = OS]

HS(F)Hf“;I_t(lr)a

where C' is a constant such that || fifollm@ry < C'|fillavoyll follgiay for any

fi,f2 € H(T'). When n goes to infinity we get lim,_q I\f”l\%”(r) < ' flmey
and the result easily follows by putting f? instead of f in this inequality and
making p go to infinity.
L 1-4 , . .
8) For any [ € H(T) we have | /ey < 1 o LI, by Hlder's inequality.
Now let f € H*(T'). We have to prove that f has the same spectral radius in

HS(F) and C:(F). If PHs(F)(f) = 0 this is obvious because PO:(F)(f) < PHS(F)(f).
Otherwise we have || f” =

ormy = My 2 1 ey 7]

follows from a) . ]

;Iﬁ) and the result

2. Analytical part of the proof

In this section we consider a discrete metric space (X, d) and a discrete group I'

acting freely and isometrically on X, and we introduce the groupoid G = X xp X
such that GO = X and gl = M\ X? and we define G, = {[z,y] € G,d(z,y) <
r} for any r € Ry and || f|[;2g) = (deg |f(g)|2)5 for any f € CG.

We say that X and I' satisfy the property P(X,T') if there is a polynomial
P such that for any r € Ry, fi,f; € RyG with suppf; € G,, one has || f; *
L2y < P fill@ 12l o) -

Proposition 2.1.  If P(X,I') holds then T' satisfies (RD) w.r.t. the lenght
l(g) = d(xo,gxo) for any xo € X .

Proof. For any ¢i,9: € ', [z0,120] © [%0, g220] = [20,919270]. Let us define
T:Cl' - CG by T(f)([z,y]) =0 if x &€ Tzg or y & I'zg and T(f)([zo, gro]) =
[(g). Forany f € CT, [[fllowy = T(f)llrg) and for fi, f2 € CI', T(fi#r f2) =
T(f1) g T(f2)- u
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Definition 2.2.  Let (Z,d) be a metric space and § > 0. For any points z; € Z
we say that zq...z, isa d-path if d(zq,22) +- -+ d(2p1,2,) < d(z1,2,)+ 0 and
that x;z,23 is a d-thin triangle if there exists ¢ € Z such thatztzy, zotzs and
xstxy are d-paths. We say that (Z,d) satisfies (Hj) if there exists a polynomial
P such thatfor any r € Ry, z,y € Z, one has

#{t € Z,xty é-path,d(z,t) <r} < P(r).

Proposition 2.3.  Let § > 0. If (X,d) satisfies (Hs), there exists a polynomial
P such that for any r € Ry, fi, f2, f5 € RyG, with supp(fi) € G,, one has

Y fillezzal) follws, @) follor, 22]) < P fille) | fole @)l folle o)-

(ml 7x27x3)EF\X37

r1roxs —thin

This proposition implies the result of [1] : hyperbolic groups satisfy property (RD).
The following lemma is obvious.

Lemma 2.4.  If H,, Hy, Hy are Hilbert spaces, and Ty € L(Hj, Hy), T,
|

L(H,Hs),Ts € L(Hy, Hy) have finite Hilbert-Schmidt norms, |Tr(TiT,Ts)
T3 [[msl| T2l ms|| Ts| s -

€
<

Proof of the proposition 2.3.  We have

Z Si([w2, 2s)) fa[s, 1)) fs([1, 22])

(1‘1 ,:L‘g,ll:‘g,)EF\Xs,
r12223 §—thin

< >, Sillwa, ws]) fo([s, @) fo([21, 22])-

(rl 7x27x37t)er\X47
r1trs,ratrs,ratr; —paths

Note that if zatxs is a d-path and d(xz,23) < r, then d(z2,t) < r 4+ § and
d(zs, t) <r+94.

Let Hy, Hy, H3 C l2(F\X2) be defined by H, = ZZ(F\XZ), H, = l2<{(t,.'l/'2)
€ T\ X2, d(x2,t) <r+6}) and Hy = *({(t,23) € T\X?,d(23,t) < r+4d}), and
let Ty € L(Hs, Hz) be the operator defined as a matrix by

O T\ 12 [t'w] = fi([x2, z3]) if 1,1 are in the same T'-orbit (in this case we
suppose ¢ = t') and if zylzs is a d-path

e and otherwise the coefficient is 0,

and let T, and T; be defined in the same way. We have
Z f1([$2a2€3])f2([$3a$1])f3([$1a$2]) = TT'(T1T2T3)a

(rl ,I‘Q,l‘g,t)EF\X‘l,
r1trs,rotrs,ratr; §—paths

but
2
ITil5s < Y |Aallzzas])| < Plr+8) Al

(-T27t7x3)EF\X37
Totrs §—path,
d(z2,t)<r+6

by (Hs) and in the same way ||Ty][ns < \/P(r+5)Hf2le(g) and ||Ts]|ms <
\/ P(r + )| fs]lz(g)- The proposition follows. ]
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Let § > 0. We say that X and I' satisfy ( Kj) if there exist £ € N and I'-invariant
subsets Ti,..., 7, of X? such that

(Ksa) there exists C; € Ry such that for any (zy, 2, 23) € X? | there exist i €
{1,...,k} and (t1,1y,15) € T; such that max (d(t1,1,),d(ts, t3), d(t3,11)) <
Cl(min (d(:ﬁ ,Ta), d(xg, 3), d(3, ;vl)) +5), and xitityxy, xotolzrs, walstix,
are d-paths,

(Ksb) forany ¢ € {1,...,k} and ty,1y, 85,85 € X, if ({1,19,13) and (t1,1,,1}) are in
7i then the triangles #1435t} and {5t5t), are J-thin.

Theorem 2.5.  If, for some &6 > 0, X and T satisfy (Hs) and (Ks) then
P(X,T') holds and therefore I salisfies property (RD).

Proof. Let G =X xp X, and fi, fo, f3 € R4G with supp(f;) C G,.

We shall abbreviate (z1,x2,x3) by x. For any ¢ € {1,...,k}, let .J; denote
the set of all t = (t1,12,t3) € T satisfying max(d(t1,t2),d(l2,t3),d(ts5,11)) <
Ci(r 4 §), and for any ¢ € X® let K(t) be the set of all (x1,22,23) € X for
which d(x2,t2) < r 46, d(xs,t3) < r+ 9 holds, and wz1titexs, xatatsxs, xslstia,
are d-paths. For any = € X? such d(zq,23) < r, there exist ¢ € {1,...,k} and
t € J;, such that = € K(t). Therefore we have

Y Nillez ) falles, o)) fol[20, 22])

xEF\X3

Z SN Allen wa]) follws @) fo([e1, 22])

1=1 teT\.J; zeK (t)

< Z Z ha([ta, ta])ha([ts, ta]) Ra([th, 12]),

=1 tel'\J;

IN

where hy € R4G is defined by

mltd) = (Y Aled?)”

(z2,23)€X?,
xotataxs 5—path,
d(xz,t2)§r+6

if d(ta,t3) < Cy(r + 0) and hi([t2,t3]) = 0 otherwise and ho,hs € R4G are
defined by similar expressions. The last inequality comes from lemma 2.4 with
Hy, = Hy = Hy = [*(X) and Ty with coefficient T} 4, », = fi([x2, z3]) if xatalszs
is a d-path and d(z3,13) <7+ 6 and 0 otherwise and with 7, and T3 defined in
the same way. But

Ihllbgy < D fillen,aa])® < Plr+ 8)P(Ci(r +8))| fillEo)

(zayt2,ta,x3)EC\ X,
l‘gtgtsl‘g 5—path,
d(.’l)g,tg)éf‘-}-(g
d(t2,ts)<C1(r+96)

and the same inequality holds for A, and h;.
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Fix « € {1,...,k} and replace Ci(r + §) by r. It remains to show that
there is a polynomial P such thatfor any r € Ry and hy, kg, hs € RyG, with
support in G,, we have

> ha([ta, ta)ha([ta, i) ha([tr, ta]) < P(r)l|ha 2oy | halliz o)l sl goy

(t1,t2,t3)ET\T;

But the sum is equal to (hq *7; ho, %3>12(g) for some partial convolution along 7;,

where 213([7", y]) = hs([y, z]). We compute

(hi#7;ha, hixr ha)ie(g) = Z ha([ta, ts])ha([ts, ta]) ha([ta, t5])ha([ts, 11])-

(t1,t2,ts,th)ET\ X4,
(t1,t2,3)ET:, (t1,t2,t5)ETS

By (K;b) the triangle ti¢sty and {ytsth are §-thin. By proposition 2.3 there is a
polynomial P with

[lts, 5] = > ha([ts, 1a])ha([t5, 14]) 1) pg) < PRl
t1€X,
t1tsth §—thin
(st = > ([t ta]) i (Ta, E2]) [ o gy < P(r) 1l
tr€X,

t2t3té, 6—th11’1

and the theorem follows. ]

3. Geometrical part of the proof

3.1. The case of A2-buildings.
The following theorem is easily deducible from the arguments of [9].

Theorem 3.1.  (extracted from [9]) If X is a free I'-space and 7 is the setl of
vertices of some A%-building on which T' acts by type rotating automorphisms, and
d is the graph-theoretic distance on the 1-squeletton, and 0 : X — 7 is a surjective
I'-equivariant map such that sup,., #(07'(z)) < +oo, and X is equipped with the
distance 0*(d), then X and T satisfy (Hy) and (Ky) with k = 2, T3 U7, the
set of (t1,12,t3) € X? such that 0(11)0(12)0(ts) is an equilateral triangle in some
apartment, and (t1,t3,t3) € To if (0(11),0(t2)) is of shape (p,0), p € N, and
(t1,t2,t3) € Ty tf (6(t1),0(L2)) is of shape (0,p), p € N*. Consequently I' satisfies
property (RD).

We thus obtain a very slight improvement of the result of [9].

Corollary 3.2.  Any discrete group T' acting on the set X of vertices of an
A% -building by type-rotating automorphisms satisfies property (RD), provided that
sup,ex #19 € I gr = 2} < +oo.

3.2. The case of SL;3(R).
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It is helpful to write 3 x 3-diagonal matrices with diagonal entries a, b, and ¢ as

D(a,b,c). We now consider G = SL3(R), K = SO3(R),

A = {D(e™,e*,e™), ar+ay+a3=0} and
At = {D(e™,e™2,e™), o > ay > az,aq +ay + a3 =0}

We equip G/K with the distance d(z,y) = log ||z~ 'y|| + log |[y~"z||. We remark
that d(z,y) = ploga if «™'y € KaK with a in AT, and p is defined by
plag,az,a3) = a3 — as.

For any t € R,z,y,z € G/K, we say that (z,y) is of shape (¢,0) if
7y € Ke_%D(et,l,l)K and that (z,y,z) is an equilateral triangle of oriented
size t if there exists g € G such that

r=gK, y= ge“én(et, 1,1)K and z = ge_23_t D(e' e, 1)K.

If t € R_ and (z,y) is of shape (¢,0) we say also that (z,y) is of shape (0,—1) :
in this way our terminology completely agrees with [9]. For any do > 0 and for
J = 1,2 we let T;5, denote the set of all ({1,ls,t3) € (G/K)? for which there
exists a ¢t in Ry if y =1, and in R_ if j = 2, and for which there is a triple
(s1,82,83) € (G/K)S such that s;sgss 1s an equilateral triangle of oriented size ¢,
and that d(s1,11) < 8o, d(s2,12) < g, and d(ss,t3) < dy.

Theorem 3.3.  Let T' be a discrete subgroup of G = SL3(R), Z a T'-invariant
discrete subspace of G/K , and r € Ry such thatl the two following conditions are
fulfilled :

(11) Uer B(z,r)=G/K
(12) for any R € Ry SUP,eq/K #(B(z, R)N Z) is finite.

Let X be a free I'-space and 0 : X — Z a I'-equivariant map such that
sup,ey; #(07'(2)) < 400, and equip X with the distance 6*(d).

Then X and T satisfy (Hs) and (K5) for some § >0 and with k =2 and
To = 07" (Th») = {(t, Lo, t3) € X2, (0(11),0(t2),0(13)) € Th} and To = 07(Ta,).
Consequently T' salisfies property (RD).

If T is a discrete cocompact subgroup of SLs(R), every I'-orbit Z in G/K
satisfies (I1) and (I2), and we can choose X =T and 6 obvious, and therefore I'
satisfies (RD).

Proof of the theorem.  This proof is everything until part 4.

a) We first prove that X satisfies property (Hs) for any § > 0. This part
of the argument works for any linear connected semi-simple Lie group.

We recall some notations from chapter 5 of [8]. Let (G be a linear connected
semi-simple Lie group, K a maximal compact subgroup, g = € & p the decompo-
sition associated to the Cartan involution, a a maximal abelian subspace of p, ¥

the set of restricted roots, gy the root space associated to A € ¥, ¥t a choice
of a set of positive roots, at = {H € a,,\(H) > 0 for all A € £*} A = exp(a),
At =exp(at), and p = %erz+ (dimg,)A. We have G = KA+K and

/ flg)dg = / f(kak) ] (sinh Mlog a)) ™ dkdadk’ (1)
G KxAT XK

A€t
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is the integral formula corresponding to this decomposition. If wy,...,wy are the
fundamental weights, we have p = njw; + -+ + ngwi for some positive integers
ni,...,nr depending on the multiplicities of the roots. We introduce the non-
symmetric fonction d; on (G/K)* : if z,y € G/K and 27'y = KaK with a € A¥,
di(z,y) = wi(loga). Since G admits a representation of highest weight a multiple
of w;, if we choose an hermitian metric on this representation compatible with the
Cartan involution on G, for any =,y € G/K, d;(z,y) is a fraction of the log of the
norm of the image by this representation of any antecedent of z='y in G. Therefore,
for any z,y,2z € G/K, di(z,z) < di(z,y) + di(y,z). Let ay,...,ar € R}, and
consider the non-symmetric function d,(z,y) = Ezn L @idi(z,y). Up to a constant
there is a unique G-invariant element of volume on G/K .

Lemma 3.4.  For any § > 0 there is a polynomial P such that for any r € R
and z,y € G/K,

Vol{t € G/K,d.(z,t) + d,(t,y) < ds(z,y) + 0 and d,(z,t) < r} < P(r).

The lemma is false if some «; is 0 : in this case the best estimate for the volume
grows exponentially in r.

Proof.  We denote by d the following distance on G/K :
d(z,y) = ZZ  nidi(z,y) = plog(a) if 7'y = KaK with a € A*.

Denote by 1 the origin in G/K. We may assume x = 1. There exists
some constant Cy depending on « such that the conditions d,(1,¢) + da(t,y) <
do(1,y)+ 6 and do(1,t) < r imply d;(1,t) + di(t,y) < d;(1,y) 4 Cod for any ¢ and
d(1,t) < Cyr. Because of (1) there exists some constant C; € R? such that

Vol{z € G/K,3k € K,d(y,kz) < 1} > C,e240),
Therefore
Vol{(t, 2) € (G/K)2, Vi, di(1,) + di(t, 2) < di(1,y) + Cod + 1,d(1,1) < cor}

> Cre VoIl t € G, Vi, di(1,1) + di(ty) < di(1,) + Cod, d(1,1) < Cr }

because {t € (G/K), Vi, di(1,t) + di(t,z) < di(1,y) + Cod + 1,d(1,1) < Cor}

{te (@), vi a0, t)—|—d(t y) < di(1,y) +Cod,d(1,8) < Cor } if d(y, ) < 1 and
Vol{t € (G/K),Vi,di(1,1) + di(t,z) < di(1,y) + Cod + 1,d(1,1) < Cor} depends
only on Kz in K\G/K . The following fact comes from (1) : there exists a constant

C such that
for any ai,...,ar € Ry, Vol{u € G/K,Vi,di(1,u) < a;} < Coe®Z™™,
Now fix t € G/K such that di(1,1) < Cor. We have
Vol{z € (G/K),Yi,di(1,8) + di(t, 2) < di(1,y) + Cod + 1}
~ Vol{z € (G/K),Yi,di(t, ) < di(1,y) + Cod +1 — di(l,t)}
< Cyexp (2d(1,y) +2(Cod + 1)(35, ns) — 2d(1,1)),

and feG/A 4(1,1)<Cor e=240dt < P(r) for some polynomial P, because of (1). The
lemma now results from Fubini’s lemma. ]
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We now come back to the notations of the theorem 3.3. We fix § > 0
and we explain why X satisfies (Hjs). Of course it is enough to prove that (Z,d)
satisfies (Hs). By (12) there exists N € N such that #(B(z,1)N Z) < N for any
x € G/K. Forany r € Ry, z,y € G/K,

#{t € Z,xty o-path,d(z,t) <r} <
%Vo]{t' € G/K,zt'y (§ + 2)-path,d(z,t') <r+ 1},

where V = Vol{z € G/K,d(1,z) <1}, because if d(t,t') <1, d(z,t) <r and zty
is a d-path, then zt'y is a (6 4 2)-path and d(z,t') < r+ 1. It remains to apply
lemma 3.4 with d, = d.

b) We now prove that X and I' satisfy (Ks) with k =2, 77 and 73 as in
the theorem 3.3 and if ¢ is big enough. This part of the proof really use fact that
the flats in G/K are of type A?.

The following lemma is analoguous to the study of the foldings in [9]. We
call a flat in G/K any subset of G/K equal to gAK , for some g € GG. We now
study the distance of some fixed point of G/K to the points of a fixed flat in G/K .
Up to left translation by an element of G, we may suppose that the flat 1s AK.
We prove the following result : there is some ¢ > 0 such that for any =z € G/K
there exist y,ys,ys in G/K such that, for any a € A, zy(aK) is a d-path, and
such that yysys is an equilateral triangle, y; and y3 are at distance less than §
from AK and for any a € A there exists some point z on the side y,y; of the
triangle yyays such that yz(aK') is a d-path.

Denote by Wy the subgroup of G whose elements are

010 00 1
Id, [0 0 1], and [1 0 0
100 01 0

In the following lemma we shall again use the abbreviation for diagonal
matrices:

D(a,b,c) =

o O R

0
b
0

o O O

Lemma 3.5.  For some § > 0 the following is true. For any x € G/K there
evist y € G/K,t € Ry, m € WyA such that

(i) zy(aK) is a 6-path for any a € A,

(i) |d(y,mD(e*,e®2, e®)K)—1t —max(|sg — s3], 51— s2— 1,81 — 83— 1, 89— $1, 53—
s1)] <6 for any s1,52,83 € R, s1+ s34+ 53 =0,

(iil) there exists hy € G such that d(hyD(e®t, e, e ) K, mD(e*,e®2,e¢*)K) < §
if s14+ 82+ s3=0 and s; > s3 and d(hge_%t D(e',1,e")K,y) <4,

(iv) there exists hs € G such that d(hsD(e®, e, e )K, mD(e*, e, e*)K) < §
if 1+ 52+ 33=0 and s, < s3 and d(hge_Qs_tD(et, e, 1)K,y) <94.

We notice that the second condition is in fact a consequence of the two last ones

(for a different §).



264 LAFFORGUE

Proof.  Up to left translation by some element m € Wy A we may suppose that
€1

v = A e | K, with A € R}, e1,e3,e3 € R?, |lex]] = Jlez|l = Jles|| = 1 and
€3

lle2 A es]] < min(]le; A e[, ||er A es]]). We have

llex Aeal = lex Aesfll < min fles A (ea — pe2 )|
< min [[es — pea]| < V2lex A e
u==+1

Denote by v an element of {—1,1} where the minimum of ||e3 — pes]| is reached.

Take t = log(”el/\e2|l) € R,. By the last inequalities |¢{— log(llel/\e3|l)| < log(14+v/2).

[le2Aes]| [le2Aes]|
For a = D(e*,e*,e*), with s; + s; + s3 = 0, we have

-1

€1
d(aK,z) =log ||a™! H + log ‘ €2 a
€3
and
€1
log ||a €9 H — max(—s1, —s2, —s3)| < log 3
€3
and since
€1 -1 €9 N €3 ¢
€ = det(eq, €, 63)_1 ez N\ e
€3 €1 A €2
we have
-1
€1
log ‘ €2 + log ||ex A ez A es|
€3
—max(s; + log||ez A es|], s2 + log ||er A es]|, s3 + log |[er A ez||)| < log 3.
Therefore

‘d(a[&’, x) — max(—sy, —sg, —s3) — max(s; — 1, s, $3)

+log ||e1 A ez A es|| — log |ler A (:’QIH < o

for some numerical constant dg.
Now consider

By applying the last argument to y instead of x, we obtain

‘d(aK, y) — max(—sy, —Sg, —S3) — max(sy — £, 89, 83) — t‘ < &
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for some numerical constant ¢; (different from &, because one has to normalize

(0,v,e7")). But

-1

€1 €1
d(z,y) = log €9 + log €9
e'(es — vey) e'(es — vey)
since .
1 0 0\ 1 0 0
01 0 =10 1 0
0 v et 0 —rvet €
Therefore

‘d(;c,y) —log |lex A eq]| + ¢+ log |ler A ez A 63|H <y

for some numerical constant d; because |le'(es — vey)| < \/5”61 A e and |lez A
(¢'(es — €2))|| = [lex A€z and |leg A €ef(es — vez)|| < [le’(es — ves)||.

Thus the first two assertions are proved. Now we take

1 0 0 1 00
vt and hs =10 1 0
0 v 1

We check that
h3e_23_tD(et, ¢',1)K =y and that d(hge_%_tD(et, 1, K, y)

is bounded by a numerical constant, because

e 0 0 1 0 0\ /1 0 0
ylheem [0 1 0K = K|{0 1 0][0 et v'|K
0 0 € 0 —vet e 0 0 1
1 0 0
= K|0 e v'| K.
0 —v 0

Finally it is obvious that
d<h2 D(631 3 6527 e$3)[\r” D(esl 5 632, 633)[\") S 1)

if 514+ s34+ s3 =0 and sy > s3, and if § is big enough. The last condition for hs
is similar. [

Now consider x,, x4, 23 € G/K. Take z = x; and choose any flat containing
xy and z3. After a small discussion of the possible positions of x, and z3 in
this flat (a similar discussion occurs in [9]) we obtain the following lemma which
immediately implies that property (Kj) holds with £ = 2 and 77 and 73 as in
the theorem 3.3 if ¢ is big enough.

Lemma 3.6. For some § > 0 the following is true. For any vy,x9,23 € G/K
there exist t1,19,13 € G/K such thal x1tlyxy, xolotsrs and xslztyzy are 6 -paths
and tityts is an equilateral triangle.

¢) Now we prove that property (Ksb) holds with & =2 and 7; and 7 as
in the theorem if § is big enough.

This results from the following lemma, applied to dy = 2r.
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Lemma 3.7.  For any &y > 0 there exists § > 0 such that the following is true.
For any s,t € R of the same sign, and x1,y1, 22,22 € G/K with d(z,z3) < &y,
(z1,y1) of shape (s,0) and (x4, z) of shape (t,0), then x 1y 2, is a § -thin triangle.

Proof. By symmetry with respect to 1 in G/K we may suppose s,t € R,.
Up to left translation by an element of G we may suppose z; = 1 and y; =
e"5D(e*,1,1)K. We have z, = he_%D(et, 1,1)K with h € G such that d(1,hK)
< §y. Write

hll hl? h13 h,ll hll? h/13
h = hgl hQQ h23 'dIld h_l = h’21 h,22 h,23
h31 h32 h33 hél hé? héB

By Cramer’s formula there exists a constant §; depending only on dy such that
| log(max(|hal, [ha])) = log(max(|hiy, |h5[))] < 61

Take r = min(s,t, — log(max(|ha1|, |hs1])) and u=e"3D(e",1,1)K. Then zjuy,
y1uzy and zyuz are §-paths for some ¢ depending only on dy. Indeed d(zq,u) =1,
d(u,y1) = s —r, and since

u 2y = KeTT_tD(e_’", L,L1)AD(e 1, 1)K
e""hyy € Thiy e This
= KeT | ehy  hy  hy | K
6th31 h3a hs33

and zy'u = Kes D(e ', 1,)A™'D(e", 1, 1)K

er_th/u e_th/u e“th’w
e"hi, i, i, K,
e"hy, b, h3s

= Ke

we see that |d(u,zy) — (t —r)| <&y and |d(y1,22) — (t — 1) — (s — r)| < &3 by the
same computation, where d; depends only on &. ]

The lemmas 3.5 and 3.7 are more intuitive if one considers quadratic forms
on R? instead of elements of SL3(R) but it is more difficult to write correct proofs
in this way.

4. The case of SL3(C)

Very few things need to be changed. We put GG = SL3(C) and K = SUs(C)
instead of SL3(R) and SO3(R) but A is the same. The part a) of the proof of
theorem 3.3 is true for any linear connected semi-simple group. In the part b), Wy
remains the same and the lemma 3.5 is still true. In the proof of lemma 3.5 we
have to take p and v in {z € C,|z|] = 1} instead of {—1,1}. Lemma 3.7 and its
proof remain the same.

It would be interesting to know wether the lemmas 3.5 and 3.7 are still true
for the groups SL(3,H) and Fg_s), whose associated symetric spaces have also
flats of type AZ2.
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