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Abstract.  The aim of this paper is to give, in a unified manner, the character-
ization of the LP-range (p > 2) of the Poisson transform P\ for the Hyperbolic
spaces B(F") over F = R, C or the quaternions H. Namely, if A is the Laplace-
Beltrami operator of B(F") and sF a C-valued function on B(F") satisfying
AF = —(A2 4+ 0?)F; X\ € R* then we establish:

i) F is the Poisson transform of some f € L?(0B(F")) (ie P\f = F) if
and only if it satisfies the growth condition:

1

swi [ F@)Pdu() < +oo,
>0 t JB(0,8)

where B(0,t) is the ball of radius ¢ centered at 0 and du the invariant measure
on B(F™).

ii) F is the Poisson transform of some f € LP(0B(F")), p > 2; if and
only if it satisfies the following Hardy-type growth condition:

sup (1—7r2)"% (/ |F(r0)|pd0)> < +o0.
0<r<1 aB(F™)

Key words: Hyperbolic spaces, Poisson transform, Calderon Zygumund esti-
mates, Jacobi functions.

1. Introduction.

It is known that the Poisson transforms associated to symmetric spaces X of
non compact type play an important role in reproducing joint-eigenfunctions of
invariant differential operators on X from the boundaries of X (see [6,8,9]).

Also, in rank one symmetric spaces of non compact type, the Poisson
transform enters in a natural way through the Fourier-Helgason transform in the
L?-Plancherel formula of the Laplace-Beltrami operator on X .

Since then, it becomes natural to characterize the range of the Poisson
transform on classical spaces on the Fustenberg boundary B of X such as the
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spaces C®(B), LP(B) and the space of distributions D' (B) . (See for instance
Strichartz [12] for a large discussion on this subject.) In [2], the first author
characterized the L2-range of the Poisson transform in the complex hyperbolic
space.

The aim of this paper is on one hand to extend in a unified manner the result

in [2] to the classical hyperbolic spaces B(F") over F = R, C or the quaternions
H, and on the other hand to characterize, for p > 2, the LP-range of the Poisson
transform in the hyperbolic spaces B(F").
The organization of this paper is as follows. In section 2, we state the main results
of this paper. In section 3, we recall some classical results of harmonic analysis
on hyperbolic spaces B(F"). Section 4 is devoted to the proofs of Theorem A
and Theorem B. In the last section, we establish the Key Lemma that gives the
uniform L?-boundedness of the family of operators @, ()\) associated to superficial
Poisson integrals on the boundary 0B(F") of B(F").

2. Notations and statement of the main results.

Let F be one of the classical fields ( that is F = R, C or the quaternions H) and
let B(F") be the bounded realization of the hyperbolic space U(n, 1;F)/U(n;F) x
U(1;TF).

The Poisson transform P, associated to B(F") is defined for every A € C
and every integrable function f on the topological boundary 0B(F") of B(F") by
the following formula:

iAto

@ =[,  (FE) T e, (1)

11— {z,w)[*

where 0 = 4(n+1) — 1 and d = dimgF

Let B(0,t) be the ball of radius ¢ centered at 0 with respect to the
U(n, 1;F)-invariant metric on B(F"), then for every locally integrable function
F with respect to the U(n, 1,F)-invariant measure dyu on B(F") we set

1
IF|J; = sup

DT Jpo @) *dp(z). (2)

Also, for any A € R\0, we define the following eigenspace of the Laplace-Beltrami
operator A of B(F") given by:

E{(B(F") = {F : B(F") — C;AF = —(\? + ¢®)Fand ||F|?> < +o0}.
Finally, by v we will denote any constant depending only on the dimension of
B(F").

Now, with the help of the above notations, the first result of this paper can be
stated as follow:

Theorem A. Let \ be a non zero real number. Then we have:
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i) The Poisson transform Py is a topological isomorphism from L*(0B(F™))
onto the Banach space E5(B(F")).

More precisely there exists positive constants vy, and v, depending only on
n such that for every f € L*(OB(F")) we have the following estimates:

1
MM fllz2@p@ny < IPAfIlL <22 (1 + (Al + W)“f”ﬂ(aB(]F"))’ (3)

where c(A\) = F(ﬁ)‘;?gﬁig_d) s the Harish-Chandra c-function associated to
2 2
B(F").

i) The L*-boundary value f of the eigenfunction F € E5(B(F")) is given
by the following L?-inversion formula:

—iA+o

£(w) = eI lim (A) D F@due), ()

t+o0 ¢ Jp0n \ |1 = (z,w)|?

in L*(9B(F™)).

In the case of the real hyperbolic space B(R"), the assumption i) of theorem
A was stated in [12, Lemma 4.2]. However the given proof in [12] is not correct
and remains related to the conjecture 5.4 on Jacobi functions (See Strichartz
corrigendum [13]).

In this paper, we prove the part i) of Theorem A as well as its LP-
counterpart, see Theorem B in below, by discussing the LP-boundedness of a
family of superficial Poisson integrals (Q,(A))refo,1f on OB(F") given by

Q-N160) = [

—iA—0
- 11— r(f,w)| f(w)dw. (5)

More precisely, we will establish the following Key lemma of this paper.

Key Lemma. Let A be a non zero real number and let Q.()\) be the operator
given by (5). Then we have:

1
sup [|@r(M)[ly < (1 + Al + )
0<r<1 Al

Moreover, for every p €|1,+o0[, there exists a constant A(\,p) > 0 such that

sup [|@-(M)l, < A\, p), (6)

0<r<1

where ||||, stands for the LP -operatorial norm.

Let ®5,, = P,®,, be the generalized spherical function associated to
B(F") given here in terms of Jacobi functions. Then as an immediate consequence
of the Key Lemma we obtain the following uniform pointwise estimate on ®, ,,
(See section 3 for precise notations.)
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Corollary 2.1.  Let A be a non zero real number. Then

- 1
sup [ ®xpq(r)| < y(1 =727 (1+ A + R
p,9E€Ko ‘ ‘

for some numerical positive constant .

Now, we state the second result of this paper.

Theorem B.  Let p € [2,+00[, A be a non zero real number and let F be a
C-valued function on B(F") satisfying AF = —(\?> + 0)F. Then we have :

F is the Poisson transform by Py of some f € LP(0B(F")) (i.e Px»f = F) if and
only if it satisfies the following Hardy-type growth condition:

F|l. = 1—7r?)"5 F(ro)P ’ :
171y = s =) (o 1FG0P)) <t

0<r<1

Moreover, there exist a positive constants v and A(\,p) such that for every f €
LP(0B(F™)) the following estimates hold:

Ve o @n@y < 1PAfllsp < AP o@nmmy)-

Remark 2.2.  Notice that for p = 2, we have ||F'[|, < c[|F|[,,. But in general
these norms are not comparable.

However, using Theorem A and Theorem B, we can see that they are
comparable on the eigenspace

E{(B(F") = {F : B(F") — C;AF = —(\? + ¢®)Fand ||F|]®> < +o0}.

Remark 2.3. While we have considered only the case of p > 2, we think that
the result of Theorem B holds for 1 < p < 2. We hope to return to this case in a
near future.

3. Background and preliminary results.

In this section, we review some known results of harmonic analysis on the hy-
perbolic space B(F") = U(n, 1;F)/U(n,F) x U(1,F), referring to [6,7] for more
details on this subject.

Let F be one of the classical fields ( that is F = R, C or the quaternions
H). On F"*! considered as a right vector space over F, we consider the following

quadratic form
n

J(@1y ooy Tng1) = Z ‘%"2 - ‘$n+1‘2’
j=1
with |z|* = 2%, where z — Z is the standard involution of F.
Let G = U(n,1;F) be the group of all F-linear transformations g on F"*! keeping
the quadratic form J invariant, with the additional property, detg =1 if F = R
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or C. Then G is one of the classical split rank one groups, SO(n,1), SU(n,1) or
Sp(n,1) accordingly to F =R, C or H.

The group G acts on the unit ball B(F") = {z € F"; |z| < 1} by fractional
transforms:

Gag:<é g):x+—>(Ax+B)(Cx+D)_1.

with A € F**" B e F*! C € F**" and D € F.

This action of G on B(F") is transitive (See [7]) and as homogeneous space we
have the identification B(F") = G/K where K is the stabilizer of 0 € B(F").
Explicitly, K = U(n,F) x U(1,F) consisting of pairs (A, D) of unitaries with
det(AD) =1, when F =R or C.

The action of G mentioned above extends naturally to B(F") and under
this action, K is transitive on the topological boundary 0B(F") = {w € F"; |w| =
1} of B(F").

Let e denote the unit vector of F", given by e = (1,0,...,0) and let M be the
stabilizer in K of e. Then 0B(F") = K/M. The group M can be identified to
Un—1,F) x U(L,F).

Let L?(0B(F™)) be the space of all square integrable C-valued ( classes ) functions
on OB(F"™), with respect to the normalized superficial measure of 0B(F"). Then
the group K acts on L?(0B(F")) by composition f— fok; ke K.

It is well known (see [6] or [7] for examples) that under the action of K, the
Peter-Weyl decomposition of L*(0B(F")) is given by L*(0B(F")) = @, ,cx, Voo
where V}, , is the finite linear span {¢,, 0k, k € K} and ¢,, the zonal spherical
function.

The parametrized set K consist of pairs (p,q) of integers satisfying:

i) p=q (mod2),

ii) p>0 and 0<¢<1 if F=R,
p>lgl if F=C,
p>q>0 if F=H.

In below, we recall some known results on the Poisson transform which will be
useful in the sequel.

Proposition 3.1.  [6] Let A be a complex number and let f in Vp,. Then we
have

(Pof)(z) = <I>A,pq(|<v|)f(é—‘); z € B(F"),

where ®) ,,(|x|) is the generalized spherical function associated to the hyperbolic
space B(F") given by:

idto

IN+o INt+o+2—d

Dapel2]) = (5 ) sa( 5 Joza {(1)pan}Harf"(L — [2]) 72" %
IANt+o+p+q iIN+o+2—-d+p—q dn
21 ( 5 3 9 ,P+7§|5E|2)-

Here (a)y = a(a+1)....(a+k — 1) is the Pochammer symbol and 2Fi(a,b,c;x)
15 the classical Gauss hypergeometric function.
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Let A be the invariant Laplacian of the hyperbolic space B(F"), and let E,(B(F"))
be the space of all eigenfunctions F' of A with eigenvalue —(\? + 0?), A being a
complex number.

Proposition 3.2.  [6] Let A be a complex number and let F in E)\(B(F")).
Then there exists a sequence of spherical harmonics fpq € Vg such that F' can be
expanded in C*(B(F")) as follows:

iAto

F(o) = (1-a})"F

Nt+o+p+q tA+o+2—-d+p—q dn . o
> laffaFi( 5 : 5 D+ s 21) Fal
p,g€ Ko

X

).

|

Remark 3.3.  The above proposition is proved in [6] in group Theoretical way.
But we can also prove it directly as follows: We write the invariant Laplacian A
into its geodesic polar coordinates decomposition: (t,b) € [0,00[ x OB(F") (as
given in Faraut [5])

—d—2+((d 1)tht + (dn — 1) tht)i ! !
P T

A

25

where A; and A, denote (respectively) the restriction to S% ! and S%~1 of
the Laplacian of R? and R%! respectively ( we drop A; in the case d = 1).
Next, using the fact that the spherical harmonic functions f,, satisfy the following
eigenfunction equations:

At fpg = —q(g+d— Q)qu and  Agfp, = —p(p + dn — 2)qu7

we can reduce the eigenfunction problem AF = —()\? + 0?)F to a sequence of
second order ordinary differential equations, which can be transformed to the well
known hypergeometric differential equation (see also Faraut [5]).

We finish this section by recalling a well known result on the asymptotic
behaviour of the generalized spherical function @, ,, (See for instance [12]).

Lemma 3.4. Let A\ be a non zero real number. Then there exists a positive
constant v > 0 such that we have:

. 1 2 2\ —g—1 . 2
Jim [ a1 2f) 7 dm() = 1)

for every p,q € K.

4. Proof of Theorem A and Theorem B

Proof of Theorem A: The main difficulty in proving Theorem A is to show that
the L?(0B(F"))-range of the Poisson transform P is continuousely embedded
in the eigenspace E5(B(F")). That is to show that ||Pyf]|, is finite for every
f € L?*(0B(F™)). As explained in section 2 this will be derived from the Key
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Lemma stated in section 2.
Now let start by proving the necessary condition in i) of Theorem A .
i) Let f in L?*(0B(F")) and let = = rf; r € [0,1] and 6§ € OB(F"). Then, we

have
[Qr(A)11(6)-

z)\+a'

(Pf)(rf) = (1 —1%) "%

Next, from
P 2 _ 1 tht A 2 1 2\ —1 dnfld
1P = St%) t Jo 1@ ( )f||L2(8B(]F”))( —r) T T

and the uniform L?-boundedness of the operators @, (\) given by the key Lemma
we get [|PAfIl, < (1 + A+ ) fll 2oy -
Next, we turn to the proof of the sufficiency condition in the i)part of Theorem A.

For this, let F' € E5(B(F")). Since A is a non zero real number, the eigenfunction
F can be expanded in C°°([0 1[xaB(lF")) as

Z q)qu qu )

p,g€Ko

where f,, is some sequence of spherical harmonic functions. By the growth
condition on F', that is ||F||, < 400, we get:

1 [tht 2 2 2\—o—1,.dn—1 2
S 2 [ 12O Wl aiomemy (L = 1) 1 < < oo,

p,g€Ko

for every ¢t > 0.
Next, by using Lemma 3.4 on the uniform asymptotic behaviour of the functions
®, », We obtain :

Yle(W)* > ||fP(I||i2(6B(IE‘")) <P < 400 (7)

p.g€Ko

Thus the function f = > g fpe is in L?(OB(F")), and the representation
F = P,f follows from Proposition 3.1 and the necessary condition of Theorem
A established before. Furthermore from (7) we get v[c(A)[[|f | 205@) < [PAS]].-
This finishes the proof of the first part in Theorem A.

ii) Now, we turn to the proof of the LZ-inversion formula. Let F in
E;(B(F")). By the first part of Theorem A , we know that there exists f in
L*(0B(F™)) such that F' can be written as F = Pyf. Hence, expanding f into
its K-type series,
f= Y e ko [pq, the proposition 3.1 shows that

Z (I)A,pq qu ) (8)

p.g€Ko

in C*([0,1[x0B(F").
Next, set for each ¢ > 0, the following C-valued function on 0B(F")

ww) = [ F@Ps@w)in)

- = /tht </{)B(W)F(r0) NG )d0> (1 — p2)=o=Lpdn=lgp
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Then, replacing F' by its above series expansion in (8) and using again Proposition
3.1, the function g¢; can be rewritten as:

0o =1 XA [ @1 = e

p,g€Ko

Hence the L?(0B(F™))-norm of the function g; is given by:

2 _ 1 tht @ 2 1 2 7071d ? 2
||gt||L2(aB(]F”))_t_2 Z 0 [ Prpg(r)|*(1 —77) r ||qu||L2(aB(1F"))'

p,g€Ko

Now using corollary 2.1 giving the uniform pointwise estimate on the generalized
spherical function ®),, we obtain:

1
9]l r2om@Eny < Y1+ [Al+ W)”f”m(aB(IF"))-

This shows that the functions (g:):>o are in L*(0B(F")), uniformly in ¢ €]0, +oo[.

Also, since
2

L2(0B(F™))

| 1e) 79—

2
(M) ~7 2 ol dn )
= Z HT/O |<I)A,pq(r)| (1_7"2) g b — 1 x ||qu||L2(aB(]F"))7
P.g€Ko
we can see, using the uniform pointwise boundedness of ®, ,, given by corollary
2.1 as well as their uniform asymptotic behaviour in lemma 3.4, that we have:

2

2@y ~ O

lim |[[e(\)| g — f

t—+4o0

This finishes the proof of the part ii) in Theorem A.

Remark 4.1.  we should mention that the family of functions (g;);~0 is in fact
LP-uniformly bounded, for every p > 1, provided that ||F|, A < +oc.

Proof of Theorem B: The main tools that will be used in proving Theorem B,
are the Key Lemma and the L?-inversion type formula for the Poisson transform.
In fact the Key Lemma shows that, for every p > 1, the range P\(LP(0B(F"))) is
continuously embedded in EY ,(B(F")).

Now, in order to show that, for p > 2, the Poisson transform operator P, maps
LP(OB(F")) onto EY,(B(F")), we first mention that for, p > 2, we have the
inclusion E} (B(F")) C EX(B(F")).

Then, for given F' € E (B(F")), we know by Theorem A that there exists
f € L?*(OB(F™)) such that P,f = F, with the property that the function f can be
recovered from F' via the formula f(w) = |c¢(A)| ™ imy_ 400 g¢(w) in L2(OB(F™)),
where:

w) = [ F@P-s@w)in)

_ 1 tm L 2\—o—1_dn—1
- - /O </BB(Fn)F(r9)PA(r0,w)da) (1 — r2)=olpin=lgy,
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Now we will show that the above given function is in fact in the space LP(0B(F")),p >
2.
Let h be a C-valued continuous function on 0B(F").

We have:
—92 .. — —
1 =
e Jim [ gl) ) / ey { (R
But
/63(11?“) gt(w)h(w)dw

= /OB(]F") E /B(o,t) P,\(m,w)F(x)d,u(x)]mdw
= /33(11?”) E /Otht /aB(]F") P_\(r8,w)F(ro)(1 — r*) 1r® ldr| h(w)dw

Since the Poisson kernel P,(rf,w) is symmetric in # and w, then by using the
Fubini Theorem, the last integral can be rewritten as:

Thus by using the Holder inequality in the integral with respect to €, we obtain

(Pyh) (r@)\qu] % l /8 . |F(r0)\pd9] :

PR (r0)F (r0)df) < /
ey PRG0N0 <[ [
where ¢ is such that % + % =1.

Next, the first part of the proof of Theorem B shows that, for every ¢ > 1, the
following estimate holds

1
q

2y5
VaB(w) [(PAR)(r0)|7d6| < (1 —1%)5 AN, @)1l Loomeny) -

Hence,
h(w)d
ey 91BN
< A()\ q)||h|| n l/tht(l _ ,,,2)—0/2—1 / |F(’I“9) |Pd0 %Tdn_ld’l‘
- ’ La@BE") ¢ /o OBE™

< AXNDIFIL PN ooy

/BB(]F") flw)h(w)dw| < |c()\)\_2A(/\, q)||F||*,p||h||Lq(aB(1Fn)).

Taking the supremum over all continuous functions h with ||A[|.,pEn) < 1,
we deduce that f € LP(OB(F")) with [c(A)|[|f||zo0p@m)) < A(A,p)hFi This
finishes the proof of Theorem B.

|*,p'
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5. Proof of the Key Lemma

In this section we will establish the L?-uniform boundedness in r € [0, 1] of the
family of superficial Poisson transforms @, (\):

QW) = [ Qe 0,w)f (w)dw,

dB(F™)

where Q,(\,0,w) = |1 — T(O,w>|’i’\*‘7_
K

For this, we endow the homogeneous space 0B(F") = 1; of the vector space F"

with the following non-isotropic metric p(f,w) = |1 — (0,w>|% so that (OB(F"), p)
becomes a space of homogeneous type in the sense of Coifman and Weiss [4].
Hence, for the proof of the Key Lemma, we can use the technics of singular integrals
in the setting of spaces of homogeneous type.

For this, we will establish the following two lemmas.

Lemma 5.1.  i)The triangle inequality

pla,c) < p(a,b) + p(b,c)

holds for all a,b and c in B(F").

it) On OB(F™), p is a metric.

iii) Let B(w,d) be the ball centered at w with radius § with respect to
p.Then the volume of B(w,d) with respect to the superficial measure of OB(F")
behaves as 6% .

Remark 5.2.  Notice that in the case of F = R, p(a,b) = §|a —b|. Also
in the case of F = C the metric p(a,b) is the so called nonisotropic metric (see
Rudin [12] for more informations). Hence, we will establish the above proposition

only in the quaternion case.

Proof.  Since p is Sp(n)-invariant, we may take b = re (0 < r < 1), and we
have to prove that:

11— (a, &) < {1 —rai]? + 1 —res2}2 (9)
Put a = (aj,a’) and ¢ = (cy, ¢ ), the left hand side of (9) is then:

I

‘1 — a6 — <a',cl>‘ <1—a1&|+ |a'Hc'

Since
1 —aic| <|1—ra|+ |1 —real,
and

2
‘a" <1- |a1|2 <1-— r2|a1\2 < 2|1 = raq,

/12
with similar estimate for |c , we get (9).
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It is obvious that on OB(H") we have p(a,b) = 0 if and only if a = b.
iii) Since the metric p(#,w) and the superficial measure are Sp(n)-invariant we

have:
/ = / d6.
p(0,w)<d p(8,e)<d

Now use Lemma 5.4 giving below to get:

d9:c/ L 1Py ddm(a).
‘/I’(9a€)<5 qEC,|q\<1;|1_q|<52( |q| ) (Q)

By putting 1 — ¢ = t(cos @ + sinfy) with 6 € [0,7]; t > 0 and y € H; such that
Rey =0 and |y| =1, we obtain:

/ o = / (2 cos § — t)7 7443 sin? 9dhdt.
p(0,e)<6 {0<f<m;0<t<d? and [1—tei? |<1}

From which it is easy to see that

d(9) < ~v6%°.
/p(0,6)<5 ( ) =7

Lemma 5.3.  Let A be a non-zero real number and let
Qr(\,0,w) =1 —r{0,w)|[7*7°.
Then there ezists a positive constant v = vy(n) such that

i) sup |Qr(,6,w)| < v[p(8,w)]

0<r<1
for every 0, w € 0B(F").
y : p(0.9)
i) up, QA 0,0) — @ (0,0, w)| < (1 + \A\)W
for every 0,0 ,w in OB(F™) such that p(f,w) > 2p(6,0)

<y(1+ i)

i11) sup B

0<r<1

/ Qr(\, 0, w)dw
p(w,0)<d

for every d > 0.

Now, to prove the Key lemma, by classical device (see [Stein, 11]), the
uniform estimates given in Lemma 5.3 and the behaviour of the ball (see iii) in
Lemma 5.1) are sufficient to get the L?-uniform boundedness of the operators
Q-()\). Next, to handle the L? case, we can combine iii) in Lemma 5.1 and ii) in
Lemma 5.3 to get the Hérmander condition on the Schwartz kernel Q.(),0,w).

sup )
0<r<1 Jp(w,e)>p(e,0)

Qr(\ e, w) = QA 0, w)|dw < b(N),

where b(\) is some positive constant.
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Proof of Lemma 5.3: For r € [0,1] and d > 0, we set

I\, d) =/

p(8,w)

11— (0, w)[* 7 dw. (10)
<d
Then by using the K-invariance of the kernel |1 —7(f,w)| 7, and the metric
p(0,w) as well as the K- invariance of dw, we can rewrite I(\,r,d) as:

IOrd)= [ e (1)

where w; is the first component of w = (wy,...,w,) € S+,

Notice that (11) is uniformly bounded in r € [0, 1] and in d > 0.

To show its uniform boundedness in 7 € [3,1[ we will use the following
standard calculus lemma.

Lemma 5.4.  Let f be a C-valued function on 0B(F") with f(wi,ws,...,ws) =
g(w1). Then we have:

= 1 4l2yo—d
/aB(lF%f(w)dw N C/{qe]F,llJ|<1}g(q)(1 )7 “dm(q),

for some positive constant c.

Applying the above lemma, we see that the integral I(A,r,d) can be rewrit-
ten as:

IO r.d :/ 1—rg|~7(1 = [¢2)°¢dm(q).
Mrd) = |t and jgeay T () ()
We will establish the uniform boundedness of the previous integral only on the
quaternion case.

Therefore I(A,r,d) becomes:

IO\, d) = /

1—7r —tA—2n—1 1 2 2n_3dm )
el gl<t and MKdQ}\ q| (1 —lql) ()

Now using the following change of variables w = 1 — rq as well as the polar
coordinates on H: w = t(cos@ + ysinf) with € [0,7]; ¢ > 0 and y € H, such
that Rey = 0 and |y| = 1, the above integral can be written-up to the area of the
unit sphere of R* as:

IO r,d) = /

A2l Hr2 — ‘1 — 2tcosf + tQ‘ H 2ni?jt?’dt sin? 0d#,
Tar

where I'y, is the set

Fd,r = {(t, 9) € R+ X [0’ 7]'[, r]_ — teie < 7“d2}.

<r and ‘(1 —r) —te®

Thus:

912n—3

1I(\, 7, d)| < 27(n=2) r?— |1 te

/ f=iA=(2n=1)+1 dt sin? 0d9‘.
Fd,r
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Next, set N = 2n — 1 and replacing sin®§ by:
1 ] .
Sin2 H = Z(6229 4 6—210 _ 2)’

we can use the result in [3] to conclude that, for every r € [3,1[ and every
A € R\{0}
1
|I()‘7T7 d)‘ < 7(1 + W)a
for some positive constant v = 7(n). This finishes the proof of iii).
We end this paper by further remarks and comments.

Remark 5.5. We should notice to the reader that the natural method in prov-
ing that ||Pyf||, is finite for every f € L?*(0B(F")) in Theorem A, is to take
spherical harmonic expansion of f € L?(0B(F")). But doing so we will be faced
on establishing some uniform estimates on Jacobi functions. More precisely we
prove estimates of the following type:

2
1 2 2\ —o—1 1
- ® 1— olgm(z) < [v(1+ I\ + —
Sup B(O,t)l apal (1= z]%) (z) < |y(1+] |+|A|)] :

for some constant independently on the pair p,q € K.
The needed estimate is closely related to Strichartz conjecture for general Jacobi
functions (see conjecture 5.4 in [12]), which reads in our case as:

1 o
sup — |Bapgl” (1 = 2[*) = dm(z) < ~le(V)I,
>0 1 /B(0,1)

for every p,q € K,.

Here, we have turn around this conjecture by discussing the uniform LZ2-
boundedness of the family of superficial Poisson integrals @,(\) (see the Key
Lemma of this paper). But our constant is not too sharp comparatively to the
constant |c(\)|? in Strichartz conjecture.

Remark 5.6. We should mention that along the lines of the above proof and
the results given in the appendix of [3] we can establish the following “ reduction
formula from 0B(H") to dB(CY), N = 2n — 1"

[ = r(0,0) [
dB(H™)

_ C(n) —ix—2n+1
= 5 X {/BB(CN) 1 —r(u,v)| dv

- - r{u, v)[ A2 <71 —rlwy) | m) dv},

oB(CY 1—r{u,v)y 1—r(u,v)

where (6, w) is the quaternion scalar-product, whereas (u, v) is the usual Hermitian
scalar in C".
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