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Abstract. In the context of certain generalized conformal structures we
define a first order differential operator S generalizing the classical Ahlfors
operator. We prove its invariance under the corresponding conformal group
and show that, under certain conditions, the Lie algebra of this group (which
is also known as the “Kantor—Koecher—Tits algebra”) is precisely the space
of solutions of the differential equation SX = 0.

0. Introduction

In his investigations on quasiconformal deformations, L. Ahlfors introduced the
operator

SX = %(DX + (DX)?) — %tr(DX) (0.1)

(see [Ah74, Ah76]); it is a first order differential operator assigning to a vector
field (“deformation”) X on R™ a field of trace-free symmetric endomorphisms.
He proved that this operator is invariant under the group of conformal trans-
formations (which is the group generated by translations, similarities and the
inversion) and that the solutions of the differential equation SX = 0 (“trivial
deformations”) are precisely the vector fields of the form

X(z) =a+ Bz + 2{c,x)x — (z,x)c (0.2)

with a,c € R* and B a sum of a skew-symmetric matrix and a multiple of the
identity. This space of quadratic vector fields is nothing but the Lie algebra of
the conformal group.

The Ahlfors operator S has a natural generalization in Riemannian ge-
ometry (see, for instance, [Bra97, PA96]). Let (M, g) be a Riemannian manifold
and

V:I'*(TM) —-T*°(End(TM)), X—VX (0.3)
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be its associated Levi-Civita connection; it assigns to a vector field X the field of
endomorphisms VX defined by (VX)Y = Vy X. Composing V with a projec-
tion onto some subbundle of End(T'M), we obtain what is nowadays often called
a generalized gradient (usually in the more general context of connections on
arbitrary bundles). In the case of a Riemannian manifold, the bundle End(T'M)
canonically decomposes into the sum of three subbundles, which are given in
each tangent space T, M respectively by skew-symmetric operators, multiples of
the identity and symmetric trace-free operators (with respect to the metric g, ).
Let ps : End(TM) — End(TM) denote the projection onto the last subbundle.
Then the Ahlfors operator is the generalized gradient S =p3o V.

In this paper we introduce a generalized gradient S on certain manifolds
M having a “generalized conformal structure”. As in the classical case, the cor-
responding conformal group is much “bigger” than the automorphism group of
the connection V we use (Theorem 2.1). The operator S shares an essential fea-
ture with the classical Ahlfors operator. Under certain conditions, the equation
SX = 0 characterizes the Lie algebra of the conformal group (Theorem 2.5).
This Lie algebra is known as the Kantor-Koecher—Tits algebra in the context
of Jordan algebras and, more generally, of Jordan triple systems. Our approach
is placed in this context. The basic ingredients of this approach are reviewed
in Section 1; let us just mention here that the manifolds M we are interested
in are symmetric spaces and V is the canonical connection of such a space (see
[KN69] or [Lo69] for the general theory). Jordan theory comes in by defining the
subbundle of End(T'M) onto which we project. This subbundle is an additional
structure on the symmetric space which cannot be recovered from the usual the-
ory of symmetric spaces; it is an aspect of what one may call a “generalized
conformal structure on M” —in [Be01] and [Be00] the more neutral but not en-
tirely satisfactory term “twist” is used; following a suggestion of the referee, we
will say that M is a Jordan symmetric space. Most surprisingly, all classical and
many of the exceptional symmetric spaces do admit such an additional structure
and, as classification shows, it is in most cases unique. Thus there are many
examples of the context in which we define our generalized Ahlfors operators; we
mention some of them in Section 1.

The investigation of conformally invariant operators is a vast topic, see,
for example, [CSS98] and [KR00]. In contrast to these approaches, our proof of
conformal invariance is purely geometric and does not need any assumptions of
irreducibility and the corresponding weight theory, thus giving a partial answer
to a problem mentioned in the introduction of [KR00]. The fact that our operator
is defined in geometric terms and not via representation theory also allows to give
an algebraic formula for our operator (formula (2.7)) which is very similar to the
classical formula (0.1).
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hospitality.
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1. Preliminaries

1.1. Symmetric spaces. A symmetric space is a manifold M together with a
complete torsion free affine connection V such that the curvature R is covariantly
constant: VR = 0. If M is connected, then M can be written as a homogeneous
symmetric space: M = G/H is homogeneous under the action of a Lie group
G such that H is an open subgroup of the group G? of fixed points of some
nontrivial involution o of G (see [Lo69] or [KN69]). Let g = b, & q, be the
decomposition of the Lie algebra g of G (assumed to act effectively on M)
under the differential of the involution o, corresponding to the point p € M. In
this group theoretic set-up, the affine connection can then be recovered by the
formula,

(VXY)p = [L(Xp)v Y]p (pe M) (1.1)

where for a tangent vector v € T, M, L(v) denotes the unique vector field Z € q,
such that Z, = v (see [Be0l, Section I.2]).

1.2. The Jordan tensor. We assume that (M,V,T) is a Jordan symmetric
space: (M, V) is a symmetric space and T is a Jordan extension of the curvature
R, that is, a covariantly constant tensor field of the same type as R (that is, of
type (3,1)) such that for all u,v,w,z,y € T,M, p € M, the following identities
hold

(JT1) (symmetry) Tp(u,v,w) = Tp(w, v, u),

(JT2) [Tp(u7 v), Tp(xv y)] = TP(TP(U7 V)T, Y) — 1, (z, TP(’Uv u)y),
where Ty (a,b)c := Tp(a,b,c),

and such that T is related to R by
R(X,Y) = —(I(X,Y) - T(Y, X)). (1.2)

The identities (JT1) and (JT2) mean that, for each p € M, T}, is a Jordan triple
system on the tangent space Tp,M . It follows from the identity (JT2) that the
subspace of End(7, M) spanned by the operators Tp(a,b), a,b € T,M, is a Lie
algebra, called the (inner) structure algebra of T}, and denoted by stt(7},). In
most parts of the following text, the Jordan triple system 7}, will be assumed to
be nondegenerate in the sense that the trace form

Bp(u,v) = trTp(u,v), (1.3)

is nondegenerate. Then (see [BeOl, Lemma V.2.4]) £, is symmetric—and thus
[ is a pseudometric tensor field on M —and it is associative in the sense that
the transpose of T} (u,v) with respect to g, is given by

Ty (u,v)" = Ty(v, u). (1.4)

1.3. Construction of Jordan symmetric spaces. The nondegenerate Jor-
dan symmetric spaces are all obtained by the following construction (which is
described in detail in [Be01]). One starts with a nondegenerate Jordan triple
system T on a finite-dimensional vector space V. With Ty one associates a
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Kantor-Koecher-Tits algebra co(T') = co(Tp), that is the Lie algebra of quadratic
vector fields of the form

&(z) =v+ Hz + P(z)w, (1.5)

for vy,w € V and H € ste(Tp), where
1
P(x)w = ETO(:c,w,a:).

We will use the notation v for the constant vector field having value v on V
and A(w) for the homogeneous quadratic vector field given by

(A(w))(z) = P(z)w (1.6)

so that £ = v+ H + A(w). Any local diffeomorphism ¢ of V preserving this
Lie algebra (in the sense that the push-forward ¢*¢ of every element £ € co(T)
coincides on its domain of definition with an element of co(T')) is in fact given
by a birational formula, and hence extends to a birational map of V. The
birational maps so obtained form a group Co(T') = Co(T}), called the conformal
group or Kantor-Koecher—Tits group. It is isomorphic to the adjoint group of
co(T), hence is a Lie group. Moreover, the adjoint representation is faithful,
and therefore co(T) is the Lie algebra of Co(T). The group of translations 7,
v € V, is a subgroup of Co(T), as well as the structure group, which is the linear
group Str(T') := Str(Tp) defined by

Str(To) := {g € GL(V)| (Vu,v,w € V) gTo(u,v,w) = To(gu, (g7) v, gw)}.

Let @ be the subgroup of Co(T) of all elements ¢ € Co(T) which are defined
at 0 and satisfy ¢(0) =0. It is known that Co(T') is semisimple and that @ is
a maximal parabolic subgroup of Co(T) (see [Lo71]). The map

V-oVe=Co(T)/Q, v 1,Q (1.7)

is an imbedding with open dense image, called the conformal compactification
of V.

The Kantor-Koecher—Tits algebra carries an involution © interchanging
constant and homogeneous quadratic vector fields. It is given by the formulas

O(v) = -A(w), O(To(u,v)) = -To(v,u), O(H)=-H' (H € ste(Tp)).
(1.8)
This involution induces an involution © on the adjoint group of ¢o(7") and hence
on the conformal group Co(T). Let G = Co(T)® be the identity component of
the fixed point group of this involution. Then

M=Go0ocCVe® (1.9)

is an open orbit carrying the structure of a homogeneous symmetric space G/H .
Here H is the automorphism group of Ty, and therefore T extends to a G-
invariant tensor field 7' on M which is indeed a Jordan extension of the curvature
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tensor. The space M has a natural chart on a neighborhood of the base point 0,
namely the “vectorialization” V' N M ; we call the associated coordinates Jordan
coordinates. In Jordan coordinates, the geodesic symmetry with respect to the
base point is simply given by —idy , and the extension L(v) at the origin is given
by

Lv)=v—A(v), veV =TyM, (1.10)

see [Be0l, Theorem VII.2.4].

1.4. Jordan algebras and spaces of the first kind. To a unital Jordan
algebra (V,-) one associates the Jordan triple system Ty given by

To(u, v, w) = 2(u(vw) — v(uw) + (wv)w). (1.11)

If e € V is the unit element, then this Jordan triple system has the special
property that P(e) = idy . More generally, we say that a Jordan triple system
Ty is of the first kind if it has invertible elements, that is, elements x € V' such
that P(z) is invertible. All such Jordan triple systems are of the form TO(O‘),
where Ty is associated with the Jordan algebra as above, o € GL(V') satisfies

aTy(u, av,w) = T (au, v, aw) (1.12)
for all u,v,w €V, and
To(a)(u, v,w) = To(u, v, w) (1.13)

is the “a-modification of T (see [Be0l, Section XI.1]).

1.5. Examples. Classification shows that all classical and many exceptional
symmetric spaces admit a (generically unique) Jordan extension of the curva-
ture. The corresponding list is therefore very long (see [BeO1]). Here we just
mention some particularly interesting examples (all of them, with the exception
of GL(n,R), are Riemannian); for the geometric realization of these data we
refer to [BeO1].

(1) Classical conformal space: M = S™ = SO(n + 1)/SO(n), conformal
group: SO(n+1,1), structure group: SO(n) x R*, Jordan triple system:
R"™ with To(u,v,w) = (u,v)w + (w,v)u — (u,w)v (thus the conformal
Lie algebra is indeed given by (0.2)).

(2) Hyperbolic spaces: M = H™ = SO(n,1)/SO(n): conformal group and
structure group as in (1), Jordan triple system: same space as in (1) with
the negative of the product given there.

(3) Grassmannians: M = O(p+q)/(O(p)xO(q)), conformal group: PGL(p+
q, R), structure group P(GL(p, R) x GL(q,R)), Jordan triple system V =
M (p,q;R) (real p x ¢ matrices) with To(X,Y, Z) = —(XY*!'Z + ZYtX).
Here the P means that one considers the respective projective group
where the multiples of the identity are factored out. The cases p = 1
(projective space) and p = g (see (4)) play a somewhat special role. For
R replaced by C or H there are similar formulae.
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(4) Group case M = GL(n,R), conformal group: P(GL(2n,R)), structure
group: P(GL(n,R) x GL(n,R)), Jordan triple system V = M(n,n,R)
with

To(X,Y,Z) = XYZ + ZY X.

(5) Group case M = U(n), conformal group SU(n,n), structure group
GL(n,C)/S', Jordan triple system V = Herm(n,C) (Hermitian ma-
trices) with

To(X,Y,Z) = —(XY Z + ZY X).

(6) Lagrangian Grassmannian M = U(n)/O(n), conformal group PO(n,n),
structure group GL(n,R), Jordan triple system Sym(n,R) (symmetric
matrices) with Ty(X,Y, Z) = —(XY Z + ZY X).

(7) Symmetric cones (see [FK94]): M isomorphic to the symmetric cone
Q = G/K associated with a Euclidean Jordan algebra V, G an open
subgroup of the structure group, conformal group isomorphic to the au-
tomorphism group of the tube over €2, Jordan triple system associated
with V' via formula (1.11) (notice that we use here the bounded realiza-
tion M = (—e+ Q)N (e — Q) of Q, see [BeO1]).

(8) Bounded symmetric domains (see [Lo77]): M = G/K is a Hermitian
symmetric space in its Harish-Chandra realization in pc =2 C", conformal
group G¢, structure group K¢, Jordan triple system on p¢ as defined
in [Lo77].

The spaces of the first kind among the above examples are precisely (1), (2), (3)
p=4q, (4), (5), (6), (7), and the spaces of tube type from (8).

2. The generalized Ahlfors operator

Keeping the notation of the preceding section, we now decompose the bundle
End(TV®) = (TV®)* ® (TV®) into three Co(T')-invariant subbundles. Observe
first that the space End(V) decomposes as

End(V) = {X € stt(T)| tr(X) = 0} ® Ridy @ ste(T)*, (2.1)

where the orthocomplement is taken with respect to the usual trace form. Clearly
this decomposition is invariant under Str(7"), and therefore the three pieces can
be transported to all tangent spaces of V¢ in a well-defined way, giving rise to a
Co(T)-invariant decomposition of End(TV¢). We denote by p; : End(TV®) —
End(TV®), i = 1,2,3, the corresponding projections. (Here, py is essentially
the trace.)

The generalized Ahlfors operator is the map S assigning to a vector field
X the section of End(T'V®) given by

SX :=p3(VX). (2.2)

Theorem 2.1.  The Ahlfors operator S : T°(TM) — I'*°(End(TM)) extends
to a conformally invariant differential operator S : T°(TV®¢) — I'*°(End(TV°)).
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Proof. Let g € Co(T). We denote by g, the push-forward of tensor fields and
differential operators and by g* = (¢~1). the canonical pull-back. We have to
show that ¢.S and S coincide on the open dense set g(M)N M C V¢. Clearly,
since the projections p; are Co(T')-invariant, we have on this set

xS — S =gs(p3oV)—p3oV =p30(g.V-V).

The condition p3 o (g.V — V) = 0 means that, for all p € M N g(M) and vector
fields X, (9.V — V)X, € stt(T,). To prove this, note first that the difference
of two connections is a tensor field of type (2,1), i.e. an algebra structure on
each tangent space. If both connections are torsion free this algebra structure is
commutative. The important fact, to be proved next, is that for all connections
involved in our context the differences are fields of Jordan algebras which are
derived from our Jordan triple system 7, by fixing the middle argument. To
make this precise, we introduce the following terminology.

Definition 2.2.

(i) For a Jordan triple system Tj on a vector space V', let
Wy = {To(-,v,-)|ve V} C Hom(V @ V,V)

be the space of algebra structures obtained by fixing the middle argument
of Ty. (If Ty is nondegenerate so that [y induces an isomorphism
V —» V* v — v*, it follows immediately from the definitions that the
map V* — Wy, v* — Ty(-,v,-) is an isomorphism of vector spaces with
inverse Wy — V*, ¢ — (z — tre(z,-).) The space Wy is Str(T)-
invariant and hence gives rise to a Co(T)-invariant subbundle W of
Hom(TV¢® TVE,TVC®), called the structure bundle.

(ii) We say that two affine connections V! and V?2 on the open set U C V¢

are conformally equivalent if their difference C := V2 — V! is a section
of the structure bundle W over U. |

Note that, if ¢ = Typ(-,v,:) € Wy, then c(w,:) = To(w,v) € ste(Tp);
therefore, if V' and V? are conformally equivalent, then ((V' — V?)X), €
ste(T,) for all vector fields X and points p where things are defined. Thus
the theorem will be proved if we can show that ¢,V and V are conformally
equivalent. More generally, we will prove

Theorem 2.3. Let VO be the canonical flat connection on the vector part
V. cVe. Then

(i) VO and V are conformally equivalent. More precisely, for C := V — V°
we have the formula

Cy(u,v) = Ty(u, (id —P(z))"'z,v), w,veV,ze MnV.

(ii) For any g € Co(T), the connections V, g,V and g.V° are all confor-
mally equivalent.



422 BERTRAM AND HILGERT

Proof. (i) We show first that Cy = 0: in fact, for u € V = ToM, taking
account of Equation (1.10), we get from Equation (1.1) (Vuv)o = [L(u),v]p =
[u—A(u),v]p=0.

Suppose that ¢: M — M is an affine diffeomorphism with respect to V
such that z := ¢(0) € V. We show that

Cu(u,v) = (D?9)(0))(Dg(0)~"u, Dp(0)~'v). (2.3)
In fact, since ¢*V =V, we have
9*C—C=(¢"V = V)~ (¢*V" = V) = (V' = ¢*V").

An elementary computation shows that the effect of ¢ on the canonical flat
connection V° of a vector space is given by

(V= VO)a(u,v) = (Dep(x)) " - (D*p)())(u @ v)

(see [Be01, Appendix I.B]). Therefore

(¢*C = C)o(u,v) = =(Dp(0)) " - (D?¢)(0)) (u ® v).

On the other hand, since Cy = 0, the definition of ¢* gives

(¢*C = C)o(u,v) = (Dp(0)) ™" Cy(0) (D(0)u, Dp(0)0).

Comparison of the last two equations yields (2.3). Next we have to calculate the
second differential D2p(0). We claim that

((Dg)(0)) ™" - D*(0)(¢) (u ® v) = To(u, 9~ *(0), v). (2.4)

In fact, we may decompose ¢ = vgn with g = Dp(0), v = T, and n =
O(7,-1(0)) = exp(—A(p~1(0))) (see [Be01, Theorem VIIL2.3(5)]). Then
D2p(0) = g o D?n(0) and

D?n(0) = —=D*(A(=¢~1(0)))(0) = To(-, ¢~ 1(0),-)

(for the last equality see [BeO1, Prop. VIIL.2.2 and its proof]). After multiplica-
tion by g~' this gives (2.4). Putting (2.3) and (2.4) together, we have

Cop(0) (u,v) = Dp(0)To ((D(0)) ~"u, ™ (0), (Dy(0)) ~'v)

. (2.5)
= To(u, ©(Dg(0))¢™"(0),v),

where the last equality is due to the fact that Dy(0) belongs to the structure
group of T'. Finally, we claim that, with = ¢(0) in some neighborhood of the
origin, the equality

O(Dy(0))¢~*(0) = (id—P(z)) 'z (2.6)
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holds. In fact, we may choose ¢ = exp(v — A(v)); then =z = Exp(v) is given
by x = tanh(v) in the sense of [BeOl, Section X.4]. Here Exp denotes the
exponential map of the symmetric space. On the other hand, ©(Dp(0)) =
(Dp=1(0))~' (see [BeO1, VIIL.2.3 (5)]. Note that ¢! = (—id) o ¢ o (—id),
and thus Dyp~! = Dp. Now [Be01, Prop. X.4.2] states that

O(Dyp(0))¢™"(0) = —(Dyp~"(0)) "'¢(0) = cosh*(v) tanh(v).

Define the power series tanh®(v) to be > arP(v)*, where 3 azz?*
is the usual power series of tanh?(z). By power associativity, the operator
tanh®(v) coincides with P(tanhv) on the Jordan span of v. Then the identity
cosh? z = (1 — tanh? z)_1 for complex z yields (again by power associativity)
the identity

cosh?(v)w = (id — tanh?(v)) " w

for all w in the Jordan span of v, and in particular for w = tanh(v) = . Thus
we get

cosh?(v) tanh(v) = (id —P(tanhv))~! tanh(v).

Together with the preceding equation, this yields (2.6). Finally, the claim follows
by combining (2.5) and (2.6).

(ii) Note first that conformal equivalence is indeed an equivalence relation
(assuming that all objects are defined on Zariski-dense subsets). Now, it is proved
in [Be01, Theorem VIIL.1.11] that ¢,V® and V° are conformally equivalent. By
(i), V% and V are conformally equivalent. These two facts together imply that

9.V —-V=0V"+C) - (V' +0) =gV’ -V’ +g.C - C
is again a section of the structure bundle, whence the claim. ]

Corollary 2.4. In Jordan coordinates, the Ahlfors operator is the constant
operator (p3)g oD obtained by composing (p3)o : End(V) — ste(Ty)t with the
ordinary first differential, i.e.

(SX)(p) = (p3)o(DX)(p).

Proof. Since p3 is invariant under the conformal group, and thus in particular
under translations, it is represented in the chart V' by the constant map (p3)o.
Next, SX = p3V(X) = p3(V? + C)(X) = p3V’X since psC(X) = 0 by
Theorem 2.3 (i). Now the claim follows since V° is nothing but the ordinary
first differential: (V%X)(p) =DX(p)-Y(p). ]

More generally, the preceding argument shows that the Ahlfors operators
which one can associate to any two conformally equivalent connections are the
same.
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Theorem 2.5. Let M be the Jordan symmetric space associated with a Jordan
triple system T of the first kind obtained from a simple Jordan algebra which is
not isomorphic to R or C (or a direct sum of such Jordan triple systems), and let
S = p3 oV be the corresponding Ahlfors operator. Then a (possibly only locally
defined) vector field X is conformal (i.e., it is the restriction of an element of
the conformal Lie algebra co(T) ) if and only if SX =0.

Proof. Let X be defined on the open set U C V¢. By possibly translating
and shrinking U, we may assume that U C V. By definition of S, the condition
(SX)p =0 for all p € U is equivalent to

(VX), € ste(T),)
for all p € U. By the preceding corollary, this amounts to
DX (p) € ste(Tp)

for all p € U. This is the condition of stt(7p)-conformality from [Be96], and
according to [Be96, Theorem 1.3.2] (see also [Be00] and [Be01, Chapter IX]) it
describes precisely the conformal Lie algebra. (Note that ste(T) = ste(T(®)) for
all a-modifications of 7', allowing us to assume without loss of generality that
T is already the Jordan triple system associated with a Jordan algebra.) ]

Remark 2.6. The proof of Theorem 2.3 shows that the condition SX = 0 is
equivalent to str(7p)-conformality in the sense of [Be96]. Thus the conclusion
of the theorem holds whenever the condition Homg(V, ste(Tp)) = 0 from [Be96]
is verified. In the literature one can find the remark (see, for example, [GK98,
Go87]) that this condition holds not only in the Jordan algebra case but more
generally for a simple Jordan triple system which is not isomorphic to a mod-
ification of the projective Jordan triple system M (1,n;R). For the latter case
it certainly does not hold since then stt(Tp) is the full general Lie algebra, and
hence our Ahlfors operator is zero. [ |

An explicit formula for the Ahlfors operator. Finally, by means of the
Jordan tensor 7' and by using some results of K. Meyberg on traces in Jordan
triple systems, we will give an “explicit formula” for our Ahlfors operator in the
spirit of formula (0.1). To this end, given a nondegenerate Jordan triple system
Ty on V, let B
To:VeV* > End(V), vew*— Ty(v,w)

(with w* defined using the trace form). Using the isomorphism V ® V* —
End(V), v® ¢ — (z — ¢(z)v), we may and will consider Ty as a linear map
To € End(End(V)). The important point is that this map is Str(T')-equivariant.

Using this, Schur’s lemma and some trace calculations, one gets the following
result (see [Mey84,Mey93]).

Proposition 2.7. Let End(V) = E1 @ Es @ E3 be the decomposition given by
Equation (2.1). Then Ty preserves the subspaces E;, i =1,2,3. Moreover,

(i) the restriction of Ty to E5 is zero,
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(i) To(idy) = idy,

(iii) troTp = tr,

(iv) if the derived algebra ste(Ty) is simple, then the restriction of Ty to E;
acts by the scalar (dimste(Tp) —1)/(dimV —1). u

Since we have always (p1)oA = A—n~'tr(A4)idy, we deduce that under
the assumption of (iv), (p3)o is given by

s—1~ s—n
To(A)er

(p3)o(A) = A — 1

tr(A) idv,

where n = dimV', s = dimstr(Tp). An explicit formula for the Ahlfors operator
in Jordan coordinates is now deduced from Corollary 2.4 by letting A = DX

1~ _
S To(DX) + —— 2 tx(DX)idy . (2.7)

SX:DX_n—l n(n—1)

We conclude by remarking that the assumption of (iv) is satisfied for all
simple Jordan triple systems T except for the case V.= M(p, ¢;F) (p,q > 1), for
which ste(T)’ is a direct product sl(p, F) xsl(q,F) (F =R,C,H). The conclusion
of (iv) still holds if p = ¢ but is no longer true if p # q.

References

[Ah74] Ahlfors, L., Conditions for quasiconformal deformations in several vari-
ables, in “Contributions to Analysis,” (papers in honor of L. Bers), Aca-
demic Press, New York 1974.

[Ah76] Ahlfors, L., Quasiconformal deformations and mappings in R™ | J. Anal.
Math. 30 (1976), 74-97.

[Be96] Bertram, W., Un théoréme de Liouville pour les algebres de Jordan, Bull.
Soc. Math. France 124 (1996), 299-327.

[Be00] Bertram, W., Conformal group and fundamental theorem for a class of
symmetric spaces, Math. Z. 233 (2000), 39-73.

[Be01] Bertram, W., “The Geometry of Jordan and Lie structures,” Lecture
Notes in Math. 1754, Springer-Verlag, Berlin 2001.

[Bra97| Branson, T., Stein—Weiss operators and ellipticity, J. Funct. Anal. 151
(1997), 334-383.

[CSS98] Cap, A., J. Slovak and V. Sougek, Invariant operators on manifolds
with almost Hermitian symmetric structures, III. Standard operators,
preprint, Erwin Schrodinger Institute, Wien, 1998.

[FK94] Faraut, J. and A. Koranyi, “Analysis on Symmetric Cones,” Clarendon
Press, Oxford 1994.

[GK98] Gindikin, S. and S. Kaneyuki, On the automorphism group of the gen-

eralized conformal structure of a symmetric R -space, Differential Geom.
Appl. 8 (1998), 21-33.



426

[Go87]
[Hel78]
[KN69]

[KROO]

BERTRAM AND HILGERT

Goncharov, A.B., Generalized conformal structures on manifolds, Sel.
Math. Soviet. 6 (1987), 307-340.

Helgason, S., “Differential Geometry, Lie Groups and Symmetric Spaces,”
Academic Press, New York, 1978.

Kobayashi, S., and K. Nomizu, “Foundations of Differential Geometry
I1,” Wiley, New York, 1969.

Koranyi, A., and H.M. Reimann, Fquivariant first order differential op-

erators on boundaries of symmetric spaces, Invent. Math. 139 (2) (2000),
371-390.

[Mey84] Meyberg, K., Trace formulas and derivations in simple Jordan pairs,

Comm. Algebra 12 (II) (1984), 1311-1326.

[Mey93] Meyberg, K., Trace formulas in various algebras and L -projections, Nova

J. of Algebra and Geometry 2 (No 2) (1993), 107-135.

[Lo69] Loos, O., “Symmetric Spaces I, Benjamin”, New York, 1969.

[Lo71] Loos, O., Jordan triple systems, R-spaces and bounded symmetric do-
mains, Bull. Amer. Math. Soc. 77, vol. 4 (1971), 558-561.

[Lo77] Loos, O., “Bounded Symmetric Domains and Jordan Pairs,” Lecture
Notes, Irvine 1977.

[P@D96] Pierzchalski, A., and B. Orsted, The Ahlfors Laplacian on a Riemannian
manifold with boundary, Michigan Math. J. 43 (1996), 99-122.

Wolfgang Bertram Joachim Hilgert

Institut Elie Cartan Institut fiir Mathematik

Université Nancy I TU Clausthal

B.P. 239 Erzstr. 1

F-54506 Vandceuvre les Nancy, Cedex D-38678 Clausthal-Zellerfeld

France Germany

email: bertram@iecn.u-nancy.fr email: hilgert@math.tu-clausthal.de

Received April 25, 2000
and in final form December 4, 2000



