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Abstract. We will determine the singular points and a resolution of sin-
gularities of each irreducible component of the varieties of the Lie algebras of
dimension 3 and 4 over C.

1. Introduction

Let £, be the projective variety of the Lie algebras of dimension n over C. In
some recent papers many results on the irreducible components of £, were found
for small values of n. In [2] Carles and Diakité determined the open orbits and
described the irreducible components of £, as orbit closures for n < 7. In [6]
Kirillov and Neretin determined the number of irreducible components of £, and
their dimension for n < 6; they also determined representatives of the generic
orbits of any component of £4. In [1] Burde and Steinhoff gave a classification of
any orbit closure of £4. The variety £3 has two irreducible components and one
of them is a linear variety; the variety £4 has four irreducible components.

In this paper we will determine the singular points and find a resolution of singu-
larities of each irreducible component of £3 and £4. By using the classification of
the Lie algebras of dimension 3 and 4 over C, we will describe each irreducible
component by giving algebraic equations of it. The first classification is well known
(see [3]); the second one may be deduced from [8] and from [9] (see [1]); neverthe-
less we will give a short proof of it. Each resolution of singularities is a subvariety
of the product of the irreducible component with a suitable grassmannian or is a
resolution of singularities of a variety of this type. We observe that the results

of this paper are also true over any algebraically closed field K such that char
K #2.

2. Preliminaries

For any n € N let £, be the subvariety of the projective space
P(Hom(C" A C",C"))
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of all [ such that a(z Aa(y A z)) +alyANal(z Az)) + a(zAa(zAy)) =0 for
any z,y,z € C", which we regard as the variety of all the Lie algebras over C of
dimension n. For any [a]| € £, let L, be the Lie algebra defined by «. The group
GL(n, C) acts on Hom(C"AC", C") by the relation a-G(GxAGy) = G(a(xAy)),
for any G € GL(n,C), a € Hom(C" A C",C"), x,y € C" and this induces an
action of GL(n, C) on £, ; the orbits of this action are the classes of isomorphic
Lie algebras. For any n,n’ € N let M, ., , M, and S, be the vector spaces of
all n x n’ matrices, of all n x n matrices and of all n x n symmetric matrices
respectively over C. Let {ej,... ,e,} be the canonical basis of C" and let us
order the set {e; Ae; : i,j=1,...,n, i <j}, writing it as {Ey,... , E,,}. For
any a € Hom(C" A C",C") let A € My xm be the matrix of « Wlth respect to
the previous bases; then An.q = GA,G where G € GL(m, (C) is the matrix whose
(h, k) entry is the determinant of the 2 x 2 submatrix of G~ obtained by choosing
the rows 4, j with Ej, = e; Ae; and the columns 7', j" with E, = ey Aej. If n =3
we set B) = esAes, By = esNey, B3 = e Aey and we get Ay.g = (det G)1GALGE.
Then we have

L3 = {[a] € P(Hom(C* A C* C?) : cof A, € S5}

where for any A = (a;;) € M, cof A is the matrix whose (i,j) entry is the
algebraic complement of a;;.

We recall that, up to isomorphisms, we have the following non-abelian Lie algebras
of dimension 3 over C ([3]), which may also be obtained as in the proof of theorem
4.1:

1, [e1, e2] = ea, [e1,e3] = aes, [es,e3] =0, a € C,

ny : [e;, e =ler,e3] =0, [ea, e3] = ey,

r3 le1, e2] = ea, [e1,e3] = ez +e3, [e2,e3] =0,
s1(2,C) le1, 2] = €3, [e1,e3] = —2e1, [ea, €3] = 2eq,

where the only pairs of isomorphic Lie algebras are {1,,1,-1}, a # 0,a™!, and
ns, the Heisenberg Lie algebra, is the only nilpotent one. Hence the following
subvarieties:

Wi = {la] ez : A, € Ss}
= {la] € £3 : forany v € L, tradv = 0},

which is isomorphic to P(S3), and

We = {la] € £3 : rank A, < 2}
= {[a] € £3 : L, has an abelian ideal of dimension 2},

that is the subvariety of the solvable Lie algebras, are the irreducible components

of £3.
For any n,n’ € N let G,/ , be the grassmannian of all the subspaces of C" of
dimension n'.

3. The variety of the Lie algebras of dimension 3
We identify o with A, and we set A = (a;;) for any A € M.
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Lemma 3.1.  We have W, = {[A4] € P(M3) : dim(ker A Nker A*) > 1}.

Proof.  Since both subsets are stable with respect to the action of GL(3, C)
it is sufficient to show that if A is such that a;; = 0, 7 = 1,2, 3, the condition
cof A € S3 is equivalent to the condition dim(ker A Nker A') > 1. But in this
case both these conditions are equivalent to the following one: rank A < 1 or

ai;;j = 0, 7 = 2,3; hence we get the claim. The result also follows from the
classification of the Lie algebras of dimension 3 over C. [ |
Let

W; = {(H,[A]) € P?(C) x P(Ms) : H C ker ANker A’}

and let 7, 7’ be the canonical projections of W% onto P?(C) and W, respectively.

Proposition 3.2. Ws is irreducible, dimW, = 5 and « is a resolution of
singularities of Wa. The set of the singular points of Wh is Z = {[A] € P(M3) :
dim(ker A Nker A") = 2}, that is the orbit of nz, and dim Z = 2.

Proof.  For i =1,2,3 let ¢ be the open subset of P?(C) given by the condition
that the i-th coordinate doesn’t vanish and let F; be the subset of P(M3) of all
[A] such that the i-th row and column of A vanish. Let G; € GL(3, C) be such
that Gi(e;) € (e;) and let G}, G?,G? be the columns of G;. Let ¢; : U; —
GL(3, C) be such that for any H = ((x1, z2,x3)) € U; the i-th column of ¢;(H) is
Gi=> s ;(x;)~*GY , the others are equal to those of Gy; then ¢;(H)(H) = (e;). If
A; = 7 (04s) the map (H, [A]) — (H, [(6:(H) ) A,(H)™']) from A; to s x F,
is an isomorphism. Hence %, with the map 7, is a vector bundle on P?(C) with
fibers isomorphic to P(M,).

The map ([A]) — (ker A Nker A" [A]) from W, to W) is regular except in the
points of Z, where the fibers of ©’ have dimension 1, and is a birational inverse
of . Let 2’ = {(H,[A]) € Ga3 x P(M;) : H C ker ANker A'}. If m; and my
are the canonical projections of Z’ on Ga3 and Z respectively, 7 is a birational
morphism and the fibers of 7 have only one point. Hence 2’ and Z are irreducible
of dimension 2 and (7/)7!(Z) is irreducible of dimension 3. Then by Theorem 2
of chap. 11, §4 of [10] we get the claim. ]

Corollary 3.3. The set of the singular points of L3 is Wi N Wk, that is the
union of the orbits of nz and 1_1.

For any [a] € £, the tangent space in [a] to £, is P(V,,), where V, is the vector
space of 2-cocycles in the cohomology of L, as L,-module ([5]). By the equations
of the space of 2-cocycles of a Lie algebra we have found that the dimensions of
the tangent spaces to £3 in n3g and 1_; are 7 and 6 respectively.

4. Classification of the Lie algebras of dimension 4 over C

For any (3,7) € C? let [[3,7]] and [[3]] be the orbit in P*(C) of [1,43,~] and
[1, 5, 1—f3] respectively with respect to the action of the group of the permutations
of the coordinates of P?(C).
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Theorem 4.1.  We have [a] € L4 if and only if L, is isomorphic to one and

only one of the following Lie algebras (where we omit [e;,e;], i,j € {1,...,4}, if
it is 0):
(5.4 lea,e1] = €1, ea, €] = Bea, [es, e3] = ves, 8,7 € C;
81181 lea,e3] = €1, [es,e1] = €1, [es; ea] = Beg,
lea, 3] = ( Bes, B € C;

g, leq,e1] = cer, [eq,ex] = ea, [es,e3] =ea+e3, c€C;

ar : [eg,e3] = [64, el =2e1, [es, €] =ea, [es, €3] = e+ e3;

ay : [eq,e1] =e1, les,ea] =e1+ea, les,e3] =ex+es;

ag : [es,ea] =eq, les, 1] =eq;

ay [64, 61] =€ [64, 62] = —€9, [61, 62] €4,

as [61, 62] = €3 [64, 61] = €1, [64, 62] = —€9;

as lea, e1] = €1, [ea, €2] = e3;

as [e, €3] = €1

ag [62, 63] = €1 [64, 63] = €9

Proof. Let L be a Lie algebra over C of dimension 4. Let H be a Cartan
subalgebra of L, h € H be such that H = Lo(adh) = {v € L : 3n € N :
(ad h)"™v = 0} and ad h, if not nilpotent, has the eigenvalue 1, H’ be a subspace
of L such that H@ H' =L, [h,H'| =H'.

Let dimH = 1. Then H' = [L,L]. Let {x,y,z} be a basis of H' such that
the matrix of ady: h with respect to it is in Jordan canonical form. From the
Jacobi’s relations between h and the pairs of elements of {x,y, 2}, when ady h
is represented by a diagonal matrix with diagonal entries 1,/,7y respectively,

B,y # 0, we get
(B+ Dz yl = b [z,9]l, (v + Dz, 2] = b [z 2], (B+9)My, 2] = [h [y, 2],

hence either H' is abelian or, permuting x,y, z and multiplying them by a scalar
if necessary, f+ v =1 and H’ is a Heisenberg Lie algebra with x = [y, z]. We
get the Lie algebras g3+, 5,7 # 0, and gyg, 8 # 0,1, respectively. If adg h
is represented by two Jordan blocks, the first one of order 2 and eigenvalue 1, the
second one of eigenvalue ¢ # 0, we get

(C+ 1)[2’1‘] = [h7 [Z,CL’]], [wa] + <C+ 1)[Z7y] = [h7 [Zvy“7 Q[ZL‘,y] = [h’ [ZL’,yH,

hence [z,z] = [z,y] = 0 and either H' is abelian or ¢ = 2 and H' is a Heisenberg
Lie algebra, with (multiplying = and y by a scalar) [z,y] = z. We get the Lie
algebras g., ¢ # 0, and a; respectively. If adgy: h is represented by only one
Jordan block we get

Q[xvy] = [h’ [C(J,y]], 2[ZL‘, Z] = [h7 [Z‘,Z“ - [Iay]a 2[% Z] = [h7 [y’z]] - [1:’2]7

hence H' is abelian and we get the Lie algebra as,.

Let dim H = 2. Then, since H is abelian, ad;, H is abelian and H' = [H, H'| =
[H, L]. Let {z,y} be a basis of H’ such that the matrix of adg, h with respect to
{z,y} is in Jordan canonical form. We have to require

[, [, 9] = [, [hy yl] + [y, [, A]] = (tradpg bz, o],
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hence either [z,y] = 0 or for any v € H adys v has the eigenvalues 1,—1 and
dimad H <1. If dimad H = 2 and there exist in H elements v such that adg v
has two different eigenvalues, we may choose w,z € H such that with respect
to the basis {z,y} adp w and adys z are represented by two diagonal matrices
with diagonal entries 1,0 and 0,1 respectively, hence we get the Lie algebra as.
If dimad H = 2 but for any v € H ady v has only one eigenvalue we may
choose h,z € H such that with respect to the basis {z,y} adg h and ady: z are
represented respectively by the identity matrix and by the nilpotent Jordan block
of order 2, hence we get the Lie algebra gq. If dimad H =1 let z € H \ {0} be
such that ad z = 0. If the Jordan form of ady h is diagonal and [z, y] = 0 we get
the Lie algebras g, v € C \ {0}. If the Jordan form of ady h is diagonal and
[z,y] € (2) we may assume h = [z,y] and we get the Lie algebra a,. If the Jordan
form of ady h is diagonal and [z,y] € (z) \ {0} we may assume [z, y] = z getting
the Lie algebra as. If the Jordan form of ady: h has only one Jordan block we get
the Lie algebra g .

Let dim H = 3. If H is abelian, since dimad H = 1 there exist y, z € H linearly
independent such that ady = ad z = 0, hence we get the Lie algebra gjoo. If H
is a Heisenberg Lie algebra, since the subset of all v € H such that H = Ly(ad v)
is open in H, we may assume H = (h,y,z) with [h,y] = 2, [h,z| =z, = € H.
Since ad h and adz commute, [z,z] € (z). Since ady and adz commute, if
we had [z,2] # 0 we would have [y,z] € (x) and then, since adyy and ady h
commute, ady and ad h would commute; but this holds if and only if ad z = 0.
Hence [z,2] =0 and [y, z] € (x). Since dim[H, z] = 1 we may choose y such that
[y, 2] = 0; we get the Lie algebra ag.

Let dim H = 4, that is L nilpotent. If L isn’t abelian there exists x # 0 such
that z € Z(L)N[L,L]. If x = [y, 2], since H" = (x,y, z) is a nilpotent subalgebra,
dim H” = 3 and H" is a Heisenberg Lie algebra. Since L is nilpotent [h, H"| C H”
for any h € L . Since [h, z| = 0 it is possible to choose h, z,y, z such that h & H",
the matrix of ady~ h with respect to the basis {x,y, z} is in Jordan canonical form
and [h,y] = 0 (in fact if [h,y] = x then [h+ z,y] = 0). We get the Lie algebras
a; and ag. ]

5. The variety of the Lie algebras of dimension 4

For any Lie algebra L let Z(L) be the center of L.

Proposition 5.1. L4 1s the union of the following closed subsets:
Ci = {la] € L4 : Ly has an abelian ideal of dimension 3},
Co = {la] € L4 : Ly has a nilpotent ideal J, of dimension 3 such

that %tr ad v is eigenvalue of ad;, v for anyv € Ly},
Cs {la] € £4 : dim[L,, L] <2, adjz, 1. La is abelian},
Ci = {la] € L4 : Z(Ls) # {0}, tradv =0 for any v € L,}

and CZ-,@U#Z.C]- fori,g=1,...,4.
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Proof.  Since by Theorem 4.1 each one of these subsets is the union of the orbits
of the following Lie algebras:

Ci: 8y 8 A2, A, a7, ag
Cot 8140 8lsys 800 82s A1, A5, A7, aAg
C3: 8o~ 8o So» a3, g, a7, ag
Cit 8lo,—1) &, a3, ar, ag
where (3,7v,c € C, we get the claim. [ |

For any i« = 1,...,4 let Ay = {J € Gss : e & J} and let {iy,is,i3} =
{1,043\ {i}, i1 <ia < i3. If J e A let J = (e, el el), where, with

respect to the basis {e;,,€;,, €5, €}, for j = 1,2,3 the j-th coordinate of e;-]j is 1
and for k € {1,2,3}, k # j the k-th coordinate of e;-]j is 0. Let

Ci ={(J,|a]) € G34 x C1 : J is an abelian ideal of L, }

and let p;, p| be the canonical projections of Cj onto G54 and C; respectively.

Proposition 5.2. C1 is irreducible, dimCy = 11 and p)| is a resolution of
singularities of C1. The set of the singular points of C1 is Z1 = {[a] € C1 : L4 is
nilpotent and dim[L,, L,] < 1}, that is the orbit of a7z, and dim Z; = 5.

Proof. Let A, := (p1) " (Ai), i =1,...,4. The map & : A; xP(M3) — A
defined by &;(J, [A]) = (J, [@]) where [a] is such that in L, ad;e; is represented
by A with respect to the basis {e],e; e’} is an isomorphism, hence ¢}, with the
map pi, is a vector bundle and dim ] = 11.

The map p} is birational and (p})~! is regular in the open subset of C; of all [a]
such that L, is not nilpotent or there exists x € L, such that dim[x, L,] > 2 (we
set (py)~'([a]) = (J,[a]) where J is the subspace of all the nilpotent elements x
of L, such that dim[z, L,] < 1). It isn’t regular in the points of Z; = {[a] € (1 :
L,, is nilpotent and dim[L,, L,] < 1}, that is the orbit of a;, since the fibers of
p} on the elements of Z; have dimension 1. The variety 2| := (p}) *(21), with
the map p1|z, is a bundle on G34 whose fibers are isomorphic to P(N3), where
Nj is the variety of all the nilpotent 3 x 3 matrices over C of rank less or equal
1; hence it is irreducible of dimension 6, which shows the claim. [ ]

Let
¢, = {(J,[a]) € G34 X C2 : J is a nilpotent ideal of L, and
for any v € L, %tr ad v is eigenvalue of ad;v}.

Lemma 5.3. If (J,[a]) € C) and v € L, then [J,J] is contained in the
eigenspace of adjv corresponding to %tr adv.

Proof.  Let y # 0 belong to the previous eigenspace but [J, J] Z (y). Then we
may choose a basis {y, x, z} of J such that [J, J] C (z). Since [z,v] € (x) (in fact
0 = [z,[y,v]] = [y, [z,v]], hence [z,v] € (z,y), in the same way [z,v] € (z,2)),
there exist a, b, c,d € C such that [v,y] = ay, [v,2] = bz, [v, 2] = (a— )Z—i—cx—l—dy,
hence by the condition [y, [z,v]] = [z, [y, v]] + [v, [z, y]] we get a =b. ]
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Let S = {(H,[(A B)]) € PXC) x P(S5 x Ms) : Im A C H,
H Cker (B— (Ltr B)Iy) }:

let S be the image of the canonical projection of S’ on P(S3 x M3) and let s, s’
be the canonical projections of & on P?(C) and S respectively.

Lemma 5.4. S is irreducible, dim S = 8 and s’ is a resolution of singularities
of S. The set of the singular points of S is
S={l(AB)]eS: A=0, dimker (B — (1 trB)I;) > 2},

which s irreducible of dimension 4.

Proof.  The variety &' with the map s is a vector bundle on P?(C) with
fibers of dimension 6. The map s’ is birational and (s")~! is regular in the open
subset of all [(A, B)] such that A # 0 or dimker (B — (tr B)I3) = 1. It isn’t
E\e/gular in tl}? points of S, where the generic fiber of s has dimension 1, and
S = (s)71(8) is irreducible of dimension 5 (the fiber of s|o in H is birational to
{(V,[B]) € Go3 x P(M3) : HCV Cker(B— (3trB)I3)}, hence has dimension
3), which shows the claim. ]

Let po and pl, be the canonical projections of C) on G4 and C2 respectively.

Lemma 5.5. Cy, with the map py, is a bundle on Gs4 with fibers isomorphic
to S.

Proof. Let U = (p2) ' (A4i), i = 1,...,4. For any (J,[a]) € C) let ay €
Hom(J A J,J) be defined by ay(v Av') = a|jas(v Av') for any v,v" € J. The
map v; : A; X S — U; such that v;(J, [(A, B)]) (J, [a]) where « is such that the

matrix of a; with respect to the bases {e Aefl el el el Nel} and {e“, 7.el
is A and in L, the matrix of ad; e; with respect to the basis {e/,e;, 23} is B is
an isomorphism, which shows the claim. |

Forany i =1,... .4 and J € A; let B ={e/ el el e}. Let J e A;N Ay and
let Gy be the matrlx whose columns are the coordinates of the elements of B;
with respect to By . Let § : S3 x My — My, be the isomorphism such that, by
regarding §((A, B)) as a block matrix, we have

sam=(5 1)

Then, by using the notations of the proof of Lemma 5.5, we have that the auto-
morphism (vy)~! ov; of (4;NAy) x S is given by

(vir) "L o v(J, [(A, B)]) = (J,[67H(G8((A, B))G.))).

Let C5 be the vector bundle on G54 which is the union of open subsets i/,
i=1,...,4, with isomorphisms v} : 4; xS’ — U4/ such that

(W)™ o vi(J, (H, (A, B)) = (J, (Hy, [5G 3((A, B))G,)))

)

where if H = [hy, hy, hs] then H; = [h{ ki, hj] is such that (h{, hy,hJ,0) =
G_l(hl,hg,hg,()). Let p” : C§ — Cj} be the morphism such that p”(i4]) = U; and,
if pi is p”|,; as map onto U, we have v;0 (idy, xs') = pjov; forany i =1,... ,4.
Then p” is a resolution of singularities of Cj.
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Proposition 5.6.  (Cy is irreducible, dimCy = 11 and ph o p” is a resolution of
singularities of Cy. The set of the singular points of Cy is Zo = Zo U Zo where
Zy={[a] €Cy : Ly is nilpotent} and Zy = {[a] € Cy : Lo has an abelian ideal of
dimension 3 and for any v € L, dimIm(adv — (5 tradv)id) < 1}. We have that
Z, is irreducible of dimension 8 and is the union of the orbits of a; and ag; Z-
is irreducible of dimension 7 and is the union of the orbits of g1y, 8o and az.

Proof. The map p), is birational and the subset of ¢y in which (p)~! isn’t
regular is Z,, since (py)~'([a]) = (J,]a]) where J is the subspace of L, of all
the nilpotent elements and the generic fiber of p, on Z, has dimension 1. Let
Z, = (ph)"Y(Z,). If weset § = {[(A,B)] € S : B is nilpotent} we have
that S is irreducible and dim S = 6 (in fact, by Lemma 5.4, (s')~!(S) has these
properties). Since the fibers of p2|§/2 are isomorphic to S we get that Z’; is
irreducible of dimension 9 and Zs is irreducible of dimension 8, hence by Theorem
2 of chap. II, §4 of [10] the points of Z, are singular for C». By Lemma 5.4 and
Lemma 5.5 Z, is irreducible of dimension 7 and the points of Z \ Z, are singular
for Cs, hence we get the claim. [ |

For any n € N let C, = {(A,B) € M,, x M,, : [A,B] = 0}. If (xo,...,27) are
coordinates of C®, we set

A— Zo T2 . B= T T3
Ty To+ Te Ts T+ T7
and we regard Cy as a subvariety of C®. Let V' = {(zg,...,77) € Cy

(z9,...,27) # (0,...,0)}; then the map v : ) — P°(C) such that
u((zo, ... ,x7)) = [T2,... ,27] is a morphism. Let Y = u()’), let:

W ={((xo,... ,x7),[22,...,27]) € Ca XV 1 i2j = zixj, 1, =2,...,7T}

and let r be the canonical projection of Y on Cj.

Lemma 5.7. Cs is irreducible, dim Cy = 6 and

Y={(A.B)eC,: A Be (L)
is the set of the singular points of Cy. The variety W is irreducible and v is a
resolution of singularities of Cs.

Proof. Forany n € N C, is irreducible of dimension n*+n ([7], [4]). If X =
(wij), Y = (yi;) are the coordinates of M, x M, and (A, B) € C,, then [A, X] +
[B,Y] = 0 are equations of the tangent space to C,, in (A, B). Hence the points
(A, B) such that A or B is regular, that is has centralizer of minimum dimension
n, are non singular for C,,, which shows the first claim. Since Y and C5 have the
same equations, ) is an irreducible nonsingular variety of dimension 3. The map
r is birational, since for any (zo,... ,x7) € Cy such that (z3,...,27) # (0,...,0)
we may set r1((zo,...,x7)) = ((wo,...,27),[T2,... ,27]); if (wo,...,27) =
0,...,0) we have r'({(zo,...,77)}) = {(xo,...,27)} x V. Since for any
zg,x1,t € C and [z9,... ,27] € V we have that ((xg, x1,t29,... ,t27),[22,... ,27]) €
W, W is irreducible. Since } has the same equations as (5 the tangent space to
W in a point such that (xq,...,27) = (0,...,0) has the same dimension as in a
point of W \r~1()), hence we get the claim. n
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Let
G = {(yiy2 wo,... ,77], [22,... ,2]) € PY(C) x P*(C) :
: ((xoy oo ywy), [22, .0, 27]) € W

let G be the image of the canonical projection of G’ onto P?(C) and let 7’ be the
canonical projection of G’ on G.

Corollary 5.8. The map r' is a resolution of singularities of G.

Let
Cy ={(W,[a]) € Go4u X C3 : [La, La] € W, adw L, is abelian},

and let ps, py be the canonical projections of C; on Ga4 and (s respectively.
For any i,j € {1,...,4}, i <jlet Ay ={W € Goy : WN (ez,e]> {0}}. Let
{io, jo} = {1, .. 4} \ {1, ]} ip < ]0, if W e Ay let W = (e, ell') where the
first two Coordlnates of e}/ and e}) with respect to the basis {e;,, €;,,e;, €;} are
1,0 and 0,1 respectively.

Lemma 5.9. C} with the map ps is a bundle on Ga4 with fibers isomorphic to G.

PI‘OOf. Let I/{ij = (p3>_1(./4ij>7 Z,j S {1, ,4}, 7 < j The map 77ij

Aij X G — U;; defined by mj(W, [(y1,y2, A, B)]) = (W, [a]) where « is such that
in L, [eej] = ylelo + ygejo and ady e;, ady e; are represented, with respect to
the basis {e}?, ]O} respectively by A and B is an isomorphism, which shows the
claim. -

For any 4,5 € {1,...,4}, i < j, and W € A;; let BZV = {elV, e e e;}b. Let

07 7J0
W € AijN Ay and let Gy be the matrix whose columns are the coordinates of

the elements of B}]" with respect to B}f‘;/. Let ¢ : C% x My x My — Myyg be the
isomorphism such that, by regarding (((y1,y2, A, B)) as a block matrix, we have:

nmam-(5 48).v-(3)

Then, by using the notations of the proof of Lemma 5.9, we have that the auto-
morphism (1)t on;; of (Aij N Awjr) X G is given by

(Ui/j’)_l O Mij (W, [y, y2, o, - - - 7)) = -
= (W [CHGwl((y1, 92, 20, - -, 27))Gw)])-

Let @ : C*x)’ — V be defined by @((y1, ¥, Zo, - - - ,77)) = [22,... ,27]. Let C¥ be
the vector bundle on (i34 which is the union of open subsets Z,{i’j, i,7 €{1,...,4},
i < j, with isomorphisms 7;; : Ay x G" — U;;, such that

(W, ([y1, y2, To, - - - 7], [22, - - - ,27]))/\:
= (W ([CHGwC((y1, 92, 70, - -, 27))Gw )],
wo CHGwC((0,...,0,29,...,27))Gw))

and let ¢” : C{ — Cj be the morphism such that q”(Z,{i') U;; and, if q”
as map onto U;;, we have ;o (id 4, x7') = ¢jjon;; forany 4,5 € {1,... ,4}, i < j
Then ¢” is a resolution of singularities of Cj.

(772’] ) © nm
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Proposition 5.10. (3 is irreducible, dimCs3 = 11 and ps o ¢” is a resolution
of singularities of C3. The set of the singular points of Cs is Z3 = {[a] € C5 :
adir, 1. La C (id)}, that is the union of the orbits of oo, oy and az, which
is irreducible of dimension 7.

Proof. The map pj is birational and the subset of C3 in which (p})~' isn’t

regular is Z3 := {[a] € @3 : dim[L,, L] < 2} (since (p5)~*([a]) = ([La, La), [@])
and the generic fiber of p} on Zs has dimension 2). By Theorem 4.1 we have
273 C Z3 and by Lemma 5.7 and Lemma 5.9 the points of Z3 \23 are singular for
Cs. If 25 := (p5)~'(Z3), the fibers of ps|z are isomorphic to P3(C), hence Z;
is irreducible of dimension 7. Since the subset of the singular points is closed this
shows the claim. [ |

Let
Ci={(T,[a)) e P*(C) x Cs : T C Z(La)}

and let p) be the canonical projections of Cj on (4.

Proposition 5.11. Cy is irreducible, dimCy = 11 and p) is a resolution of
singularities of Cy. The set of the singular points of Cy is Z4 = {[a] € C4 :
dim Z(L,) > 2}, that is the orbit of a;.

Proof. Let ¢} ={(J,T,[a]) € G34 x C} : J is an ideal of L, } and let ¢, ¢
be the canonical projections of Cf on G34 x P*(C) and on ¢} respectively. If
(J,T) € Gs4 x P3(C) is such that T ¢ J the fiber of ¢ in (J,T) is isomorphic
P(S3). If (J,T) € G34 x P3(C) is such that T C J then J is a nilpotent
ideal such that [J, J] C T for any L, such that (J,T,[a]) € C/, hence the fiber of
¢, in (J,T) is also a projective subspace of dimension 5. This proves that Cj is
irreducible and dim ) = 11, since ¢ is birational ((g2)~! is regular in the open
subset of all the elements (7 [«a]) such that dim[L,, L,] = 3).
For any i € {1,...,4} let A' = {T € P*(C) : TN (e, e, ei,) = {0}}; for any
T € A we set T = (e') where the first coordinate of ¢! with respect to the basis
{€i,ei,, i, €5} is 1. Let
U ={(T o) eci: TeA, ale;, Nei,) 7& 0},
U =A{[z1,... ,xg]EIP7(C) sy, xe) (0,000 ,0) )
The map ¢ : A" xU” — Y* defined by (T, [x1,... ,x5]) = (T, [a]) where « is
such that a(e;, Aey,) = w5el +x165, + 664, , ey, Aeiy) = xoel +x36), +14€4, — 1164,
ale, A ey,) = wrel + wge;, — wse;, is an isomorphism, hence ( is nonsingular.
The map p), is birational and the subset of ¢4 in which (p})~' isn’t regular is
2y =A{lo] € ¢4 : dimZ(L,) > 2}, that is the orbit of a7, where the fibers of
p; have dimension 1. By Proposition 5.2 (p})~!(2,) is irreducible of dimension 6,
which shows the claim. [

Corollary 5.12. The varieties C;, © = 1,... ,4, are the irreducible components
of L4 and the set of the singular points of L4 is U#j CinNgj, 1,53=1,...,4, that
is the union of the orbits of the following Lie algebras: g, € C, [y+1,, 7 €
C, g[[oﬂ, g, C—= 0,2, das, ag, Ay, Ag.
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By the equations of the space of 2-cocycles of a Lie algebra we have found that
the dimension of the tangent space to L4 in gysq), 8 = 0 or B8 = v+ 1,

[(8,7]] # [[0,1]], [[0,=1]], [[0,0]], goy, &e: € = 0,2, a5, ag is 12. It is 13 in
g0,17]> 8[0,—1]» &[o,0]- In a7 and ag it is 18 and 14 respectively.
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