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Abstract.  The notion of a moment map for (exact) contact manifolds
is introduced. We prove a reduction theorem analogous to the Marsden-
Weinstein theorem in the (exact) symplectic case. Furthermore the existence
of a local normal form for the moment map in a neighborhood of a point
in the zero moment level is proved. This implies a local slice theorem for
contact transformation groups.

1. Introduction and statement of results

Consider a smooth manifold C'. A distribution H C T'C' of hyperplanes in the
tangent bundle 7:TC — C induces a bundle morphism w: H x H — L, where
H x H denotes the bundle product {(§,n) | 7(§) = n(n)} and L is the quotient
bundle TC'/H, given by the Lie bracket on the vector fields on C'. In fact,
when two vectors & and 7 in the fibre H, over ¢ € C are extended to vector
fields X and Y respectively on C which are sections of H, then the class of
[X,Y]. in TC./H. = L, does not depend on the choice of the extensions; thus
we(§,m) = [X,Y].mod H. € L. is well-defined. We say that the distribution
H C TC is of constant rank, if the rank of the skew-symmetric bilinear map w,
does not depend on c. In case that w is of maximal rank (i.e., w is non-degenerate)
H is called a contact structure on C and (C, H) is a contact manifold.

A special situation occurs when the distribution H is given as the kernel
of a globally defined differential 1-form a on C, H, = ker(a,). In this case we
refer to the pair (C, ) as an exact contact manifold. If ¢ is a nowhere vanishing
function on C, then the form ¢« clearly induces the same contact structure on
C'. However, the exact contact manifold (C, ) is different from (C, ).

Let G be a Lie group. If (C,H) is a contact manifold and G acts on
C by diffeomorphisms, G x C — C, (g,¢) — g.c, we say that G acts by
contactomorphisms, if any transformation g: C' — C', ¢ — g.c respects the contact
structure, i.e., g.H = ¢g*H. (We denote by ¢g*H the pullback bundle of H,
ie., (¢°H). = Hy. and by ¢..TC — ¢*TC the differential of ¢:C — C.)
Similarly, if (C,«) is an exact contact manifold, then G is said to act by exact
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contactomorphisms, if any g:C — C respects «, i.e., g« = a. (We denote by
g*a: ¢*TC — R the pullback of « as a section and by ¢*a = ¢g*a 0 ¢.:TC = R
the pullback of o as a 1-form on C'.) In analogy to the exact symplectic case (see
e.g. [8]) we define the corresponding moment map as the smooth map from C into
the dual of the Lie algebra g of G, ®:C — g*, given by

®,(c) := (®(c),a) := (ac, ac(c)),

for any a € g. Here (-, -) denotes the natural pairing between a vector space and
its dual and ac denotes the vector field on C corresponding to the infinitesimal
action of g, ac(c) = %‘ —olexp(ta).c). @ is easily seen to be equivariant with
respect to the given action on C and the coadjoint action on g*. Moreover ®
satisfies the so-called moment condition

d®, = —iq, do.

In the case of a contact manifold (C, H) we consider the natural bundle
homomorphism a:TC — L =TC/H. We consider @ as an L-valued differential
1-form and define the corresponding moment map as a section in the bundle g*® L
over C'. By abuse of notation we denote by g* here the trivial vector bundle
C x g* over C. Notice that the action g.(c,\) := (g.c,Ady(\)) gives g* the
structure of a GG-bundle over C'. Since H C T'C is G-invariant, L carries the
structure of a G'-bundle as well. So Y :=g*® L is a G-bundle. The moment map
®:C — Y = Hom(g, L) given by

®,(c) = (®(c),a) = {ae ac(c)) € L.

turns out to be equivariant and moreover satisfies a certain moment condition as
well (see proposition 2).

The first aim of this note is to describe the natural reduction procedure for
contact structures and exact contact structures in the case where the Lie group
acts freely and properly. In analogy to the symplectic and exact symplectic case
we call this the Marsden-Weinstein reduction.

Theorem 1 (Reduction for contact manifolds). Let (C,H) be a contact
manifold and let G be a Lie group acting by contactomorphims freely and properly
onC. Let L=TC/H, ®:C =Y :=g*®L the induced moment map and o CY
be the image of the zero section of Y — C'. Then the following holds:

(a) M :=® (o) is a smooth invariant submanifold of C;

(b) #*H =i l1(i*H) C TM defines a distribution of constant rank on M , where
1: M — C' denotes the inclusion map;

(c) there erists a unique distribution Hy C TCy of hyperplanes with w*Hy = i*H ,
where m: M — Co := M /G denotes the natural G -fibration. Moreover Hy is
non-degenerate and defines therefore a contact structure on Cjy.

Observe that in this contact case a natural moment map always exists.
This is in contrast to the symplectic case where a moment map corresponding to
a symplectic action may not exist (cf. [3] for the obstructions which could occur).
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Theorem 2 (Reduction for exact contact manifolds). Let (C,a) be an
exact contact manifold and let G be a Lie group acting by exact contactomor-
phisms freely and properly on C. Let ®:C — g* be the natural moment map.
Then the following holds:

(a) M :=d7(0) is a smooth and invariant submanifold of C;

(b) there erists a unique 1-form ay on Cy with w'ay = i*a, where i: M — C
denotes the inclusion and m:M — Cy = M/G denotes the natural G-
fibration. Moreover oy defines an exact contact structure on Cy.

The corresponding statement in the exact symplectic case is also true. More
precisely: If (M,«) is an exact symplectic manifold (i.e. w := —da is non-
degenerate) where a Lie group G acts freely and properly by exact symplecto-
morphisms, then there exists a natural moment map and the symplectic reduction
M, carries a canonical exact symplectic structure ag (see [4]).

As is well known (see [1], [2] e.g.), one associates to any contact manifold
(C,H) its so-called (exact) symplectification (P, ) which is the R*-principal
bundle 7: P — C corresponding to the line bundle L* — C together with a
canonical 1-form . Here L* denotes the dual of the line bundle L. It turns out
that an action of G' by contactomorphisms on C lifts to an action on P by exact
symplectomorphisms such that 7 is equivariant. Moreover the action of G stays
free and proper. Finally the induced moment map ®p: P — g*, (®p,a) = (8, ap)
for p € P, a € g, is compatible with the moment map ®:C — g* ® L in the
sense that

(@p(p),a) = p({®c o 7(p), a)),

for all @ € g and p € P. Thus one may reduce (P, ) by the exact symplectic
reduction procedure and obtains an exact symplectic manifold (P, fy). On the
other hand one can reduce (C,H) by contact reduction to (Cp, Hy) and it is
worthwile to mention that (P, 5y) is the symplectification of (Cy, Hp). Thus
symplectification and reduction commutes. (However, this is not the way how
theorem 1 is proved. In fact, it is technically and conceptually simpler to stay in
the contact category itself.)

The second aim of the paper is to investigate the case where GG acts properly
but not necessarily freely. So for a point ¢ € C' the isotropy group K = G. = {g €
G | g.c = ¢} may be non-trivial. (However, it is compact.) In this situation one
would like to prove a so-called slice theorem, i.e., one looks for a certain model space
D together with an embedding j: G/K — D such that G-invariant neighborhoods
U of j(G/K) C D and V of i(G/K) C C, i:G/K — C, gK — g.c, are G-
equivariantly contactomorphic.

As in the symplectic case (cf. [7] e.g.) such a normal form will be given for
points in the zero moment level M = ®~!(0) C C, where ® is the natural moment
map. Suppose that ¢ € M. Then the G-orbit of ¢ is necessarily tangential, i.e.,
gc :={ac(c) | a € g} is contained in H, C T'C,. In fact, by the definition of o and
® one sees immediately that 0 = ®,(c) = (@, ac)(c), i.e., ac(c) € kera, = H..
Moreover gc C H, is isotropic with respect to the I-valued symplectic form
we: He x H, — I. Here I denotes the quotient space T'C./H, which is a K-
module in a natural way. Of course, w. is K-equivariant. One considers now the
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perpendicular gct of gc C H, with respect to w, and defines
E :=gc*/gc.

Then the triple (I, E,7), where 7:E x E — I is the non-degenerate skew-
symmetric and K -equivariant bilinear form induced from w,, is called a contact
slice for G at c¢. Associated to (I, E,T) we construct a canonical contact structure
on the vector bundle

D:=Gxg(k'®IxExI).

Here k° C g* denotes the annihilator of k C g and D is the G-bundle over G/K
associated to the K-module k®® I x E x I via the diagonal K -action with respect
to the principal K -bundle G — G/K . The induced moment map turns out to be
themap &:D —»g*®l = (k'ak")®I,

3([g, (A, w)]) = Ady(A + @p(v)).

Here G acts on g* ® I = Hom(g,I) by the coadjoint action in the first factor
and ®z: F — I is the natural moment map according to the I-valued symplectic
structure on F, i.e., the homogeneous quadratic polynomial

(@6(0),5) = 57(bv,0)
for b € k.

Theorem 3 (Local contact slice theorem). Let (C, H) be a contact man-
ifold and let G act properly on C by contactomorphisms. Let ® be the induced
moment map and ¢ € C in the zero moment level of ®. Denote by (I, E,T) the
contact slice of G in c. Then there exists G -invariant neighborhoods U of the zero
section j:G/K — D and V of i:G/K — C, gK — g.c, and a G -equivariant
contactomorphism f:U — V with foj=1.

In the special case where [ is the trivial K-module (e.g., if K is connected
this must be the case since K is compact and I is 1-dimensional) the contact
slice (F, ) gives also rise to the space P = G xg (k° x E), which serves as a
model space for the symplectic case. In fact, P carries even the structure of an
exact symplectic manifold and G acts by exact symplectomorphisms. Now for
any exact symplectic manifold (P, §) it is well-known (see e.g. [1], [2]) that there
exists a natural (exact) contactification of P, namely C' = P x R with the contact
form o = dz — n} (where m; is the projection onto the first factor and z is a
coordinate on R). As it turns out the model space D for the contact case is just
the contactification of the model space P for the symplectic case.

2. Reduction of contact manifolds and exact contact manifolds

Let (C,a) be an exact contact manifold and let a Lie group G act by exact
contactomorphisms, ¢g'ar = o for all ¢ € G. The natural moment map is given by
the map ®:C — g*, &, = (®,a) for a € g and

(ba = <Oé, a’C)a
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where ac denotes the vector field on C' corresponding to a € g. As in the exact
symplectic case it is now seen that & is equivariant with respect to the given
action on C' and the coadjoint action on g*. In fact, since the exponential map
exp: g — G is equivariant with respect to the adjoint action Ad on g and the
conjugation action on G, one finds that

(Adyfa)elo.c) = 55 (sexpltalg™ g.0) = g.(ac) 0

and therefore
(Adg-1(2(g.c)), a) = (2(g-c), Adg(a)) = (., (Ady(a))c(g-c))

= (g, 9:(ac) (€)) = (Fac, ac(c)) = (@, ac)(c) = u(c),
thus ®(g.c) = Ad,(®(c)).
Similarly the moment condition for ® transfers to the exact contact case.

Since gfa = « for all g € G, the Lie derivative of « in the orbit direction vanishes,
Losoo=0 forall a € g. So

0= Ly 0 =iz,da+ dig, 0.
Denoting w := —da this implies
d®, = ig,w
as in the symplectic case.

Proposition 1.  Let (C, ) be an exact contact manifold as above and ®:C —
g* its associated moment map. For any c € ®71(0) the following is true:

(a) (i) If S; := ker(D®,), then S, is transversal to H. = ker(a.), S.+ H, =
TC,;

(i) if K.:= S.N H,, then the infinitesimal G -orbit gc is contained in K,

and is the kernel of the restriction of w. := —da, to K. x K., K} = gc;

(b)
ran(D®,) = k°,

where k° C g* is the annihilator of the infinitesimal isotropy k = {a € g |
ac(c) =0} of ¢ and ran(D®,) denotes the image of DP,.

Proof. (a) Recall that by definition of the contact structure the restriction of
da. to H. x H. is non-degenerate, since

do(€,m) = —a([X,Y]),

if XY are extensions of &, with values in H. Therefore the kernel of da: T'C, x
TC. - R, R, := ker(da,), is 1-dimensional and transversal to H., H. & R, =
TC,.. By the moment condition R, is obviously contained in ker D®. = S.; thus
S, is transversal to H..
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Now let £ € K. = S. N H,. Then 0 = (D®., &), which means 0 =
da(ac(c),€) for all a € g. Thus € € K, if and only if £ € gc* C H,. On the other
hand the orbit Gc is in M = ®~!(0) by the equivariance of ®, thus gc C S,;
and gc C H, by the very definition of ®, which shows that gc C gc' = K,. The
kernel of the restriction of da, to K. x K, is therefore gctt = gc.

(b) It is clear that ran(D®.) C k° since for any a € k by definition
ac(c) =0 and therefore

(D®(§), a) = (d®q(c), &) = —da(ac(c),§) =0

for all £ € TC,. On the other hand dimker(D®,) = (2n—dim(g/k)+1 by part (a)
and therefore dimranD®, = dim g/k = dimk® which shows that ran(D®,) = k°.
]

Corollary. (a) If G acts freely, then 0 € g* is a regular value of ® and
M = ®71(0) is a dim G-codimensional and invariant submanifold of C;

(b) If G acts freely and properly, then Cy := M/G is a manifold and m: M — Cj
is a G -principal bundle.

Proof.  (a) The equivariance of ® shows the invariance of M C C' and, by part
(b) of the proposition, ® is submersive. So the result follows from the implicit
function theorem.

(b) If G acts freely and properly on C, it acts freely and properly on M
as well. Thus M — M/G is a G-principal bundle (by the standard slice theorem
for proper actions). [

Consider now a contact manifold (C, H) and a Lie group G acting on C
by contact diffeomorphisms, i.e., g* H = H. Thus H C TC is a G-subbundle and
the quotient bundle L = T'C'/H inherits the structure of a G-bundle as well. The
natural L-valued 1-form, i.e., the bundle homomorphism a:7TC — L given by
the canonical projection, is then G-equivariant. Now the associated moment map,
i.e., the section ®:C — g* ® L given by &, = (P, a),

(ba = <Oé, aC)a

is equivariant with respect to the given action on C and the diagonal action on
the tensor bundle Y = g* ® L. In particular the inverse image of the zero section
oCY,

M = 27(0),

is G-invariant since o C Y is GG-invariant.

Fix now ¢y € M and suppose that G acts properly on M. Then the local
slice theorem (see [6]) guarantees that there exists an invariant neighborhood U
of ¢y where the line bundle L is G-equivariantly trivial, i.e., there exists a G-
equivariant and nowhere vanishing section s:U — L|U. This implies that for
every a € g there exists a unique function ¥,:U — R such that

®,(c) = W,u(c)s(c)
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for all ¢ € U. Similarly there exists a unique and G-invariant 1-form g on U,
B e &EYU), so that
alU =p4-s.

Now one sees that ¥, = (8,ac¢) and, as in the exact case, a computation shows
that

AV, = —ig,dp.

To put this formula into a global form recall that for any L-valued 1-form
a:TC — L one can define the exterior differential do as an L-valued skew-
symmetric bilinear form on H = ker(«), i.e., da: H x H — L by the following
(cf. [5]). If U C C is an open set where there exists a nowhere vanishing section
s of L, then o = Bs for a unique 1-form 8 € £Y(U). Another such section 3§
is of the form 5 = ¢~ 's for ¢ € £*(U) and then o = 35 with 3 = ¢B. But
dB =dp A B+ ¢dB;so df|H = ¢ dB|H since H = ker(f), and thus

dB-5=dp-s,

showing that da (= df -s on U) is well defined. A contact structure on a
manifold C' can then be seen as a contact structure (H,w) on the tangent bundle.
i.e., H CTC is a hyperplane bundle and

wHxH—L:=TC/H

is a non-degenerate skew-symmetric bilinear form, satisfying the closeness condi-
tion
—da = w,

where a:TC — L is the canonical projection.

But now observe that in our case, where a:TC — L is a GG-equivariant
bundle homomorphism not only the contraction of w = —da by an element X
with values in H is well defined as a bundle morphism on H, i.e., ixw: H — L,
but moreover, if X comes from the group action on C, i.e., X = a¢ with a € g,
the contraction i,,(—da) makes sense even on the whole tangent bundle 7'C' along
M, i.e., iac(—da).: TC, — L.. In fact, suppose that U C C is G-invariant and
L — (' trivializes G-equivariantly over U as above via an equivariant section s.
Then « = fs for an invariant 1-form S on U and one sets

tae (—da) =i, (—dpB) - s.

Namely, if s = § with another equivariant nowhere vanishing section s, then
necessarily ¢ is G-invariant. Infinitesimally this means (dy,ac) =0 for all a € g.
Moreover, if ¢ € M = ®~1(0), then (3, ac)(c) = 0 by the definition of the moment
map and therefore for o« = 85 with 3 = pB we see that

laodB = e (dp A B+ pdp)
= <d(paac>ﬂ_ <5aac>d90+§07;acdﬂ: QD’L'aCd/B,

showing that the definition of i,,(—da).: TC, — L. is well-behaved for ¢ € M.
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Finally, as for any vector bundle, the tangent space of L in an element
o, € L. of the zero section splits canonically into

TL,, =TC, & Le,

and we let mo: TL,, — L. the projection onto the second factor. Now, using that
the moment map ®:C — Y writes ®|U = Vs, where ¥ is the moment map for
the exact contact manifold (U, 3), one sees that the moment condition in the case
of a contact transformation group reads as follows.

Proposition 2.  If G acts on a contact manifold (C, H) by contact diffeomor-
phisms and if ® is the associated moment map, then for any ¢ € M = ®~'(0) we
have the moment condition

3 0 (d®y)e = —(iay dar)..

The reader will have no difficulty to prove the statements analogous to those
given in proposition 1 for the non-exact contact case.

Proposition 3.  Let (C, H) be a contact manifold and ®:C — g* ® L (with
L =TC/H ) the associated moment map. Let o CY = g*® L be the zero section
and ¢ € M = ®~1(0). Then the following is true:

(a) (1) If S. = D@;l(Toq,(c)) C TC,., then S, is transversal to H,, H.+ S, =
TCC;
(i) if K.:= S.N H,., then the infinitesimal G -orbit gc in contained in K,
and n fact the kernel of the restriction of w, = —da.: H. x H. — L, to
K.x K. — L.~ S./K,.

(b) If k C g is the isotropy algebra of c, then
ran(my 0 D®,) = k°,
the annihilator of k in g*.

Corollary. (a) If G acts freely on C, then ®:C — Y = g*® L is transversal
to the zero section o C'Y and M = ®71(0) is a dim G -codimensional and
wmwvariant submanifold of C'.

(b) If G acts freely and properly, then Cy = M/G is a manifold and m: M — C

1s a G -principal bundle.

At this point we want to recall what we mean by a contact vector space
(cf. [5]). It is given by a triple (V,H,w), where V is a (real) vector space,
H CV isahyperplane and w: Hx H — V/H is a non-degenerate skew-symmetric
bilinear map. The situation we arrived at above is the following. If W C V is
a transversal subspace, i.e., W + H =V, then (W, K,7) with K := WNH
and 7 = w|K x K — V/H = W/K is what we call a precontact space, i.e.,
K is a hyperplane and 7 is skew-symmetric (not necessarily non-degenerate).
One may reduce a precontact space (W, K,7) in a natural way by the following.
Denote by N C K the kernel of 7 and further Wy := W/N, Ky := K/N, and
To: Ko X Ko = Wy/Ky =2 W/K the induced structure from 7. It is clear that
(W, Ko, 7o) is a contact vector space.

We are now able to prove theorem 1 and theorem 2 in the introduction.
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Proof. Let (C, H) be a (possibly non-exact) contact manifold and consider the
L-valued 1-form «:TC — L := TC/H. Suppose that the Lie group G acts by
contact transformations freely and properly and let ®:C —» g*® L, &, = (¢, ac),
be the induced moment map. We have already seen that the preimage of the zero
section 0 C g* ® L, i.e., M = ®71(0), is G-invariant and in fact a G-principal
bundle over the quotient Cy = M/G by the natural projection m: M — Cj.

Now fix ¢y € Cy and choose an element ¢ € M in the fibre of © over cp.
The contact structure on 7'C., which is denoted by (H.,w.) as usual, induces
a precontact structure on T'M, = S, as was shown above, K. = H.NS,., 7. =
we|K.x K.. Moreover, by proposition 3, the kernel of 7, is exactly the infinitesimal
G-orbit gc C K,.. Therefore, by the preceding remark, TM./gc carries the
structure (K, 7y) of a contact vector space in a natural way. On the other hand
the differential Dr.: TM, — (TC))., induces an isomorphism

feeTM/ge — (TCh)e,-

Thus we define a contact structure ((Hy)e,, (wo)e) on (7TCp)
fact a contact isomorphism.

Next we observe that this construction of (Hy,w)., is independent of the
choice of the preimage ¢ € 771(¢p). Indeed, if ¢ is another preimage, then ¢ = g.¢
for a group element g € G and by the invariance of the original contact structure
H on C one finds that the construction of (Hy,wp)e, on (T'Ch), is in fact well
defined.

Finally we have to check that (Hp,wp) does in fact define a contact structure
on Cy (not only on the tangent bundle T'Cy). So let ag:TCy — Lo := TCy/Hy
be the induced Lg-valued 1-form. We have to check that —dag: Hy X Hy — Ly
satisfies —day = wp, which is the closeness condition for contact manifolds. But
m#(wy) = i*(w) by construction of the structure wgy, where i: M — C is the
inclusion, and 7fay = #*a by definition of Hy C T'Cy. Therefore

such that f. is in

co

m(—=doy) = d(—7*ap) = —d(i*a) = —i*(da) = 1w = Thwy,

and by the fact that 7: M — C} is a submersion we conclude that —dagy = wy.
We have proved theorem 1. [ ]

Proof. Let (C,«) be an exact contact manifold, G a Lie group acting by exact
contactomorphisms freely and properly and ®:C — g*, &, = (o, ac), be the
induced moment map. The zero level M = ®1(0) is a G-invariant submanifold
and a G-principal bundle over the quotient Cy = M/G by proposition 1, 7: M —
C,. Moreover, the pullback i« on M, i: M — C denoting the inclusion, defines
an exact precontact manifold in the sense that K = ker(i*a) C T M is a hyperplane
bundle but 7 := —d(i*a) : K x K — R is not necessarily non-degenerate. However,
in our case it is of constant rank and its kernel is given exactly by the direction of
the G-orbits, i.e.,
ker(d(i*a).) = g,

again by proposition 1. For any ¢y € Cy and ¢ € 77 '(¢y) we denote by D,
TM. — (TCy)., the differential of 7 in ¢ as before. Thus there exists a unique
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homomorphism (ap)e,: (TCo)e, — R with (ap)e, © DT = .. Moreover, there
exists a unique skew-symmetric bilinear map (wp)eo: (7°Co)e, X (T'Ch)ee — R with
(Wo)eo © (D7 X D) = 7. by the reduction procedure for precontact spaces.

We have to check that the definition of (), and (wp)e, on (7°Ch)e, is
independent of the chosen preimage ¢ € m~(cp). This follows from the invariance
of @ and w and is left to the reader. We have defined now the global 1-form «y
and the global 2-form wy on Cy. Finally we have to check that wy = —day. But
again Tfag = i*a and 7 (wg) = 7 = i*(w) = i*(—da) by construction and therefore

™ (—doyg) = —d(tPag) = —d(i*a) = i*(—da) = 7 (wp),

showing that —day = wy and proving theorem 2. [ |

Example. If M is a manifold (of dimension n + 1), m € M, then any hy-
perplane ¢ C T'M,, is called a contact element on M. The space of all contact
elements on M is therefore the projectivized (P™-) bundle C'=P(T*M). It car-
ries a canonical (non-exact) contact structure given by: £ € H. C TC, if ©.£ € c,
where m: C — M 1is the bundle projection. Let G be a Lie group acting on M by
smooth diffeomorphisms. Then G acts on P(7*M)) by bundle homomorphisms as
well. Denote by E,, = gm C T'M,, an infinitesimal orbit. It is seen directly from
the definition of the moment map on C that ¢ € 7~!(m) is in the zero moment
level if and only if ¢ D E,,. Thus ®'(0) = P(E?), where E° C T*M denotes the
annihilator of E. It is clear that E°, & (T'M,,/E,,)* and therefore isomorphic to
(T'My);,,» when G is acting freely and properly on M and M is its orbit space
M/G (my = Gm). This shows that the contact reduction of the manifold of all
contact elements on M is nothing else than the manifold of all contact elements
on the reduction My,
(P(T"M))o = P(T" My).

Example. A partial differential equation of the first order on an open set 2 C
R" is given by an equation F'(z,u,p) = 0 on 2 xR xR" and a solution is a smooth
function u:Q — R so that F(z,u(z), Du(z)) =0 for all x € Q. A generalization
of this concept to a manifold M of dimension n is given by a hypersurface I'
in the space J'M of 1-jets of functions on M. A 1-jet of a smooth function
fon M at p € M is by definition the element j'f, := fmod m2 € &,/m?2,
where &, denotes the germs of smooth functions at p and m, C &, its maximal
ideal. J'M comes along with a natural vector bundle structure m: J*M — M of
rank n+ 1, j'f, — p. Now C := J'M carries a natural exact contact structure
given by the 1-form a, a.(¢) = m.£(c) — pr,(£), where pr: J'M — R is given by
pr(j'f,) = f(p). (m.& € TM, acts as a derivation on the 1-jet ¢ = j'f, € 77'(p).)
For every function f on M one has the associated section j'f: M — J'M =: C,
p + j' f,, which defines a Legendre submanifold of C, i.e., an integral submanifold
of the contact distribution of C' of maximal dimension n. Given a hypersurface
I' C C we say that f is a solution if the image of its section j'f is contained in
.

Now if a Lie group G acts by (exact) contact transformations (freely and
properly) on C and if ' is a G-invariant hypersurface, it is clear how the reduction
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of C reduces the problem of finding a solution of the partial differential equation
given by I' to an appropriate I'y on the reduced space C,. In particular, if the
action is induced from a G-action on M itself, it is not hard to see that Cj
coincides with the 1-jet bundle of My = M/G.

3. A local slice theorem for contact transformation groups

We consider now a contact manifold (C, H), on which a Lie group G acts properly
by contactomorphisms but not necessarily freely. Thus the isotropy groups G, =
{9 € G| g.c = ¢} C G are not necessarily trivial. The aim of this section is to
find a normal form of the G-action in the neighborhood of an orbit lying in the
zero moment level M = ®~'(0) C C.

The basic ingredient is a tubular neighborhood theorem for contact geom-
etry as it is proved in [5]. For convenience we repeat here its equivariant version.
Suppose that G acts on (C, H) properly by contactomorphisms as above and let
B be a G-manifold and i: B — C' an equivariant tangential embedding, meaning
that ¢, T'B C +*H. One observes then that 7,7 B is an isotropic subbundle of ¢*H
with respect to the +* L-valued structure i*w::*H x 1*H — +*L where w = —da,
a:TC — L = TC/H. In fact, this is just the fact that the Lie bracket of two
vector fields along ¢ with values in 4, 7B (i.e., vector fields on B) is again a vector
field along ¢ with values in 7, 7'B. Therefore one can build the so-called symplectic
normal bundle E :=i,TB*/i,TB over B. In fact, it is a G-vector bundle together
with an /-valued and equivariant symplectic structure 7: £ x E — I := 4*L inher-
ited from i*w. The tangential embedding theorem asserts that the triple (I, E, 7)
characterizes a neighborhood of i(B) C C up to contactomorphisms. More pre-
cisely, we say that two triples (I1, Fy, ) and (I, B, T») are isomorphic, if there
exist equivariant bundle isomorphisms #:I;, — I, and n: E; — FE, such that
no(pxmn)=~0or.

Theorem (Equivariant tangential embedding).  Suppose that i;:B <
(C1,Hy) and iy: B — (Cy, Hs) are two equivariant tangential embeddings with
isomorphic symplectic normal bundles (I, Ey, 1) and (I, Ey, 75). Then there ez-
ist invariant neighborhoods Uy C Cy of i1(B) and Uy C Cy of ia(B) and an
equivariant contactomorphism f:U; — Uy satisfying f o1, = 1a.

For the proof one has to check that the various steps in the proof of the
tangential embedding theorem carry over to the equivariant case which could be
done.

So what we have to do in order to determine the neighborhood geometry
of a G-orbit in ®~!(0) C C is to identify its symplectic normal bundle. In fact,
by the very definition of ®:C — g* ® L, a G-orbit in M = ®~'(0) is tangential.
Moreover, Ge¢ 2 G/K (Gc denoting the orbit {g.c | ¢ € G} and K the isotropy in
¢, K = G,.), and the symplectic normal bundle (I, E,7) over Gc is a K-bundle.
As such it is of the form

I:GXK_I, E:GXKE

for the K -vector spaces I and FE sitting as the fibres over c. Thus, all we have
to do is to look for the triple (I, E,7), where I = TC./H., E = gc'/gc and
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7: E x E — I is the symplectic structure induced from *w.: H. x H. — L.. We
have called (I, E,T) the contact slice G at c.

The rest of this section is therefore devoted to the construction of a certain
model space D associated to the datum (7, E, ), which will be a contact manifold
where G acts by contactomorphisms and an equivariant tangential embedding
j:G/K — D such that the contact slice at K € G/K is exactly (I, E,T).

So let I be a 1-dimensional K-module, let F be a 2r-dimensional K-
module and let 7: ExX E' — I be a non-degenerate skew-symmetric and equivariant
bilinear form. As a first step we consider the K-line bundle I over G associated
to I,ie., I:= G x I together with the action

k.(g,w) = (gk™", k.w).

On the other hand right multiplication on G induces a K -structure on the tangent
bundle T*G — G and thus we can form the tensor product T*G®]I as a K-bundle
via the diagonal action. The fibre over an element g € G is identified in a natural
way with Hom(TG, ),

(T"G ®1), = Hom(T Gy, I);

thus TG ® I may be seen as the I-valued covectors on G. If one identifies T*G
via left multiplication on G with G x g*, i.e.,

(9,A) = (DLy)i(A)

(where Ly: G — G denotes left multiplication with g on G), then the action of K
on T"GRI=G xg"®I =G ®Hom(g, I) reads

k.(g,)\) = (gk™", k.)),

where k.\(a) = k. A(Adg-1(a)) for a € g.

The next step is to see that T*G ® I carries a canonical I-valued 1-form
B. In terms of the trivialization G x Hom(g, I) the tangent space in a point (g, A)
may be identified with TGy x Hom(g, I) = g x Hom(g, I) (again identified by left
multiplication). The form f is then given simply by

Boala, p) = (A, a).

It is worthwile to note that just as a vector bundle over G (forgetting the K -action
for a moment) 7*G ®I is isomorphic to T*G since I = R and also the 1-form g
is the canonical one. However, the K-bundle 7*G ® I is different from 7*G (if
the action of K on I is not the trivial one). The essential point is then that the
canonical [-valued 1-form is K -equivariant with respect to the action T"G' ® I
and the action on I.
Now consider the whole datum (I, E, 7). We choose a basis ({1, ---,&,m,
..,ny) of E and () of I with corresponding coordinates (z*,...,z",y',...,y") =
(xz,y) and z such that the form 7: E x E — I reads

T=dxANdy-(.
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Then one sees immediately that the [-valued 1-form

§i= Slyde —ady) ¢

is not only a potential of 7, i.e., —df8 = 7, but moreover, 8 is K-equivariant as
well. Furthermore (3 is independent of the chosen Darboux-coordinates.

For the next step consider the product P = (T*G ® I) x E with its
projectors m;, my onto the two factors. Denote by [; the canonical [-valued
1-form on T*G'® I and By the [-valued 1-form on E just constructed. The sum
b= Wgﬂl -+ 7r§52 gives an [-valued 1-form on P. The product

C=PxI

with its projection pr; onto the first factor gets now the structure of a contact
manifold via the [-valued 1-form

a=dz-(—pris.

By construction « is K-equivariant and defines a moment map ®z:C - k*®1 =
Hom(k, I). Via the trivialization C' = G x Hom(g, I) x E x I it reads

(I)R(gu /\a v, ’U)) = _/\‘k + (PE(U)

Here ®p: E — k* @ I = Hom(k, I) is the natural moment map of E with respect
to 3, i.e., for b € k and ®, = (Pg, b) it is

By(v) = (By, bv) = %T(b.v,v),

which is homogeneous quadratic in v. A choice of a K-invariant scalar product
on g (recall that K is compact since the action is proper) allows us to embed k*
as a K-submodule of g* via the orthogonal complement of k® C g*, g* = k°@k*.
Therefore we may identify ®5'(0) with G x (k®® I x E x I) via

(9, A v,w) = (g, A + g (v), v, w).
The contact quotient of C' by K, i.e.,
D:=Gxg(K@IxExI),

inherits a canonical I-valued 1-form «g. Observe that the bundle G xx I, i.e.,
the cocontact bundle of the contact structure Hy = ker(cy) is now not trivial any
longer (if I is not trivial, of course). This is the construction of the local model
together with its embedding j: G/K < D, which is the zero section of the vector
bundle D.

Finally one has to look for the group action of G' coming from left multipli-
cation on (G. Since it commutes with right multiplication, the whole group action
goes through the construction. The G-moment map ®: D — g*®I = (K°@k*)®1
reads

(I)([ga )‘a v, ’LU]) = g()‘ + (DE(U))
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That is the local normal form of the moment map. Up to the coadjoint action on
Hom(g, I) it is linear in the first summand and quadratic in the second (“linear”
and “angular” momentum).

In fact, in order to prove theorem 3 from section 1 it is now only necessary
to convince oneself that the contact slice of j(K) € D, j:G/K — D, is exactly
(I, E,T), which follws from the construction. An application of the equivariant
tangential embedding theorem yields the result.
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