A proof of property (RD) for cocompact lattices of SL(3,R) and SL(3,C)

Vincent Lafforgue

Communicated by A. Valette

Abstract. We prove that cocompact lattices in $SL_3(\mathbb{R})$ and $SL_3(\mathbb{C})$ have property (RD) of Jolissaint. This property asserts that functions on these groups which are l^2 with some polynomial decay belong to the reduced C^* -algebra. Ramagge, Robertson and Steger proved the same result for cocompact lattices in SL_3 of p-adic fields and we use the same method.

In this article we prove that discrete cocompact subgroups of $SL_3(\mathbb{R})$ and $SL_3(\mathbb{C})$ satisfy property (RD) of Jolissaint (this property was introduced in [4, 5, 7]). The author originally proved the result for $SL_3(\mathbb{R})$ and the case of $SL_3(\mathbb{C})$ is due to the referee. The argument is a very close imitation of the argument of [9]: in this article Ramagge, Robertson and Steger prove a general result (stated below) implying property (RD) for finetely generated discrete subgroups of $SL_3(\mathbb{F})$, with \mathbb{F} a finite extension of \mathbb{Q}_p . Our result is a special case of a conjecture of Valette which claims that any discrete group acting isometrically, properly and cocompactly either on a Riemannian symmetric space or on an affine building has property (RD) ([2] page 74).

Up to now property (RD) has been proved for free groups by Haagerup in [3], and then for hyperbolic groups by de la Harpe in [1], using [5]. Recently, in [9], Ramagge Robertson and Steger have proved property (RD) for any discrete group acting freely on the vertices of an $\tilde{A}^1 \times \tilde{A}^1$ or \tilde{A}^2 building by type-rotating automorphisms and this provided the first example of higher rank groups with property (RD). Our article is just an adaptation of [9] to $SL_3(\mathbb{R})$ and $SL_3(\mathbb{C})$ and it doesn't bring any new idea. On the other hand a new idea is needed in order to prove property (RD) for cocompact lattices in Lie groups or p-adic groups of rank more than 1 and other than SL_3 .

I thank Yves Benoist for many fruitful discussions.

1. General facts about property (RD)

Let Γ be a discrete group. A length l on Γ is a function $l: \Gamma \to \mathbb{R}_+$ such that l(1) = 0, $l(g^{-1}) = l(g)$ and $l(g_1g_2) \le l(g_1) + l(g_2)$. We write $\Gamma_r = \{g \in \Gamma, l(g) \le r\}$.

Definition 1.1. ([7]) We say that Γ satisfies (RD) with respect to a length l if there is a polynomial P such that, for any $r \in \mathbb{R}_+$, $f_1, f_2 \in \mathbb{C}\Gamma$ with supp $f_1 \subset \Gamma_r$, we have $||f_1 * f_2||_{l^2(\Gamma)} \leq P(r)||f_1||_{l^2(\Gamma)}||f_2||_{l^2(\Gamma)}$.

It is enough to check the inequality for $f_1, f_2 \in \mathbb{R}_+\Gamma$.

Let us notice the following fact: if Γ satisfies (RD) with respect to a lenght l, there is a polynomial P such that, for any $r \in \mathbb{R}_+$ and for any $f \in \mathbb{C}\Gamma$ with supp $f \in \Gamma_r$, one has $||f||_{l^2(\Gamma)} \leq ||f||_{C_r^*(\Gamma)} \leq P(r)||f||_{l^2(\Gamma)}$. This very good estimate for the norm in $C_r^*(\Gamma)$ has an important consequence: $C_r^*(\Gamma)$ has the same K-theory as a much simpler algebra, that we introduce now.

Proposition 1.2. If Γ satisfies (RD) w.r.t. l, if $s \in \mathbb{R}_+$ is big enough, the completion $H^s(\Gamma)$ of $\mathbb{C}\Gamma$ for the norm $||f|| = \left(\sum_{g \in \Gamma} |f(g)|^2 (1 + l(g))^{2s}\right)^{1/2}$ is a Banach subalgebra of $C_r^*(\Gamma)$ which is dense and closed under holomorphic functional calculus.

In [6] this is proved for the Jolissaint algebra $H^{\infty}(\Gamma) = \bigcap H^{s}(\Gamma)$. We give an adaptation of the proof to our case.

Proof. Let P be the polynomial in the definition. Take any $s \in \mathbb{R}_+$ such that $s > \deg(P)$.

- a) We prove that $H^s(\Gamma)$ is a subspace of $C_r^*(\Gamma)$. We denote by χ_0 the characteristic function of $\{g, l(g) \in [0, 1[\} \text{ and for any } n \in \mathbb{N}^* \text{ we denote by } \chi_n \text{ the characteristic function of } \{g, l(g) \in [2^{n-1}, 2^n[\} \text{. For any } f \in \mathbb{C}\Gamma, \|f\|_{C_r^*(\Gamma)} \leq \sum_{n=0}^{\infty} \|f\chi_n\|_{C_r^*(\Gamma)} \leq \sum_{n=0}^{\infty} P(2^n) \|f\chi_n\|_{l^2(\Gamma)} \leq C \|f\|_{H^s(\Gamma)} \text{ with } C = (P(1)^2 + \sum_{n=1}^{\infty} (P(2^n)(1+2^{n-1})^{-s})^2)^{\frac{1}{2}} \text{ by the Cauchy-Schwarz inequality.}$
- **b)** We prove that $H^s(\Gamma)$ is an algebra. For any $f_1, f_2 \in \mathbb{C}\Gamma$ and for any $g \in \Gamma$ we have

$$\left| (f_1 * f_2)(g) \right| (1 + l(g))^s \le \sum_{\substack{g_1, g_2, s.t. \\ g_1 g_2 = g}} 2^s \left| f_1(g_1) \right| \left| f_2(g_2) \right| ((1 + l(g_1))^s + (1 + l(g_2))^s \right)$$

and therefore

$$\left\| g \mapsto \left| (f_1 * f_2)(g) \right| (1 + l(g))^s \right\|_{l^2(\Gamma)}$$

$$\leq \left\| g \mapsto \left(\sum_{\substack{g_1, g_2, s.t. \\ g_1 g_2 = g}} 2^s |f_1(g_1)| |f_2(g_2)| (1 + l(g_1))^s \right) \right\|_{l^2(\Gamma)}$$

$$+ \left\| g \mapsto \left(\sum_{\substack{g_1, g_2, s.t. \\ g_1 g_2 = g}} 2^s |f_1(g_1)| |f_2(g_2)| (1 + l(g_2))^s \right) \right\|_{l^2(\Gamma)} .$$

The two terms are analoguous and for the first one we have

$$\left\|g \mapsto \left(\sum_{\substack{g_1,g_2,\ s.t.\\g_1g_2=g}} 2^s |f_1(g_1)| |f_2(g_2)| (1+l(g_1))^s\right)\right\|_{l^2(\Gamma)} \le 2^s C \|f_1\|_{H^s(\Gamma)} \|f_2\|_{H^s(\Gamma)}$$

by part a).

- c) Let $t \in [\deg(P), s[$. We first prove two intermediate results.
- α) $H^t(\Gamma)$ is an algebra by part b) and $H^s(\Gamma)$ is stable under holomorphic functional calculus in $H^t(\Gamma)$. The proof is as follows. Since $H^s(\Gamma)$ is dense in $H^t(\Gamma)$, if $x \in H^s(\Gamma)$ has an invertible image in $H^t(\Gamma)$, there exists $y \in H^s(\Gamma)$ such that the norms in $H^t(\Gamma)$ of 1-xy and 1-yx are arbitrary small. Therefore we only have to prove that, for any $f \in H^s(\Gamma)$,

$$\lim_{n \to \infty} \|f^n\|_{H^s(\Gamma)}^{1/n} = \lim_{n \to \infty} \|f^n\|_{H^t(\Gamma)}^{1/n}.$$

For any $g \in \Gamma$ we have

$$|f^n(g)| \leq \sum_{\substack{g_1, \dots, g_n \in \Gamma, \\ g_1, \dots, g_n = g}} |f(g_1)| \dots |f(g_n)|$$

and if $g = g_1, \ldots, g_n$, $(1 + l(g))^{s-t} \leq n^{s-t} ((1 + l(g_1))^{s-t} + \cdots + (1 + l(g_n))^{s-t})$. Therefore

$$||f^n||_{H^s(\Gamma)} = ||g \mapsto (1 + l(g))^{s-t}|f^n(g)||_{H^t(\Gamma)} \le n^{s-t+1}C'^{n-1}||f||_{H^s(\Gamma)}||f||_{H^t(\Gamma)}^{n-1},$$

where C' is a constant such that $||f_1f_2||_{H^t(\Gamma)} \leq C'||f_1||_{H^t(\Gamma)}||f_2||_{H^t(\Gamma)}$ for any $f_1, f_2 \in H^t(\Gamma)$. When n goes to infinity we get $\lim_{n\to\infty} ||f^n||_{H^s(\Gamma)}^{1/n} \leq C'||f||_{H^t(\Gamma)}$ and the result easily follows by putting f^p instead of f in this inequality and making p go to infinity.

β) For any $f \in H^s(\Gamma)$ we have $||f||_{H^t(\Gamma)} \le ||f||_{H^s(\Gamma)}^{\frac{t}{s}}||f||_{l^2(\Gamma)}^{1-\frac{t}{s}}$ by Hlder's inequality. Now let $f \in H^s(\Gamma)$. We have to prove that f has the same spectral radius in $H^s(\Gamma)$ and $C_r^*(\Gamma)$. If $\rho_{H^s(\Gamma)}(f) = 0$ this is obvious because $\rho_{C_r^*(\Gamma)}(f) \le \rho_{H^s(\Gamma)}(f)$. Otherwise we have $||f^n||_{C_r^*(\Gamma)} \ge ||f^n||_{l^2(\Gamma)} \ge ||f^n||_{H^s(\Gamma)}^{\frac{s}{s-t}}||f^n||_{H^s(\Gamma)}^{-\frac{t}{s-t}}$ and the result follows from α).

2. Analytical part of the proof

In this section we consider a discrete metric space (X,d) and a discrete group Γ acting freely and isometrically on X, and we introduce the groupoid $\mathcal{G} = X \times_{\Gamma} X$ such that $\mathcal{G}^{(0)} = \Gamma \backslash X$ and $\mathcal{G}^{(1)} = \Gamma \backslash X^2$ and we define $\mathcal{G}_r = \{[x,y] \in \mathcal{G}, d(x,y) \leq r\}$ for any $r \in \mathbb{R}_+$ and $\|f\|_{l^2(\mathcal{G})} = \left(\sum_{g \in \mathcal{G}} |f(g)|^2\right)^{\frac{1}{2}}$ for any $f \in \mathbb{C}\mathcal{G}$. We say that X and Γ satisfy the property $P(X,\Gamma)$ if there is a polynomial

We say that X and Γ satisfy the property $P(X,\Gamma)$ if there is a polynomial P such that for any $r \in \mathbb{R}_+$, $f_1, f_2 \in \mathbb{R}_+\mathcal{G}$ with supp $f_1 \in \mathcal{G}_r$, one has $||f_1 * f_2||_{l^2(\mathcal{G})} \leq P(r)||f_1||_{l^2(\mathcal{G})}||f_2||_{l^2(\mathcal{G})}$.

Proposition 2.1. If $P(X,\Gamma)$ holds then Γ satisfies (RD) w.r.t. the length $l(g) = d(x_0, gx_0)$ for any $x_0 \in X$.

Proof. For any $g_1, g_2 \in \Gamma$, $[x_0, g_1x_0] \circ [x_0, g_2x_0] = [x_0, g_1g_2x_0]$. Let us define $T : \mathbb{C}\Gamma \to \mathbb{C}\mathcal{G}$ by T(f)([x, y]) = 0 if $x \notin \Gamma x_0$ or $y \notin \Gamma x_0$ and $T(f)([x_0, gx_0]) = f(g)$. For any $f \in \mathbb{C}\Gamma$, $||f||_{l^2(\Gamma)} = ||T(f)||_{l^2(\mathcal{G})}$ and for $f_1, f_2 \in \mathbb{C}\Gamma$, $T(f_1 *_{\Gamma} f_2) = T(f_1) *_{\mathcal{G}} T(f_2)$.

Definition 2.2. Let (Z,d) be a metric space and $\delta > 0$. For any points $x_i \in Z$ we say that $x_1 \dots x_n$ is a δ -path if $d(x_1, x_2) + \dots + d(x_{n-1}, x_n) \leq d(x_1, x_n) + \delta$ and that $x_1x_2x_3$ is a δ -thin triangle if there exists $t \in Z$ such that x_1tx_2, x_2tx_3 and x_3tx_1 are δ -paths. We say that (Z,d) satisfies (H_δ) if there exists a polynomial P such that for any $r \in \mathbb{R}_+$, $x, y \in \mathbb{Z}$, one has

$$\#\{t\in Z, xty\ \delta\text{-path}, d(x,t)\leq r\}\leq P(r).$$

Let $\delta > 0$. If (X, d) satisfies (H_{δ}) , there exists a polynomial Proposition 2.3. P such that for any $r \in \mathbb{R}_+$, $f_1, f_2, f_3 \in \mathbb{R}_+ \mathcal{G}$, with supp $(f_1) \in \mathcal{G}_r$, one has

$$\sum_{\substack{(x_1, x_2, x_3) \in \Gamma \setminus X^3, \\ x_1 x_2 x_3 \delta - thin}} f_1([x_2, x_3]) f_2([x_3, x_1]) f_3([x_1, x_2]) \le P(r) \|f_1\|_{l^2(\mathcal{G})} \|f_2\|_{l^2(\mathcal{G})} \|f_3\|_{l^2(\mathcal{G})}.$$

This proposition implies the result of [1]: hyperbolic groups satisfy property (RD). The following lemma is obvious.

Lemma 2.4. If H_1, H_2, H_3 are Hilbert spaces, and $T_1 \in \mathcal{L}(H_3, H_2), T_2 \in$ $\mathcal{L}(H_1, H_3), T_3 \in \mathcal{L}(H_2, H_1)$ have finite Hilbert-Schmidt norms, $|Tr(T_1T_2T_3)| \leq$ $||T_1||_{HS}||T_2||_{HS}||T_3||_{HS}$.

Proof of the proposition 2.3. We have

he proposition 2.3. We have
$$\sum_{\substack{(x_1,x_2,x_3)\in\Gamma\backslash X^3,\\ x_1x_2x_3\delta-\text{thin}}} f_1([x_2,x_3])f_2([x_3,x_1])f_3([x_1,x_2])$$

$$\leq \sum_{\substack{(x_1,x_2,x_3,t)\in\Gamma\backslash X^4,\\ x_1tx_2,x_2tx_3,x_3tx_1\delta-\text{paths}}} f_1([x_2,x_3])f_2([x_3,x_1])f_3([x_1,x_2]).$$
If x_1tx_2 is a δ path and $d(x_2,x_3)\leq x$, then $d(x_3,t_3)$

Note that if x_2tx_3 is a δ -path and $d(x_2,x_3) \leq r$, then $d(x_2,t) \leq r + \delta$ and $d(x_3,t) \le r + \delta.$

Let $H_1, H_2, H_3 \subset l^2(\Gamma \backslash X^2)$ be defined by $H_1 = l^2(\Gamma \backslash X^2), H_2 = l^2(\{(t, x_2)\})$ $\in \Gamma \backslash X^2, d(x_2, t) \leq r + \delta \}$) and $H_3 = l^2(\{(t, x_3) \in \Gamma \backslash X^2, d(x_3, t) \leq r + \delta \})$, and let $T_1 \in \mathcal{L}(H_3, H_2)$ be the operator defined as a matrix by

- $T_{1,[t,x_2],[t',x_3]} = f_1([x_2,x_3])$ if t,t' are in the same Γ -orbit (in this case we suppose t = t') and if $x_2 t x_3$ is a δ -path
- and otherwise the coefficient is 0,

and let T_2 and T_3 be defined in the same way. We have

$$\sum_{\substack{(x_1, x_2, x_3, t) \in \Gamma \setminus X^4, \\ x_1 \nmid x_2, x_2 \nmid tx_2, x_2 \nmid tx_1 \mid \delta - \text{paths}}} f_1([x_2, x_3]) f_2([x_3, x_1]) f_3([x_1, x_2]) = Tr(T_1 T_2 T_3),$$

but

$$||T_1||_{HS}^2 \le \sum_{\substack{(x_2, t, x_3) \in \Gamma \setminus X^3, \\ x_2 t x_3 \delta - \mathbf{path}, \\ d(x_2, t) \le r + \delta}} |f_1([x_2, x_3])|^2 \le P(r + \delta) ||f_1||_{l^2(\mathcal{G})}^2$$

by (H_{δ}) and in the same way $||T_2||_{HS} \leq \sqrt{P(r+\delta)}||f_2||_{l^2(\mathcal{G})}$ and $||T_3||_{HS} \leq$ $\sqrt{P(r+\delta)} \|f_3\|_{l^2(\mathcal{G})}$. The proposition follows.

Let $\delta > 0$. We say that X and Γ satisfy (K_{δ}) if there exist $k \in \mathbb{N}$ and Γ -invariant subsets $\mathcal{T}_1, \ldots, \mathcal{T}_k$ of X^3 such that

- $(K_{\delta}a)$ there exists $C_1 \in \mathbb{R}_+$ such that for any $(x_1, x_2, x_3) \in X^3$, there exist $i \in \{1, \ldots, k\}$ and $(t_1, t_2, t_3) \in \mathcal{T}_i$ such that $\max (d(t_1, t_2), d(t_2, t_3), d(t_3, t_1)) \le C_1(\min (d(x_1, x_2), d(x_2, x_3), d(x_3, x_1)) + \delta)$, and $x_1t_1t_2x_2, x_2t_2t_3x_3, x_3t_3t_1x_1$ are δ -paths,
- $(K_{\delta}b)$ for any $i \in \{1, \ldots, k\}$ and $t_1, t_2, t_3, t_3' \in X$, if (t_1, t_2, t_3) and (t_1, t_2, t_3') are in \mathcal{T}_i then the triangles $t_1t_3t_3'$ and $t_2t_3t_3'$ are δ -thin.

Theorem 2.5. If, for some $\delta > 0$, X and Γ satisfy (H_{δ}) and (K_{δ}) then $P(X,\Gamma)$ holds and therefore Γ satisfies property (RD).

Proof. Let $\mathcal{G} = X \times_{\Gamma} X$, and $f_1, f_2, f_3 \in \mathbb{R}_+ \mathcal{G}$ with supp $(f_1) \subset \mathcal{G}_r$.

We shall abbreviate (x_1, x_2, x_3) by x. For any $i \in \{1, ..., k\}$, let J_i denote the set of all $t = (t_1, t_2, t_3) \in \mathcal{T}_i$ satisfying $\max(d(t_1, t_2), d(t_2, t_3), d(t_3, t_1)) \leq C_1(r + \delta)$, and for any $t \in X^3$ let K(t) be the set of all $(x_1, x_2, x_3) \in X^3$ for which $d(x_2, t_2) \leq r + \delta$, $d(x_3, t_3) \leq r + \delta$ holds, and $x_1t_1t_2x_2$, $x_2t_2t_3x_3$, $x_3t_3t_1x_1$ are δ -paths. For any $x \in X^3$ such $d(x_2, x_3) \leq r$, there exist $i \in \{1, ..., k\}$ and $t \in J_i$, such that $x \in K(t)$. Therefore we have

$$\sum_{x \in \Gamma \backslash X^3} f_1([x_2, x_3]) f_2([x_3, x_1]) f_3([x_1, x_2])$$

$$\leq \sum_{i=1}^k \sum_{t \in \Gamma \backslash J_i} \sum_{x \in K(t)} f_1([x_2, x_3]) f_2([x_3, x_1]) f_3([x_1, x_2])$$

$$\leq \sum_{i=1}^k \sum_{t \in \Gamma \backslash J_i} h_1([t_2, t_3]) h_2([t_3, t_1]) h_3([t_1, t_2]),$$

where $h_1 \in \mathbb{R}_+ \mathcal{G}$ is defined by

$$h_1([t_2, t_3]) = \left(\sum_{\substack{(x_2, x_3) \in X^2, \\ x_2 t_2 t_3 x_3 \delta - \text{path,} \\ d(x_2, t_2) < r + \delta}} f_1([x_2, x_3])^2\right)^{1/2}$$

if $d(t_2,t_3) \leq C_1(r+\delta)$ and $h_1([t_2,t_3]) = 0$ otherwise and $h_2,h_3 \in \mathbb{R}_+\mathcal{G}$ are defined by similar expressions. The last inequality comes from lemma 2.4 with $H_1 = H_2 = H_3 = l^2(X)$ and T_1 with coefficient $T_{1,x_2,x_3} = f_1([x_2,x_3])$ if $x_2t_2t_3x_3$ is a δ -path and $d(x_2,t_2) \leq r+\delta$ and 0 otherwise and with T_2 and T_3 defined in the same way. But

$$||h_1||_{l^2(\mathcal{G})}^2 \leq \sum_{\substack{(x_2,t_2,t_3,x_3) \in \Gamma \setminus X^4, \\ x_2t_2t_3x_3 \delta - \text{path,} \\ d(x_2,t_2) \leq r+\delta \\ d(t_2,t_3) \leq C_1(r+\delta)}} f_1([x_2,x_3])^2 \leq P(r+\delta)P(C_1(r+\delta))||f_1||_{l^2(\mathcal{G})}^2$$

and the same inequality holds for h_2 and h_3 .

Fix $i \in \{1, ..., k\}$ and replace $C_1(r + \delta)$ by r. It remains to show that there is a polynomial P such that for any $r \in \mathbb{R}_+$ and $h_1, h_2, h_3 \in \mathbb{R}_+\mathcal{G}$, with support in \mathcal{G}_r , we have

$$\sum_{(t_1,t_2,t_3)\in\Gamma\backslash\mathcal{T}_i} h_1([t_2,t_3]) h_2([t_3,t_1]) h_3([t_1,t_2]) \leq P(r) \|h_1\|_{l^2(\mathcal{G})} \|h_2\|_{l^2(\mathcal{G})} \|h_3\|_{l^2(\mathcal{G})}.$$

But the sum is equal to $\langle h_1 *_{\mathcal{T}_i} h_2, \tilde{h}_3 \rangle_{l^2(\mathcal{G})}$ for some partial convolution along \mathcal{T}_i , where $\tilde{h}_3([x,y]) = \overline{h_3([y,x])}$. We compute

$$\langle h_1 *_{\mathcal{T}_i} h_2, h_1 *_{\mathcal{T}_i} h_2 \rangle_{l^2(\mathcal{G})} = \sum_{\substack{(t_1, t_2, t_3, t_3') \in \Gamma \backslash X^4, \\ (t_1, t_2, t_3) \in \mathcal{T}_i, (t_1, t_2, t_3') \in \mathcal{T}_i}} h_1([t_2, t_3]) h_2([t_3, t_1]) \overline{h_1([t_2, t_3']) h_2([t_3', t_1])}.$$

By $(K_{\delta}b)$ the triangle $t_1t_3t_3'$ and $t_2t_3t_3'$ are δ -thin. By proposition 2.3 there is a polynomial P with

$$\begin{aligned} & \left\| [t_3, t_3'] \mapsto \sum_{\substack{t_1 \in X, \\ t_1 t_3 t_3' \ \delta - \text{thin}}} h_2([t_3, t_1]) \overline{h_2([t_3', t_1])} \right\|_{l^2(\mathcal{G})} \le P(r) \|h_2\|_{l^2(\mathcal{G})}^2, \\ & \left\| [t_3, t_3'] \mapsto \sum_{\substack{t_2 \in X, \\ t_2 t_3 t_3', \ \delta - \text{thin}}} h_1([t_2, t_3]) \overline{h_1([t_2, t_3'])} \right\|_{l^2(\mathcal{G})} \le P(r) \|h_1\|_{l^2(\mathcal{G})}^2, \end{aligned}$$

and the theorem follows.

3. Geometrical part of the proof

3.1. The case of \tilde{A}^2 -buildings.

The following theorem is easily deducible from the arguments of [9].

Theorem 3.1. (extracted from [9]) If X is a free Γ -space and Z is the set of vertices of some \tilde{A}^2 -building on which Γ acts by type rotating automorphisms, and d is the graph-theoretic distance on the 1-squeletton, and $\theta: X \to Z$ is a surjective Γ -equivariant map such that $\sup_{z \in Z} \#(\theta^{-1}(z)) < +\infty$, and X is equipped with the distance $\theta^*(d)$, then X and Γ satisfy (H_0) and (K_0) with k = 2, $\mathcal{T}_1 \cup \mathcal{T}_2$ the set of $(t_1, t_2, t_3) \in X^3$ such that $\theta(t_1)\theta(t_2)\theta(t_3)$ is an equilateral triangle in some apartment, and $(t_1, t_2, t_3) \in \mathcal{T}_1$ if $(\theta(t_1), \theta(t_2))$ is of shape (p, 0), $p \in \mathbb{N}$, and $(t_1, t_2, t_3) \in \mathcal{T}_2$ if $(\theta(t_1), \theta(t_2))$ is of shape (0, p), $p \in \mathbb{N}^*$. Consequently Γ satisfies property (RD).

We thus obtain a very slight improvement of the result of [9].

Corollary 3.2. Any discrete group Γ acting on the set X of vertices of an \tilde{A}^2 -building by type-rotating automorphisms satisfies property (RD), provided that $\sup_{x \in X} \#\{g \in \Gamma, gx = x\} < +\infty$.

3.2. The case of $SL_3(R)$.

It is helpful to write 3×3 -diagonal matrices with diagonal entries a, b, and c as D(a, b, c). We now consider $G = SL_3(\mathbb{R})$, $K = SO_3(\mathbb{R})$,

$$\begin{array}{lcl} A & = & \{D(e^{\alpha_1}, e^{\alpha_2}, e^{\alpha_3}), & \alpha_1 + \alpha_2 + \alpha_3 = 0\} & \text{and} \\ \overline{A^+} & = & \{D(e^{\alpha_1}, e^{\alpha_2}, e^{\alpha_3}), & \alpha_1 \geq \alpha_2 \geq \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 = 0\}. \end{array}$$

We equip G/K with the distance $d(x,y) = \log ||x^{-1}y|| + \log ||y^{-1}x||$. We remark that $d(x,y) = \rho \log a$ if $x^{-1}y \in KaK$ with a in A^+ , and ρ is defined by $\rho(\alpha_1,\alpha_2,\alpha_3) = \alpha_1 - \alpha_3$.

For any $t \in \mathbb{R}, x, y, z \in G/K$, we say that (x, y) is of shape (t, 0) if $x^{-1}y \in Ke^{-\frac{t}{3}}D(e^t, 1, 1)K$ and that (x, y, z) is an equilateral triangle of oriented size t if there exists $g \in G$ such that

$$x = gK$$
, $y = ge^{-\frac{t}{3}}D(e^t, 1, 1)K$ and $z = ge^{-\frac{2t}{3}}D(e^t, e^t, 1)K$.

If $t \in \mathbb{R}_-$ and (x,y) is of shape (t,0) we say also that (x,y) is of shape (0,-t): in this way our terminology completely agrees with [9]. For any $\delta_0 > 0$ and for j=1,2 we let \mathcal{T}_{j,δ_0} denote the set of all $(t_1,t_2,t_3) \in (G/K)^3$ for which there exists a t in \mathbb{R}_+ if j=1, and in \mathbb{R}_- if j=2, and for which there is a triple $(s_1,s_2,s_3) \in (G/K)^3$ such that $s_1s_2s_3$ is an equilateral triangle of oriented size t, and that $d(s_1,t_1) \leq \delta_0$, $d(s_2,t_2) \leq \delta_0$, and $d(s_3,t_3) \leq \delta_0$.

Theorem 3.3. Let Γ be a discrete subgroup of $G = SL_3(\mathbb{R})$, Z a Γ -invariant discrete subspace of G/K, and $r \in \mathbb{R}_+$ such that the two following conditions are fulfilled:

(I1)
$$\bigcup_{x \in Z} B(x,r) = G/K$$

(12) for any $R \in \mathbb{R}_+$ $\sup_{x \in G/K} \#(B(x,R) \cap Z)$ is finite.

Let X be a free Γ -space and $\theta: X \to Z$ a Γ -equivariant map such that $\sup_{z \in Z} \#(\theta^{-1}(z)) < +\infty$, and equip X with the distance $\theta^*(d)$.

Then X and Γ satisfy (H_{δ}) and (K_{δ}) for some $\delta > 0$ and with k = 2 and $\mathcal{T}_1 = \theta^{-1}(\mathcal{T}_{1,r}) = \{(t_1, t_2, t_3) \in X^3, (\theta(t_1), \theta(t_2), \theta(t_3)) \in \mathcal{T}_{1,r}\}$ and $\mathcal{T}_2 = \theta^{-1}(\mathcal{T}_{2,r})$. Consequently Γ satisfies property (RD).

If Γ is a discrete cocompact subgroup of $SL_3(\mathbb{R})$, every Γ -orbit Z in G/K satisfies (I1) and (I2), and we can choose $X = \Gamma$ and θ obvious, and therefore Γ satisfies (RD).

Proof of the theorem. This proof is everything until part 4.

a) We first prove that X satisfies property (H_{δ}) for any $\delta > 0$. This part of the argument works for any linear connected semi-simple Lie group.

We recall some notations from chapter 5 of [8]. Let G be a linear connected semi-simple Lie group, K a maximal compact subgroup, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ the decomposition associated to the Cartan involution, \mathfrak{a} a maximal abelian subspace of \mathfrak{p} , Σ the set of restricted roots, \mathfrak{g}_{λ} the root space associated to $\lambda \in \Sigma$, Σ^{+} a choice of a set of positive roots, $\mathfrak{a}^{+} = \{H \in \mathfrak{a}, \lambda(H) > 0 \text{ for all } \lambda \in \Sigma^{+}\}$, $A = \exp(\mathfrak{a})$, $A^{+} = \exp(\mathfrak{a}^{+})$, and $\rho = \frac{1}{2} \sum_{\lambda \in \Sigma^{+}} (\dim \mathfrak{g}_{\lambda}) \lambda$. We have $G = K \overline{A^{+}} K$ and

$$\int_{G} f(g)dg = \int_{K \times A^{+} \times K} f(kak') \prod_{\lambda \in \Sigma^{+}} (\sinh \lambda (\log a))^{\dim \mathfrak{g}_{\lambda}} dk dadk'$$
 (1)

262 Lafforgue

is the integral formula corresponding to this decomposition. If $\omega_1, \ldots, \omega_k$ are the fundamental weights, we have $\rho = n_1\omega_1 + \cdots + n_k\omega_k$ for some positive integers n_1, \ldots, n_k depending on the multiplicities of the roots. We introduce the non-symmetric fonction d_i on $(G/K)^2$: if $x, y \in G/K$ and $x^{-1}y = KaK$ with $a \in \overline{A^+}$, $d_i(x,y) = \omega_i(\log a)$. Since G admits a representation of highest weight a multiple of ω_i , if we choose an hermitian metric on this representation compatible with the Cartan involution on G, for any $x, y \in G/K$, $d_i(x,y)$ is a fraction of the log of the norm of the image by this representation of any antecedent of $x^{-1}y$ in G. Therefore, for any $x, y, z \in G/K$, $d_i(x,z) \leq d_i(x,y) + d_i(y,z)$. Let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}_+^*$, and consider the non-symmetric function $d_{\alpha}(x,y) = \sum_{i=1}^k \alpha_i d_i(x,y)$. Up to a constant there is a unique G-invariant element of volume on G/K.

Lemma 3.4. For any $\delta > 0$ there is a polynomial P such that for any $r \in \mathbb{R}_+$ and $x, y \in G/K$,

$$Vol\{t \in G/K, d_{\alpha}(x,t) + d_{\alpha}(t,y) \le d_{\alpha}(x,y) + \delta \ and \ d_{\alpha}(x,t) \le r\} \le P(r).$$

The lemma is false if some α_i is 0: in this case the best estimate for the volume grows exponentially in r.

Proof. We denote by d the following distance on G/K: $d(x,y) = \sum_{i=1}^k n_i d_i(x,y) = \rho \log(a)$ if $x^{-1}y = KaK$ with $a \in \overline{A^+}$.

Denote by 1 the origin in G/K. We may assume x=1. There exists some constant C_0 depending on α such that the conditions $d_{\alpha}(1,t)+d_{\alpha}(t,y) \leq d_{\alpha}(1,y)+\delta$ and $d_{\alpha}(1,t) \leq r$ imply $d_{i}(1,t)+d_{i}(t,y) \leq d_{i}(1,y)+C_{0}\delta$ for any i and $d(1,t) \leq C_{0}r$. Because of (1) there exists some constant $C_{1} \in \mathbb{R}_{+}^{*}$ such that

$$Vol\{z \in G/K, \exists k \in K, d(y, kz) \le 1\} \ge C_1 e^{2d(1,y)}.$$

Therefore

$$\operatorname{Vol}\Big\{(t,z)\in (G/K)^2, \forall i, d_i(1,t)+d_i(t,z)\leq d_i(1,y)+C_0\delta+1, d(1,t)\leq C_0r\Big\}$$

$$\geq C_1e^{2d(1,y)}\operatorname{Vol}\Big\{t\in G/K, \forall i, d_i(1,t)+d_i(t,y)\leq d_i(1,y)+C_0\delta, d(1,t)\leq C_0r\Big\}$$
 because
$$\Big\{t\in (G/K), \forall i, d_i(1,t)+d_i(t,z)\leq d_i(1,y)+C_0\delta+1, d(1,t)\leq C_0r\Big\}\supset \Big\{t\in (G/K), \forall i, d_i(1,t)+d_i(t,y)\leq d_i(1,y)+C_0\delta, d(1,t)\leq C_0r\Big\} \text{ if } d(y,z)\leq 1 \text{ and } \operatorname{Vol}\Big\{t\in (G/K), \forall i, d_i(1,t)+d_i(t,z)\leq d_i(1,y)+C_0\delta+1, d(1,t)\leq C_0r\Big\} \text{ depends only on } Kz \text{ in } K\backslash G/K \text{. The following fact comes from } (1): \text{ there exists a constant } C_2 \text{ such that}$$

for any $a_1, \ldots, a_k \in \mathbb{R}_+$, $\operatorname{Vol}\{u \in G/K, \forall i, d_i(1, u) \leq a_i\} \leq C_2 e^{2\sum n_i a_i}$.

Now fix $t \in G/K$ such that $d_i(1,t) \leq C_0 r$. We have

$$Vol \Big\{ z \in (G/K), \forall i, d_i(1,t) + d_i(t,z) \le d_i(1,y) + C_0 \delta + 1 \Big\}$$

$$= Vol \Big\{ z \in (G/K), \forall i, d_i(t,z) \le d_i(1,y) + C_0 \delta + 1 - d_i(1,t) \Big\}$$

$$\le C_2 \exp \Big(2d(1,y) + 2(C_0 \delta + 1) \Big(\sum_{i=1}^k n_i \Big) - 2d(1,t) \Big),$$

and $\int_{t \in G/K, d(1,t) \leq C_0 r} e^{-2d(1,t)} dt \leq P(r)$ for some polynomial P, because of (1). The lemma now results from Fubini's lemma.

We now come back to the notations of the theorem 3.3. We fix $\delta > 0$ and we explain why X satisfies (H_{δ}) . Of course it is enough to prove that (Z, d) satisfies (H_{δ}) . By (I2) there exists $N \in \mathbb{N}$ such that $\#(B(x,1) \cap Z) \leq N$ for any $x \in G/K$. For any $x \in G/K$,

$$\#\{t\in Z, xty\ \delta\text{-path}, d(x,t)\leq r\}\leq \frac{N}{V}\mathrm{Vol}\{t'\in G/K, xt'y\ (\delta+2)\text{-path}, d(x,t')\leq r+1\},$$

where $V = \operatorname{Vol}\{z \in G/K, d(1,z) \leq 1\}$, because if $d(t,t') \leq 1$, $d(x,t) \leq r$ and xty is a δ -path, then xt'y is a $(\delta + 2)$ -path and $d(x,t') \leq r + 1$. It remains to apply lemma 3.4 with $d_{\alpha} = d$.

b) We now prove that X and Γ satisfy (K_{δ}) with k=2, \mathcal{T}_1 and \mathcal{T}_2 as in the theorem 3.3 and if δ is big enough. This part of the proof really use fact that the flats in G/K are of type A^2 .

The following lemma is analoguous to the study of the foldings in [9]. We call a flat in G/K any subset of G/K equal to gAK, for some $g \in G$. We now study the distance of some fixed point of G/K to the points of a fixed flat in G/K. Up to left translation by an element of G, we may suppose that the flat is AK. We prove the following result: there is some $\delta > 0$ such that for any $x \in G/K$ there exist y, y_2, y_3 in G/K such that, for any $a \in A$, xy(aK) is a δ -path, and such that yy_2y_3 is an equilateral triangle, y_2 and y_3 are at distance less than δ from AK and for any $a \in A$ there exists some point z on the side y_2y_3 of the triangle yy_2y_3 such that yz(aK) is a δ -path.

Denote by W_0 the subgroup of G whose elements are

Id,
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
, and $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

In the following lemma we shall again use the abbreviation for diagonal matrices:

$$D(a,b,c) = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}.$$

Lemma 3.5. For some $\delta > 0$ the following is true. For any $x \in G/K$ there exist $y \in G/K$, $t \in \mathbb{R}_+$, $m \in W_0A$ such that

- (i) xy(aK) is a δ -path for any $a \in A$,
- (ii) $|d(y, mD(e^{s_1}, e^{s_2}, e^{s_3})K) t \max(|s_2 s_3|, s_1 s_2 t, s_1 s_3 t, s_2 s_1, s_3 s_1)| \le \delta \text{ for any } s_1, s_2, s_3 \in \mathbb{R}, s_1 + s_2 + s_3 = 0,$
- (iii) there exists $h_2 \in G$ such that $d(h_2D(e^{s_1}, e^{s_2}, e^{s_3})K, mD(e^{s_1}, e^{s_2}, e^{s_3})K) \leq \delta$ if $s_1 + s_2 + s_3 = 0$ and $s_2 \geq s_3$ and $d(h_2e^{-\frac{2t}{3}}D(e^t, 1, e^t)K, y) \leq \delta$,
- (iv) there exists $h_3 \in G$ such that $d(h_3D(e^{s_1}, e^{s_2}, e^{s_3})K, mD(e^{s_1}, e^{s_2}, e^{s_3})K) \leq \delta$ if $s_1 + s_2 + s_3 = 0$ and $s_2 \leq s_3$ and $d(h_3e^{-\frac{2t}{3}}D(e^t, e^t, 1)K, y) \leq \delta$.

We notice that the second condition is in fact a consequence of the two last ones (for a different δ).

Proof. Up to left translation by some element $m \in W_0A$ we may suppose that $x = \lambda \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} K$, with $\lambda \in \mathbb{R}_+^*$, $e_1, e_2, e_3 \in \mathbb{R}^3$, $||e_1|| = ||e_2|| = ||e_3|| = 1$ and $||e_2 \wedge e_3|| \leq \min(||e_1 \wedge e_2||, ||e_1 \wedge e_3||)$. We have

$$|||e_1 \wedge e_2|| - ||e_1 \wedge e_3||| \le \min_{\mu = \pm 1} ||e_1 \wedge (e_3 - \mu e_2)||$$

$$\le \min_{\mu = \pm 1} ||e_3 - \mu e_2|| \le \sqrt{2} ||e_2 \wedge e_3||.$$

Denote by ν an element of $\{-1,1\}$ where the minimum of $\|e_3 - \mu e_2\|$ is reached. Take $t = \log(\frac{\|e_1 \wedge e_2\|}{\|e_2 \wedge e_3\|}) \in \mathbb{R}_+$. By the last inequalities $|t - \log(\frac{\|e_1 \wedge e_3\|}{\|e_2 \wedge e_3\|})| \leq \log(1 + \sqrt{2})$. For $a = D(e^{s_1}, e^{s_2}, e^{s_3})$, with $s_1 + s_2 + s_3 = 0$, we have

$$d(aK, x) = \log \left\| a^{-1} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} \right\| + \log \left\| \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}^{-1} a \right\|$$

and

$$\left| \log \left\| a^{-1} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} \right\| - \max(-s_1, -s_2, -s_3) \right| \le \log 3$$

and since

$$\begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}^{-1} = \det(e_1, e_2, e_3)^{-1} \begin{pmatrix} e_2 \wedge e_3 \\ e_3 \wedge e_1 \\ e_1 \wedge e_2 \end{pmatrix}^t$$

we have

$$\left| \log \left\| \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}^{-1} a \right\| + \log \|e_1 \wedge e_2 \wedge e_3\|$$

$$- \max(s_1 + \log \|e_2 \wedge e_3\|, s_2 + \log \|e_1 \wedge e_3\|, s_3 + \log \|e_1 \wedge e_2\|) \right| \le \log 3.$$

Therefore

$$|d(aK, x) - \max(-s_1, -s_2, -s_3) - \max(s_1 - t, s_2, s_3) + \log ||e_1 \wedge e_2 \wedge e_3|| - \log ||e_1 \wedge e_2||| \le \delta_0$$

for some numerical constant δ_0 .

Now consider

$$y = e^{\frac{t}{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \nu & e^{-t} \end{pmatrix} K.$$

By applying the last argument to y instead of x, we obtain

$$|d(aK, y) - \max(-s_1, -s_2, -s_3) - \max(s_1 - t, s_2, s_3) - t| \le \delta_1$$

for some numerical constant δ_1 (different from δ_0 because one has to normalize $(0, \nu, e^{-t})$). But

$$d(x,y) = \log \left\| \begin{pmatrix} e_1 \\ e_2 \\ e^t(e_3 - \nu e_2) \end{pmatrix} \right\| + \log \left\| \begin{pmatrix} e_1 \\ e_2 \\ e^t(e_3 - \nu e_2) \end{pmatrix}^{-1} \right\|$$

since

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \nu & e^{-t} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\nu e^t & e^t \end{pmatrix}.$$

Therefore

$$|d(x,y) - \log ||e_1 \wedge e_2|| + t + \log ||e_1 \wedge e_2 \wedge e_3||| \le \delta_2$$

for some numerical constant δ_2 because $||e^t(e_3 - \nu e_2)|| \le \sqrt{2} ||e_1 \wedge e_2||$ and $||e_2 \wedge (e^t(e_3 - e_2))|| = ||e_1 \wedge e_2||$ and $||e_1 \wedge e^t(e_3 - \nu e_2)|| \le ||e^t(e_3 - \nu e_2)||$.

Thus the first two assertions are proved. Now we take

$$h_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \nu^{-1} \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad h_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \nu & 1 \end{pmatrix}.$$

We check that

$$h_3 e^{-\frac{2t}{3}} D(e^t, e^t, 1) K = y$$
 and that $d(h_2 e^{-\frac{2t}{3}} D(e^t, 1, e^t) K, y)$

is bounded by a numerical constant, because

$$y^{-1}h_{2}e^{-\frac{2t}{3}}\begin{pmatrix} e^{t} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{t} \end{pmatrix}K = K\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -\nu e^{t} & e^{t} \end{pmatrix}\begin{pmatrix} 1 & 0 & 0\\ 0 & e^{-t} & \nu^{-1}\\ 0 & 0 & 1 \end{pmatrix}K$$
$$= K\begin{pmatrix} 1 & 0 & 0\\ 0 & e^{-t} & \nu^{-1}\\ 0 & -\nu & 0 \end{pmatrix}K.$$

Finally it is obvious that

$$d(h_2D(e^{s_1}, e^{s_2}, e^{s_3})K, D(e^{s_1}, e^{s_2}, e^{s_3})K) \le \delta$$

if $s_1 + s_2 + s_3 = 0$ and $s_2 \ge s_3$, and if δ is big enough. The last condition for h_3 is similar.

Now consider $x_1, x_2, x_3 \in G/K$. Take $x = x_1$ and choose any flat containing x_2 and x_3 . After a small discussion of the possible positions of x_2 and x_3 in this flat (a similar discussion occurs in [9]) we obtain the following lemma which immediately implies that property (K_{δ}) holds with k = 2 and \mathcal{T}_1 and \mathcal{T}_2 as in the theorem 3.3 if δ is big enough.

Lemma 3.6. For some $\delta > 0$ the following is true. For any $x_1, x_2, x_3 \in G/K$ there exist $t_1, t_2, t_3 \in G/K$ such that $x_1t_1t_2x_2$, $x_2t_2t_3x_3$ and $x_3t_3t_1x_1$ are δ -paths and $t_1t_2t_3$ is an equilateral triangle.

c) Now we prove that property $(K_{\delta}b)$ holds with k=2 and \mathcal{T}_1 and \mathcal{T}_2 as in the theorem if δ is big enough.

This results from the following lemma, applied to $\delta_0 = 2r$.

Lemma 3.7. For any $\delta_0 > 0$ there exists $\delta > 0$ such that the following is true. For any $s, t \in \mathbb{R}$ of the same sign, and $x_1, y_1, x_2, z_2 \in G/K$ with $d(x_1, x_2) \leq \delta_0$, (x_1, y_1) of shape (s, 0) and (x_2, z_2) of shape (t, 0), then $x_1y_1z_2$ is a δ -thin triangle.

Proof. By symmetry with respect to 1 in G/K we may suppose $s, t \in \mathbb{R}_+$. Up to left translation by an element of G we may suppose $x_1 = 1$ and $y_1 = e^{-\frac{s}{3}}D(e^s, 1, 1)K$. We have $z_2 = he^{-\frac{t}{3}}D(e^t, 1, 1)K$ with $h \in G$ such that $d(1, hK) \leq \delta_0$. Write

$$h = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} \quad \text{and} \quad h^{-1} = \begin{pmatrix} h'_{11} & h'_{12} & h'_{13} \\ h'_{21} & h'_{22} & h'_{23} \\ h'_{31} & h'_{32} & h'_{33} \end{pmatrix}.$$

By Cramer's formula there exists a constant δ_1 depending only on δ_0 such that $\left|\log(\max(|h_{21}|,|h_{31}|)) - \log(\max(|h'_{21}|,|h'_{31}|))\right| \leq \delta_1$.

Take $r = \min(s, t, -\log(\max(|h_{21}|, |h_{31}|))$ and $u = e^{-\frac{r}{3}}D(e^r, 1, 1)K$. Then x_1uy_1 , y_1uz_2 and z_2ux_1 are δ -paths for some δ depending only on δ_0 . Indeed $d(x_1, u) = r$, $d(u, y_1) = s - r$, and since

$$u^{-1}z_{2} = Ke^{\frac{r-t}{3}}D(e^{-r}, 1, 1)hD(e^{t}, 1, 1)K$$

$$= Ke^{\frac{r-t}{3}}\begin{pmatrix} e^{t-r}h_{11} & e^{-r}h_{12} & e^{-r}h_{13} \\ e^{t}h_{21} & h_{22} & h_{23} \\ e^{t}h_{31} & h_{32} & h_{33} \end{pmatrix}K$$

and
$$z_2^{-1}u = Ke^{\frac{t-r}{3}}D(e^{-t},1,1)h^{-1}D(e^r,1,1)K$$

$$= Ke^{\frac{t-r}{3}}\begin{pmatrix} e^{r-t}h'_{11} & e^{-t}h'_{12} & e^{-t}h'_{13} \\ e^rh'_{21} & h'_{22} & h'_{23} \\ e^rh'_{31} & h'_{32} & h'_{33} \end{pmatrix}K,$$

we see that $|d(u, z_2) - (t - r)| \le \delta_2$ and $|d(y_1, z_2) - (t - r) - (s - r)| \le \delta_2$ by the same computation, where δ_2 depends only on δ_0 .

The lemmas 3.5 and 3.7 are more intuitive if one considers quadratic forms on \mathbb{R}^3 instead of elements of $SL_3(\mathbb{R})$ but it is more difficult to write correct proofs in this way.

4. The case of $SL_3(\mathbb{C})$

Very few things need to be changed. We put $G = SL_3(\mathbb{C})$ and $K = SU_3(\mathbb{C})$ instead of $SL_3(\mathbb{R})$ and $SO_3(\mathbb{R})$ but A is the same. The part a) of the proof of theorem 3.3 is true for any linear connected semi-simple group. In the part b), W_0 remains the same and the lemma 3.5 is still true. In the proof of lemma 3.5 we have to take μ and ν in $\{z \in \mathbb{C}, |z| = 1\}$ instead of $\{-1, 1\}$. Lemma 3.7 and its proof remain the same.

It would be interesting to know wether the lemmas 3.5 and 3.7 are still true for the groups $SL(3,\mathbb{H})$ and $E_{6(-26)}$, whose associated symetric spaces have also flats of type A^2 .

References

- [1] de la Harpe, P., Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, C.R. Acad. Sci. Paris 307, Série I (1998), 771–774.
- [2] Ferry S., A. Ranicki, and J. Rosenberg, "Novikov conjectures, Index theorems and Rigidity," London Mathematical Society, LNS 226 (1993).
- [3] Haagerup, U., An example of a nonnuclear C*-algebra which has the metric approximation property, Inv. Math. **50** (1979), 279–293.
- [4] Jolissaint, P., Croissance d'un groupe de génération finie et fonctions lisses sur son dual, C. R. Acad. Sci. Paris **300** Série I (1985), 601–604.
- [5] —, Les fonctions à décroissance rapide dans les C*-algèbres réduites de groupes, Thèse, Genève, 1987.
- [6] —, K-theory of reduced C*-algebras and rapidly decreasing functions on groups, K-Theory 2 (1989), 723–735.
- [7] —, Rapidly decreasing functions in reduced C*-algebra of groups, Trans. Amer. Math. Soc. **317** (1990), 167–196.
- [8] Knapp, A. W., "Representation theory of semi-simple groups," Princeton University, 1986.
- [9] Ramagge J., G. Robertson, and T. Steger, A Haagerup inequality for $\widetilde{A}_1 \times \widetilde{A}_1$ and \widetilde{A}_2 buildings, Geom. Funct. Anal. 8 (1998), 702–731.

Département de Mathématiques et Applications Ecole Normale Supérieure 45 rue d'Ulm 75230 PARIS CEDEX 05, France vlafforg@dmi.ens.fr

Received September 25, 1998 and in final form May 1, 1999