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Abstract. In this paper we show that the boundary of a symmetric
cone {2 in the standard real conformal compactification M of its containing
euclidean Jordan algebra V has the structure of a double cone, with the

points at infinity forming one of the cones. We further show that Q
admits a natural partial order extending that of €. Each element of the
compression semigroup for €2 is shown to act in an order-preserving way on

Q)" and carries it into an order interval contained in € .

1. Introduction

Let V' be a euclidean Jordan algebra with identity e and let 2 = exp V. Then )
is a symmetric cone and Tg := V +1£) i1s a symmetric tube domain with symmetry
j(z) = —z7' at ie. The biholomorphic automorphism group G(Tq) of Tq is
generated by N*, H and j, where NT is the group of all real translations ¢, and
H is the automorphism group of the symmetric cone €. There exists a conformal
compactification M := G(Tq)/P with respect to the parabolic subgroup P =
HN~, where N™ = jN*j, and the embedding of V into M given by = € V —
t.- P € M is an open dense embedding. A Lie semigroup that is naturally related
to the symmetric cone € occurs as the semigroup of compressions of  in G(Tg):

Fa:={g€G(Ta) |g-QC O}

In this paper we investigate the structure of ﬁM, particularly its boundary and
the points at infinity, and we establish a natural order structure on this compactifi-
cation of . We show that the compression semigroup acts in an order-preserving
way on O™ and carries it to an internal order interval.

This paper is organized as follows. In section 2 we realize the ideal boundary
(boundary points in M\ V') of € as a cone in V, and in section 3 we show how to

endow 00" with a natural partial order. In section 4, we represent the compressed
domain ¢(€) by ¢ in I'g as an order interval which is determined by the points

g(0) and ¢7(0).
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2. Boundary structure of symmetric cones

We recall certain basic notions and well-known facts concerning Jordan algebras
(see, for example, [3]). A commutative algebra V over the field R or C with
product xy is said to be a Jordan algebra if for all elements z,y in V, z(2?y) =
z*(zy). For @ € V, let L(z) be the linear map of V defined by L(z)y = zy,
and let P(z) = 2L(x)* — L(z*). A finite dimensional real Jordan algebra V is
called a euclidean Jordan algebra if it carries an inner product (-|-) such that
(zy| z) = (y| zz), for all z,y,z € V.

Let V be a euclidean Jordan algebra with identity ¢, and let Q = {z? | = €
V'} be the set of squares. Then the set @) is a self dual cone and the interior {2
of @ is a symmetric cone, i.e.,  is a self-dual cone (with respect to the inner
product) and the group G(R2) :={h € GL(V) | h(©2) = Q} acts on it transitively.

The closure Q is a closed pointed generating cone in V' with interior Q.

A Jordan frame is a family ¢ = {¢1, -+, ¢} of primitive idempotents ¢;
with
CZ'C]' == O,Z ?é j,
,
Z ¢ = e
=1
The spectral theorem states that for € V) there is a Jordan frame ¢ = {¢y, -+, ¢, }

(r fixed) and real numbers Ay,---, A, such that @ = Y7_, Ai¢;. The real numbers
Ai (with their multiplicities) are uniquely determined by x. Furthermore, z € Q
(resp. € Q) if and only if A; > 0 (resp. A; > 0) for each 1.

The set Tq : =V +:Q2 CV +:V is a symmetric tube domain. Let G(TQ)
be the Lie group of all biholomorphic automorphisms on the tube domain 7. The
group G(Tq) can be described in the following way: an element in G(£2) acts on
the tube domain T by z = = + 1y — g(z) = g(z) + ig(y). For = in V, the
translation by z, t, : 2 — z 4+ = is a holomorphic automorphism of Tq and
the group of all real translations is an abelian group Nt isomorphic to the vector
group V. The map (the symmetry of T at ie) j:z — —2z7" is in G(Ty). We
set 1, = jot,o0j and N~ = jo Nt oj. Then G(Ty) is generated by Nt G(Q)
and j [3].

Let G be the identity component of G(Tg) and let H := G(Q)o. Let
P = HN~. Then P is a maximal parabolic subgroup of G. Then it is known that
the homogeneous space M := G/P is a compact real manifold containing V' as
an open dense subset, i.e., a real conformal compactification of the Jordan algebra

V' [1]. The embedding is given by
V — ./M, xr — th,

and we henceforth identify V' with its image in M. The space NTHN™ can
be characterized by the elements ¢ € G such that ¢(0) € V (in this case,
g(0) = ¢g -0, see Theorem 2.14 [1] and Corollary 2.20 [5]). One computes that
j(z)(= jtzP) = —a~! for x an invertible element of V.

For a subset A of V, let A denote its closure in V and let M denote its
closure in M. We are interested in studying the structure of the boundary o \Q
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of 2, which consists of the set of “infinite” points in the closure 0, := oM \Q
and the set of “finite” points in the closure given by 9Q = 0\ Q. This study is
facilitated by considering an equivalent bounded symmetric domain that arises by
applying the “real” version of the Cayley transform to {2 resp. oM. We recall
that this Cayley transform is given by

clr)=(r—e)(z+e) ' =e—2x+e)"" =1, 02idy 0jot.z);

note that the first description has singular points, but that the last extends it and
is defined on all of M. The Cayley transform has a global inverse given by

dz)=—(z+e)(z—e)'=—e+2(e—2)" =t_.0jo(1/2)idy ot_.(z).

We define two useful relations on V', the partial order on V' defined by
z <y ifand only if y —z € Q, and z < y if and only if y — z € Q. The relation
< is a closed partial order (i.e., closed as a relation in V' x V') and is the closure of
<. We have 2 <w <y (resp. L w L y) if and only if w € (;v—l—ﬁ)ﬂ(y—ﬁ)
(resp. w € (z 4+ Q)N (y — N)). We note that if z < y, then the closure of
t+0QNy—Qisequalto 24+ 0 Ny—0 (if 2 <w <y for # < y, then the
sequence w, = (1/n)((:v + y)/?)) + ((n — 1)/n)w €Ex+ QN y—0Q and converges

to w). For & <y, we define the order interval
2,y ={w:2<w<y}l=y—-Qnaz+0

If © =37 N, and y = Y7, pic; are spectral decompositions for the
Jordan frame {c1,...,¢ }, then # <y (resp. v < y) if and only if A\; < u; (resp.
Ai < pi) for all i. In particular if e < = 377, Ai¢;, then 1 < A; for all ¢, and
thus 7' =37 (1/M)e < e

The following is a basic fact about the Cayley transform applied to Q (see,
for example, [2] for observation (1)).

Proposition 2.1.  Let V be a euclidean Jordan algebra with symmelric cone
Q. Then we have the following:

(1) c()=e—Q NN —e.
(2) c(ﬁM)ze—ﬁﬂﬁ—ez[—e,e].

(3) v € ¢(0(Q)) if and only if x has a spectral decomposition of the form
Yoy Aici such that —1 < X; <1 for all v and at least one X; = 1.

(4) = € ¢(0(R)) if and only if = has a spectral decomposition of the form
Yoy Aici such that —1 < X\; <1 for all v and al least one \; = —1.

Proof. let x € Q. Then e € e 4+ 2 = te(;v). It follows that (e + x)“l < e and
thus —e < ]t,,(;v) Thus —e = e + 2(—6) < e+ the(;v) = c(;v) From jte(x) <0
we derive c(;v) < e, and thus C(Q) Ce—-0nN (—e—l—Q). Similar arguments applied
to d and e — QN (—e+ Q) yield dle = Q2N (—e+ Q) C Q. Since ¢ and d are
inverses on M, we conclude that ¢(Q) =e— QN (—e+ Q). This completes (1).
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Assertion (2) follows from taking closure of both sides of (1) (note that the
right-hand side is compact, hence closed in M). Assertion (4) follows from the
straightforward observation that = € 9Q if and only if all A; > 0 and some A; =0
in some spectral decomposition of z if and only if all y; satisfy —1 < p; < 1 and

some p; = —1 in some spectral decomposition of ¢(x). Assertion (3) then follows
from the other three. O

We give a more explicit characterization of the boundary of [—e,e]| and
hence implicitly of the boundary in M of . We set

€ = (0:9) N (@) = ¢(0..0) N c(09)

= {z=> Nci:max{\} =1, min{\} = —1
=1
for some Jordan frame}

We note that second and third sets are equal since ¢ is a homeomorphsim. To
see that the third and fourth sets are equal, let z = Y"7_, A\;¢; with max{\;} = 1
and min{\;} = —1, then by the preceding proposition z € ¢(0..1). Let z, have
i —th coefficient the larger of —1 and A\; —(1/n). Then z, € ¢(0) and converges

to z,s0 x € ¢(0,02) Ne(0N) . Conversely let y € ¢(0,.2) N c(aQ)M. Then it
must have an eigenvalue of 1 among the coefficients in a spectral decomposition
with respect to a Jordan frame. Pick a sequence z, € ¢(0f) converging to z,
and choose a spectral decompostion for each x,. Then for each n the 2n-tuple
consisting of the ¢-th coefficient A; in the coordinate ¢ and of ¢; in coordinate
r + ¢ lies in the compact space [—1,1]" x [0,¢€]", and thus admits a convergence
subsequence. Since each x, has a coefficient of —1, there must be a entry of —1
in the limit, and the Jordan algebra components must converge to another Jordan
frame. Thus y must also be in the terminal set.

Theorem 2.2.  Let V be a euclidean Jordan algebra with symmetric cone ().
Then we have the following:

(1) ¢(0.0) ={(1 —t)ettz: z €&, t€[0,1]}, the cone over € with vertex e.

(2) c(a—QM) ={(1—t)(—e)+tx: z €&, t €[0,1]}, the cone over € with vertex

—€.

Thus the boundary c¢(0(Q)UIN) of c(ﬁM) is the double cone over € with vertices

e and —e.

Proof. We use the characterization of ¢(0x£2) given in Proposition 2.1. For any
point x besides the cone point e in this set, the spectral decomposition Y _, A;¢;
must have some A; = 1 and min{\;} =y < 1. Then elementary calculations yield
that the one and only possibility for obtaining = in the right-hand side of (1) is to
choose y = Y7, pic; € €, where p; = (2N, —v = 1)/(1 —v), and t = 2/(1 — 7).
Similar calculations hold for part (2), and the last assertion then follows directly
from these. O
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3. The orders <« and <

We continue in the same setting as the previous section: a euclidean Jordan
algebra V' with symmetric cone ). We consider for ¢ < b the order interval
[a,b] = a+ QN b— 0. We note that the translation {_, is order-preserving for
both < and < and carries the interval to [0,¢|, where ¢ = b—a € . The linear
transformation P(c_%) preseves (), hence is order-preserving, and carries ¢ to e
and 0 to 0. Thus we see that any interval [a,b] with @ < b can be carried onto
[0,€] by an affine isomorphism that preserves both the orders < and <. Thus
we can without loss of generality restrict our attention to the study of one such
interval.

We choose for consideration the order interval [—e,e¢] = ¢ —Q N (—e+ Q).
This set has dense interior ¢(}) = {w: —e K w K e} = e—Q N Q—e¢ (Proposition
2.1). Let z,y € [—e, €] with # <y. Then for 0 < ¢ <1, we have

1
—e<<—tegmgty<<ty+§(1—t)e<<ty+(1—t)ege.

Since as t = 1, tx — x and ty+ (1/2)(1 —t)e = y, we conclude that there exist
Tn, — x and y, — y such that —e < z, < y, < ¢ for each n. We have thus
proved:

Proposition 3.1.  Let V be a euclidean Jordan algebra with symmelric cone
Q. If a < b, then the order relation < on [a,b] is the closure of the order relation
LK om{w: a<w Kb =a+QNb—Q, the interior of [a,b].

The next lemma is a known result (see, for example, Exercise 7 of Chapter

111 of [3]).

Lemma 3.2. Let a,be Q. Then a < b if and only if b~ < a™"'.

Proof. Suppose that a,b € Q with a < b. Since P(a_%) € H, P(a_%)(b—a) € 0.
This implies that P((J,_%)(a) =e K P((J,_%)b. Since a2,b € Q, (P(a=2)b)™! =
P((J,%)b_l < (See Section I1.3 of [3]) This implies that b=! < P((J,_%)e = a1
O

Corollary 3.3.  Fach of the following mappings preserve <.
(1) The mapping 7 :Q — —Q and j: —=Q — Q;

(2) The Cayley transform c¢(z) = (z —e)(z + €)™ =t 02idy o jot.(x) from
toe—Q NN —e;

(3) The inverse Cayley transform d(z) = —(z+e)(z—e)™' = —e+2(e—2)7" =
t_eojo(1/2)idyot_.(z) frome—Q N Q—e to Q.

Proof. Ttem (1) is an immediate consequence of Lemma 3.2, since j(z) = —z™!

is the composition of two order-reversing transformations. It is immediate that
the other mappings besides 7 in the right-most definitions of ¢ and d are order-
preserving for <, and hence ¢ and d are. O
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Corollary 3.4.  The closure of the relation {(z,y) € @ x Q : = <K y} in
M« O is a closed partial order on M which extends the partial order < on
Q. The mappings ¢ and d are order-preserving inverses between aM and [—e, €]
with respect to this order. We can then denote Q" as the order interval [0, 00],
where oo 1= j(0).

Proof. By Proposition 3.1 the closed partial order < on [—e¢, ¢] is the closure of
< on the interior. We pull this closed order back to ﬁM via the homeomorphism

¢! = d. Since by Corollary 3.3 d is an order isomorphism from the interior of
[—e, €] to © with respect to <, it follows immediately that the pulled back order
is the closure of < on ). Since d is also an order isomorphism on the interior of
[—e, €] with respect to <, it follows that the closure agrees with < on . We note
that the largest point of aM will be dle) =t_.0j0(1/2)idy ot_.(e) =1_.7(0).
Note also that —(1/n)e — 0 implies that ne = j(—(1/n)e) — 7(0) = oo, so that
t_(oco) =limt_.(ne) =lim(n — 1)e = co. Thus d(e) = oo is the largest element
of M. O

4. The compression semigroup

Let V' be a euclidean Jordan algebra with the corresponding symmetric cone €. In
the action of G on M = G/ P, we consider the compression semigroup of  C M

lo={9eG|g-QCO}

Since the closure T of Q0 in M is compact with € as its interior, the compression
semigroup I'g is a closed subsemigroup of G [4].
Now let

I ={t,e Nt |2€Q}, TFH={t,|zc0},

ImM={i_,eN"|zeQ}, T;={l]ze-0}.

Then 't and T'~ are closed subsemigroups of N* and N, respectively.
The following appear as Theorem 4.9 in [6] and Corollary 7.7 in [7]:

Theorem 4.1. We have T'q = TYHI'~. Furthermore, the interior T, of Tq is
given by Ty = TTHT, . In particular, T, ={g€ G | g- oV ¢ O}

Theorem 4.2.  Lel g € I'q. Then g(ﬁM) = [9(0), g(00)], and the mapping g
is an order isomorphism from the first to the second sel.

Proof. Let g =t,hi_, € T'q (by Theorem 4.1). Since j is an order isomorphism
for < from Q to —Q, t_, is order isomorphism from — into —Q, and j is again
an order isomorphism from —Q to Q, we conclude that {_, is an order isomorphism
into Q for < on Q. Since h is a linear mapping on V' preserving €1, it is an order
isomorphism for < on Q, and ¢, obviously is. Thus the composition g is an order
isomorphism for < from Q onto the image of @, and then by continuity for it
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is also one for < on oM (see Corollary 3.4). Thus g(ﬁM) C [9(0),g(c0)], where
g(0) =z and g(co) =z + h(y™") if y € Q.

Consider the case that y € . Suppose that z in in the interior of
[z,24+h(y™")]. Then z=x+a=x+h(y~")—b for some a,b € . Note that a =
h(y=")=b, so a < h(y~"). Since the inversion —j is order decreasing on 0 (Lemma
3.2), w:= ((h7"(a))™" —y)~' € Q. This implies that z = 2 + a = g(w) € g(N).
Since the interior of [g(0), g(o0)] is dense, it follows that g(ﬁM) = [9(0), g(c0)].

Finally consider the case that y € 09. Let z € [g(0),g(c0)]. Pick a
sequence h, in I'g converging to the identity (for example, ¢.. o i_.. for ¢ =
1/n). Then g, := h,g € 'Y, since the latter is a semigroup ideal, and thus by
the previous paragraph there exists w, € M such that gn(wn) = hy(z). By
compactness and continuity the sequence w, converges to w € M such that
g(w) = z.

O
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