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Abstract. = We study finite-dimensional Lie algebras £ of polynomial vector

i = 1,...,n) and

837,' (Z
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T1— + --- + z,——. We show that the maximal ones always contain a
or ox,,

0
semi-simple subalgebra g, such that Dz €g(@=1,...,m) for an m with

fields in n variables that contain the vector fields

i
1 < m < n. Moreover a maximal algebra has no trivial g-modules in the space

0
spanned by 67(@ =m+1,...,n). The possible algebras g are described in
i

detail, as well as all g-modules that constitute such maximal £. The maximal
algebras are described explicitly for n < 3.
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1. Introduction

The classification of Lie algebras of vector fields has a history of more than
100 years. Lie [7] was particularly interested in it, since he tried to create catalogues
of differential equations with a fixed symmetry group. Apart from this, there
are several motivations for considering this problem [1]. The problem in its full
generality is (still) too difficult to attack. Our concern will be transitive algebras,
that are also graded. Remember that W, carries a natural filtering, determined
by the lowest order terms that appear in the Taylor expansion of the coefficients of
a vector field. If one considers with this filtering, the associated graded Lie algebra
of a transitive Lie algebra, one obtains the graded transitive Lie algebra that we
study here.

This paper is a continuation of [10]. There is studied the relation of the
graded transitive Lie algebras £ with its structure as an abstract Lie algebra.
Results are derived about the forms of the Levi subalgebras, the radical and the
nilradical of £. Of particular interest is the product g of those Levi subalgebras
that have elements of degree -1. It follows that g = g_1 @ go @ g1, where the
subscript denotes the degree.
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There were two main conclusions in [10]. The first one was that when
studying maximal algebras £, it is unnatural to take maximality in the class of
Lie algebras of fixed maximal degree, cf. [4, 5, 6]. The second conclusion was that
to make progression, one will have to study how £ is a representation over g.
Exactly these two points we take into account, and end up with a rather detailed
description for the possible forms of £. It seems difficult to proceed any further
in the general case. This is due to the possible presence of certain quadratic
terms @, in g . These terms can exist only if only S?(V*) ® V contains a go-
module isomorphic to the go-module g;. Here V' is an arbitrary go-representation
(and Q. € S?(V*) ® V). The lowest number of variables where this happens is
n = 3. Another complication occurs when the space spanned by 0,, (i =1,...,n)
contains trivial g-modules. Such algebra £ can not be maximal, but we cannot
prove that £ is contained in a maximal one in case (), # 0 and n > 5. We give
a more detailed overview of the results in section 2., after introducing the notions
that play an important role.

Acknowledgment. [ like to thank Jan Draisma for several useful remarks, and
Loek Helminck for providing me with the ITEX-form of the diagrams in table 1.

2. Definitions and description of results

Consider the Lie algebra W, of all polynomial vector fields on C*. An
element X € W, has the form

X = i P;(x)0,
i=1

where the P; are polynomials in n variables © = (z1,%9,...,%,), and 0,, = %.
]

We say that X has degree k — 1 if the polynomials P; are all homogeneous of
degree k. We write X € Uy_;. If we define the Euler vector field E = )" | 20,
then we have exactly that

Uy ={X e W,|[E,X] = kX}. (1)

Thus W, becomes a Z-graded Lie algebra,
W, = EB Uk-1; [Ui, Uj] C Uiy
k=0

Our object is to study subalgebras £ of W, that satisfy the following conditions:
(0) £ is finite-dimensional.
(1) £ is graded: if £, = £N Uy then £=&L.
(2) £ is transitive: £_1 =U_;.

We will pay special attention to the case

(3) £ is maximal: there exists no finite-dimensional Lie algebra £ C W,
containing £ properly.
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We call £ satisfying (0)-(2) a graded transitive Lie algebra, and those satisfying (0)-
(3) a mazimal graded transitive Lie algebra. Note that linear changes of coordinates
map £ to a Lie algebra that we call equivalent; more precisely the aim is to study
all equivalence classes of maximal graded transitive Lie algebras of vector fields. If
£ is maximal then £ contains E: if F ¢ £ then £ = £xCE is a one-dimensional
extension of £. Once a finite-dimensional Lie algebra of vector fields contains F
it is automatically Z-graded, thanks to equation (1). Throughout we will assume
that £ € £.

Our method is based on results from [10]. These results concern the struc-
ture of algebras £, not necessarily maximal, as an abstract Lie algebra. Usually £
is not semi-simple; £ can only be semi-simple if it is contained in U_; & Uy & Uj .
Let R denote the radical of £. If R # {0} then also V = RNU_; # {0}. We
can perform a linear change of coordinates such that

V= <aﬂvm+17 al'm+27 ) 8In>

in the new coordinates (which are again denoted by x1,zs, ..., z,). Let Iy denote
the (graded) ideal’ in £ given by

Iy ={X e glX = zn: Pi(x)0y, }

i=m+1

The quotient g = £/1 is semi-simple, since fR is contained in I/, and also graded.
Moreover the elements of g are of the form (omitting +1y )

m

X = ZPi(xl,xQ, ey Ty ) O,

=1

Note that P; is independent of x; for j > m, since otherwise [0,,, X| ¢ Iy, which
contradicts the fact that 9,; € ‘R.

Now we are left with g, which is semi-simple. We can therefore decompose
g into, say r, simple ideals:

g:g(l) Xg(2) X e Xg(r)
Each summand g® is graded, and we have
# = o o

with dim(g"”)) = dim(g{”’) = m; # 0 and Y- m; = m. Since the summands g
mutually commute, each g itself can be considered to be a graded Lie algebra of
vector fields on C™ . The Euler operator on C™ is a derivation of g : therefore
it is contained in g®.

Now we can describe the contents of this paper. First (section 3.) we
describe all possible g®. This description can already be found in [8], and is
summarized in table 1. Therefore the Lie algebra g can be described explicitly.

1 Iy is the maximal ideal J such that JNU_; = V; this statement, noted by Jan Draisma,
simplifies some proofs in [10].
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Of great technical importance is lemma 3.6, which describes the elements of g; in
terms of those of gg.

The Levi-Malcev theorem states that there exists a Lie subalgebra g in
£ such that g = £/I;,. We call g an extension of g; we can assume that g is
graded, see section 4.. Let us denote the remaining variables (Zmy1,---,%n) by
(Y1, -, Yn—m), so that V = (0,,,...,0,,_,.). The new terms that appear in g
are completely determined by the action on V. After some calculations one ends
up with the form given in proposition 4.1. In particular g ; = (0p,,...,0,,,) is
unchanged (after maybe a linear change of coordinates), and X € g; takes the
form

=1 i=1 1=1

where the terms of P;, L; and (); are of the forms cx,xp, cx,ys and cy,ys, respec-
tively.

Then we come to the study of the module: Iy is a module over g. This
we study in section 5., for the case that V' contains no trivial gyo-modules. In this
case we prove that there exists a unique maximal algebra (assuming g # {0} is
fixed).

If V' contains a trivial go-module, the situation is more complicated, see
section 6.. Though £ is never maximal, we only can prove that it is contained
in a maximal algebra, in case that @); =0 for all 2 = 1,...,m. If some Q; # 0,
it is possible that £ is contained in a maximal algebra by suitably extending
g. Essentially this depends on the existence of a suitable Z-grading, called the
zdegree, in (an extension of) £.

Finally section 7. discusses the cases n < 3, while section 8. contains the
conclusion.

3. Lie algebras of depth 1

We discuss a class of Z-graded Lie algebras, which are closely related to
Lie algebras of vector fields. For convenience we use

Definition 3.1.  Suppose g = @Pg; is a Z-graded Lie algebra. We say that g
is of depth 1 if

e g, ={0} for all £ < —1 and g_; # {0}.
® g, = ®k>08k contains no non-zero ideal of g.

It follows that for X,Y € g: [0, X] =[0,Y]foralld e g1 =X =Y (k> 0).
Inductively, we obtain that any X € g is uniquely determined by the products

[01, [0y ..\ [Ok41, X] -],

where 01,05,...,0k11 € g—1 and k£ > 0. This way X € g, is given by the linear
map A = ¢y (X):
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given by

1
A(ala .- 'aak:—H) = y[alu [62a R [ak-FlaX] .- ]]

Due to Jacobi’s identity and [9;,0;] = 0, A is symmetric, hence A € S¥+!(g* ) ®
g 1. Choosing a basis in g ;, we obtain a linear map ¢y : gr — U, where Uy
denotes the space of all vector fields on C™, m = dim(g_,), of degree k.

Composing all ¢y, we obtain a linear map ¢ : g = W,,, with @[y, = ¢). Clearly
¢ is injective. One can prove (see [5]) that ¢ is a Lie algebra morphism, of degree
0. Hence we find that W, contains all Lie algebras of depth 1 with dim(g_;) =m
as subalgebras.

This point of view gives us the opportunity to compare two Lie algebras
g of depth 1 and with dim(g ;) = m. Since all are embedded in W,, it can
happen that one is contained in another; those finite-dimensional ones that are
not contained in any other of finite dimension, we call maximal.

Next we turn to the case that g is simple. Since the Killing form is a
non-degenerate pairing between g, and g_j, we see that necessarily

g=0_1Dgo® g with dim(g_;) = dim(g,)-

Conversely, suppose g is a simple Lie algebra with a Z-grading such that g, = 0
if and only if |k| > 1. Since g contains no non-trivial ideals at all, g is of depth
1. Therefore we will investigate now which simple (abstract) Lie algebras g can
be given a Z-grading such that g, = 0 if and only if |k| > 1. Let us fix a Cartan
subalgebra b in g, of dimension £. Now g is Z‘-graded by the (coefficients of)
the roots. Suppose 0 = nja; + --- 4+ ngay is the highest root. If ny, = 1 for a
certain s, we can put a Z-grading on g by deg(e,) = m; if a = Ele m;q;. Since
|ms| < ngs, we have indeed that g=g 1 D go D g:-

The simple Lie algebras of depth 1, obtained in this way, are given in table
1; we depict the Dynkin diagram of g = X, (where X = A, B,C, D or E) with
the point s colored black and write X, for this graded Lie algebra.
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| g | Diagram | 9o | dim(g_,) |

1 2 s -1 l
Aps | OO0 @®-0—0 | A xCxAp,|s(l+1—5s)

1 2 -1 ¢
e—O----0=—0

B, B, 1 xC 20— 1

1 2 -1 L
+1
C, | O—0 O A1 xC (31
2

-1
1
o—O O—<
Df'l L Dg,l x C 20 — 2
-1
1 2
Dé-é ¢ Ag_l x C (f)
2

1 3 I4 5 6
FEq &—0O0—0—0—0 D5 x C 16

2
1 3 T4 5 6 7
E, |o0—0—0—0—0—=e Eg x C 27

Table 1. Simple Lie algebras of depth 1
In cases where s is unique, we omitted it in the notation; moreover we have put
Ay ={0}. Obviously Ay and Ay 44, are isomorphic, as well as Dy and Dy ;.
The structure of gy is described by the Dynkin diagram of g, with s
omitted; the summand C corresponds to the space spanned by the Euler vector
field; it is central in go. Finally dim(g_;) can be calculated by

: 1. :
dim(g_;) = i(dlmg — dim gy).

The following theorem tells that the simple Lie algebras of depth one are all
(gradedly) isomorphic to one from the table above.

Theorem 3.2.  (Morozov, [8],86)
The simple Lie algebras of depth 1 are those given in table 1.

Example 3.3.  Let us construct A, in terms of vector fields. Generators for
Ay are {E;;} with 4,5 =1,...,£+ 1 and there is one linear relation among them:
Ei+Ey+--+ Epi141 = 0. The commutator is defined by

[Eija Eab] = 5jaEz'b - 5ibEaj-

Moreover
g-1 = (Ei|i > s+1andj<s).

Let us denote
&'j:a“j :Es-l—i,j (ZS[—S-l—]_,sz)
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and
Xij = Ejsqi (i<l-s4+1,7<5s).

For Eg (a,b < s), we have
[aij; Eab] = [E5+i,j7 Eab] = 5a,jEs+i,b = 5ajaib

so that
l—s+1

Eu = Z ZiaOip (a,b < s).
i—1

Similarly, [8,-j, Es+a,s+b] = _6biEs+a,j = —51”'8(1]', and we find
Egias00=— bejaaj (a,b<l—s+1).
j=1

Finally,
[8ij: Xab] - [Es—i-i,j; Eb,s+a] = 5jbEs—|—i,s+a - 5aiEbj-

Hence by integrating we find

Xap = — E TajTin0ij-
L]

Note that
s l—s+1 l—s+1 s
Evt Bnt oot B =3 ( 5 a) .S (— zxkjakj) o
k=1 =1 k=1 7j=1

The procedure above shows how inductively we can obtain the realization of g in
terms of polynomial vector fields. Once a (graded) basis of g is known, as well as
the corresponding structure constants, the realization is fixed.

We now describe this construction in terms of roots and root vectors.

Let {eq, h;} be a Chevalley basis of g, where « € R and i = 1,2,...,¢.
As usual, we denote h, = > m;h; for a = > m;q;. Let, as above, s be such that
deg(eq,) = 1. We define

R={a=Y mi € Rlm, = 0} = {a € R|deg(eq) = 0}

and
R = {a= Zmiai\mi >0 forall i and o+ a5 € R}.
1#£S
Note that 0 € R. Clearly,
R=(—a,—R)U RU (as +R) (disjoint union),

corresponding to the degrees -1,0 and 1, respectively. For a € R we denote

Op = €_q,—a and Xo = €a,ta-
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The realization of g is by vector fields in the variables z,, o € R. Hence |R| =m
and

g1=(OuaeR), g =(Xsa€R),
while gy consists of vector fields of the form

Z CapTa0g3.

a,BeR

Hence gy acts naturally on the space S* = (z4|o € R).
Lemma 3.4. The go-modules g, and S* are isomorphic.

Proof. The space g; is the module dual to g ; by its non-degenerate pairing
with respect to the Killing form (9|X), with 0 € g ; and X € g; the gg-action
on g; is dual to the gy-action on g ;:

(9llg, X1) = —(lg, ]| X).
We show that S! satisfies the same relation, with respect to the pairing (.,.) given
by
(8a,xﬂ) = 504,3-

Indeed, for g =) ¢,.x,0. on one hand we have

(Oa, [9, z5]) = (Oa, chﬁ‘TW) = Caps

while
([9:0al, p) = —cap-
Consequently, also S! is the module dual to g_; . [ ]

Remark 3.5. In the ADE cases, the Killing form can be normalized such that
the isomorphism of the gg-module S' and g, is given by z, — X,. In general an
isomorphism is given by x4 — n,X,, where n, = 2/(o|a).
For o, € R, with o # —( we put
[€a, 5] = c(, Beass.
We have c(a, 8) # 0 if and only if a« + 8 € R. Moreover we put c(a, 3) = 0 if
a+ 5 € R. Now we can describe gq in terms of vector fields. For e, € gy we have
[aﬂ: ea] = C(—Cks - 57 a)e—as—/)’-}-a = C(_as - ﬁa a)aﬁ—a-

Hence
€q = Z c(—as — B, 0)x05_q-
B—a€eR
Similarly for h; € h we obtain
hi =" (B,0:)z50p
B

where 2(8la)

Q;

Next we consider X, € g;. The following expression is essential to us.
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Lemma 3.6.  Suppose for X, € g1 and 03 € g_; we have
[aﬂaXa] = Lg € go-

Then

1

_ B

Xo=3 ; zsLf.
BER

Proof. We have
X, = Z CGrye LT Oc;

B¢

we can assume that c¢§, = cJ5.. Now
(05, Xa] = Z CGreTryOc + Z 5T 0 = LA,
7€ v,€

Hence
1 1
2 >_msle = 2 > (Z Breae+ ) Cﬁg&%@) = Xa "
7€ 7€

We can express L? in the Chevalley basis by

¢ —hayta (= B).

Moreover in view of remark 3.5 we have for e, € go:

1B = {c(_ab’ — B, + a)ea,ﬂ (a #+ ﬂ)

1 1
[677 Xo] = 9 Z[ev’ x/?’]Lg + 9 be’[e% Li]
1 _ 1
= 5 Z c(r)/a s + /B)nﬁnﬁj—'yxﬁ-F’YLg + §$ﬂ[67, Lg]
1 18—
=3 > " ap (c(v, 05 + B — VInpynz LET7 + [ey, LE]) -

On the other hand [e,, X,] = ¢(7, @ + @) Xa4,. Comparing the coefficents of x4
we see that for all a, 8 € R and v € R holds

(s + B = gy L + e, LE] = ey, s + ) L (2)

Note that this is a relation between elements in gy, containing only linear com-
binations and commutators. Consequently it holds in all representations of g, as
well.

4. Extensions of simple algebras of depth 1

We proceed to investigate how the semi-simple algebra g of depth 1, as
considered in section 3. above, can be extended to vector fields in more variables.
So we assume that g is realized in terms of vector fields in m = dim g _; variables,
which we call xy, 2o, ..., 2, and we try to reconstruct the original algebra g C £
in n variables, such that g = g/Iyy. For convenience we call g an extension of
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g; we stress that g and g are isomorphic Lie algebras. The remaining n — m
variables, we will call ¥, 92, ..., Yn_m- As to the existence of g, the Levi-Malcev
theorem tells that £ contains a subalgebra g such that g/, and g are isomorphic.
In case that all ideals in £ are Z-graded, it is possible to choose g to be Z-graded
as well?2. Hence g =g_, @ §o D §1- Let us now study § step by step.

First ¢ = 0,, € g_1 corresponds to g € g_; of the form

n—m
+ Z a;;0
j=1

QI
Il

Introducing new coordinates in C* by

Yj = yj + 2 aiT]

we obtain g = 0,;. Hence we can assume that 0,, € g (dropping ’).
Next we turn to g € go. For g =) ¢;jx:0;; we have

Z Czyxza:c] + ij T y Yj

2,j<m

bl

Now [0, 7] € g, and also

[0u:, 3] = Zcmaw] - Z 8f96

0f;
ox;

This implies that =0 for all ¢,5. Hence

g = Z Cij$iamj + Z d”yz(?y]
t,j<m L,j<n—m
In particular, we have for e, € gy that

ey =€, + E, with E, = Zdijyiayj

and similarly

he = he + H,.
Note that [eq, Eg| = [eq, Hy| = [hy, Eo] = [hy, H] = 0 for all o, 8 € R and all
v,€ € R. Because gy and g are isomorphic, we obtain that {E,, H,} form a
representation of gy, realized by vector fields in the variables y1, ..., ¥n—m-

Finally we arrive at X, € g;. Similar to lemma 3.6 we need that

ZxﬁLMZxﬂ — LY) + Qa,

20ne can follow the proof of the Levi-Malcev theorem step by step, and finds that all occurring
spaces can be chosen to be graded.
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where

1f =

_has—l—a (a/ = B)a

and L2 is as in lemma 3.6, and

Qo =) cyiyiOy,.

1,5,k

{dﬂ%—@%+awaﬂ(a¢m

We still need to check the commutators [gg, 1] and [g1, §1]. For €, € go and X,,
using remark 3.5, we have

[y, Xo] = [e, + E ngLﬂ++ng — L2) + Q]

= ley, X+ %wﬂ] (LG = L8) + ) wslBy, L — L] + [E,, Q]
= c(7, a5 + )Xoty + [Ey, Qal
+3 (v, a0+ B)ngngl wpi (L — L)+ x(E,, LE — L]
=c(, as + @) Xoiqy + [Ey, Qul
+) g (c(v, 05+ B— VInpng (LY — LE ") + [E,, L5 — LE))

Using equation (2) the last sum can be rewritten, and we obtain

(e Xa] = e, s + @) (Xasy + D 24(Lhs, = L)) + By, Qul
Hence if (and only if) [E,, Q.] = c(7v, as + &)Qq+y, We obtain
[y, Xa] = c(7, as + @) Xais-

For [h,, Xa] we have the same reasoning.

Finally we need to consider [X,, Xg] = 0: clearly we need [Q.,Qs] = 0.
All other terms (if present) involve some z.; hence its suffices to prove that
[67, [XQ,X/B]] = 0. Now

[0y; [Xa, Xp]] = [0y, Xal, Xp] + [Xa, [0y, Xp]] = [LT, Xp] + [Xa, L}]-

These commutators are commutators of g, and g;, which we just considered.
Hence we obtain

[0y, [Xa, X5l] = [La, Xp] + [Xa, Lj]-
But this is 0, since
(L3 Xp] + [Xa, L] = [0;, [Xa, Xg]] = 0.

Combining all results we obtain

Proposition 4.1.  Suppose g C W, s a graded extension of a semi-simple
g C W,, of depth 1, with notations as before. Then, up to a linear change of
coordinates, g s of the form

e for degree -1: 0, = 0, for all o € R;
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e for degree 0:
€a = €q + E,
}_la = ho + H,
with {E., Hy} a representation of go;
e for degree 1:

Z$5Lﬂ+zl'5 L/B +Qa

with [Qa, Qs] =0, and X, — Q. is a morphism of g;-modules.

5. £ as a g-module; no trivial modules in V'

Now we know the form of g, we study £, or rather Iy, as a g-module. As
before, we write
g= ﬁ(l) % g(Q) ceex g(")
with each gt snn;))le of depth 1 The special simple root vector in g of degree
1, we denote by es In each g we have a partial Euler operator £ | satisfying
[E @ o] = 0 and [ED, X,] = 1, where X, = e € §?. If o!”, . a?) are the

simple roots of gt} with corresponding Cartan elements h1 e hf;), then
£;
E® = Z c]hgz),
j=1
The coefficients ¢ = (¢i,...,cq) are given below for the different simple algebras
of depth 1.

| Algebra | the vector ¢ = (c1,. .., ¢p) |

Ags ﬁ(f—i-l—s 20+1—=5),...,s(+1—5),5(£—5),...,28,5)
By (1,1,...,1)

C, (1,2,...,0—1,30)

Dy | (1,1,...,1,50)

Dy %(1,2,...,6— 2,50,30)

Es 5(4,3,5,6,4,2)

E; 5(2,3,4,6,5,4,3)

Table 2. The Euler operator expressed in simple Cartan elements

Essential in the sequel is that in all cases ¢; > 0, for all 7 =1,...,¢;.

As g is semi-simple, the representation theory of (finite-dimensional) rep-
resentations is well-established. In our case the representation to consider is Iy .
We will study this representation by its lowest weight vectors. We say that v is
z-independent if v is independent of all z, (a € 7%)

Lemma 5.1.  For v € Iy the following statements are equivalent:

e v is a lowest weight vector for g;

e v is an x-independent lowest weight vector for g .
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Proof. First suppose v is lowest weight vector for g. Since 0, € g_1, we have
[0a, v] = 0, hence v is independent of all z,. Moreover v is a lowest weight vector
for go C g as well. The converse is similar. [ ]

This lemma is important for us, as it turns the study of lowest weight vectors
of g to the study of z-independent lowest weight vectors of go. Note that

ﬁ() :Dﬁo X (CT,

where Dgy = [go, 8o and C" is the r-dimensional center of gy spanned by the r
partial Euler operators in go. These Euler operators belong to the (chosen) Cartan
subalgebra of g, and therefore acts diagonizably on Iy .

For the time being we only consider v € W,,, independent of =, and study
the gg-action on it. We will denote

Wil = {v € Walv= 3 P}

If v € Iy N W]y| then, due to the complete reducibility of go-modules and lemma
5.1, we see that v is in the go-module, generated by all lowest weight vectors of
g. Note, that since gy does not increase the (polynomial) degree of the vector
field that it acts upon, any v € W]y| generates a finite-dimensional go-module.
However, a priori, the g-module generated by v can be infinite-dimensional. Let
us investigate this situation in more detail.

First consider the space V = (0,,,0y,,---,0y, ,.), which is a go-submodule

Y YYn—m

of £. In general gy does not act irreducibly on V. Correspondingly, we split V',
V=DV,

where each V{; is an irreducible module. We choose coordinates in V{; such that
the Cartan elements h, act diagonally, i.e. in these coordinates,

- m n—m
ha = Za,xzawl + Z bjyj(')yj.
1=1 j=1

From [10] we have some more knowledge on the modules in V. We denote by N
the largest nilpotent ideal in £. Remember that

M ={X € R| ad X is nilpotent}

In [10] it is proved that there exists a flag 0 = Wy, C W, C --- C W =V of
subspaces in V' such that [N, Iw,,,] C Iw, and moreover [£, Iw,] C Iw,. For a
subspace W C V', we define

k
Iy ={X € £|X = ZPi(ac,y, 2)0y, }-
i=1
Note that Iy, is an ideal in £, not merely a linear subspace. In particular W; is a
go-submodule of V. Hence any W; is a direct sum of the irreducible go-modules
Vij)- We choose coordinates ay@ (t=1,....t; j=1,...,t; =dimW; — dim W;_

in V' such that W = <ay(i)],...,am) is a go-submodule of V, and W, =
¢ ;

ytz
®i>kW(i)- In these coordinates, the relation [, Iw,,,] C Iw, turns into:
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Any X € M is of the form

X = Z P’L](x’ y(l)a cee y(iil))ay](,i)a (3)
1,

while [£, Iy;] C Iw, tells that in any term P(z,y)d , occurring in X € £ we
J

have

P(z,y) = P(z,y",...,y") (4)

In fact for terms in (), we can do slightly better.

Lemma 5.2.  Let QQ, be as in proposition 4.1, and suppose y;y;0y, 15 a term in
Qo. Then if y; € W(*Z-l) and y; € W(";2), then 0, € W,y with i3 > 1, and iz > is.

Proof.  Since d,, € M for all ¢ = 1,...,n —m, we obtain [0,,,Q,] € M. The
lemma now follows from (3). u

Corollary 5.3.  Suppose V' is irreducible as a go-module. Then Q, =0 for all
a€eR.

The situation above holds in particular if dimV =1.

Throughout the remainder of this section, we assume that V' contains no trivial
go-modules. The case that V' contains some trivial g, modules is postponed to
section 6.. If V' contains no trivial submodules, then any 1; occurs in some }_Lj,
because [h;,v] =0 for all j implies [X,v] =0 for all X € go: v € V generates a
finite-dimensional gy-module inside V', with all weights 0.

Lemma 5.4.  Suppose V' contains no trivial go-modules. Then W[y| contains
only a finite number of linearly independent g-lowest weight vectors, that generate
a finite-dimensional g-module.

Proof. Remember that a g-lowest weight vector v is automatically in W[y],
and if it generates a finite-dimensional module, then h;(v) = —A\v with all \;
non-negative integers. Since the Euler operator EU) € gi) is a positive sum of
the A, this implies that EU)(v) = —Av with A > 0 for all lowest weight vectors
v that generate a finite-dimensional g-module. Since E() is central in go, it is
a scalar on the irreducible go-submodules; in particular £U) in constant on each
Visy- Hence [EY),8,,] = —b;8,,, with b; > 0 for all i =1,..., k. So if we define

B=Y B9 =Y 0+ Y bydy,
j i=1 i=1

we have b; > 0 for all . Since y; appears in at least one hg ) (and hence in at least

one EU)), we even have that b; > 0 forall s =1,...,n —m. We put b = max; b;.
Then for a monomial y"y5?...y,*0,, we obtain

a1 a9

[E, 4 ys” - Y Oy = BYT"Y5” -y,
with 8 > a;b; — b for all i = 1,...,n — m. If the lowest weight vector v € W[y]
generates a finite-dimensional g-module, and v contains the term y*d,, then
necessarily a; < b/b;, for all ¢ =1,...,n — m. This restrict the possibilities for v
generating a finite-dimensional g-module to a finite-dimensional space. |
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As a consequence to the proof of the lemma above, we state

Corollary 5.5. Consider the g-module S, generated by 1 and the monomials
zi, for i=1,...,m. The only finite-dimensional submodule in S is (1).

Proof. The method of proof is the same as above; we have [E,z{"...z%"] =
(a1 + ag + -+ -+ ap)zi* ... 2% . Hence the lowest weight vectors, except those in

(1) all have positive weights; so all generated modules are infinite-dimensional. m

Lemma 5.4 allows is to prove the following proposition.

Proposition 5.6.  Suppose £ is such that V contains no trivial go-modules.
Then £ is contained in a maximal graded transitive Lie algebra £'.

Proof. There are three cases to consider:

(a) V = {0}, so £ is semi-simple. Suppose £ DO £. Then we can decompose
£ into irreducible £-modules. Let M be a submodule. If X € M, then by
suitable differentiations, hence action with elements 0,, € £ we obtain that
Oz; € M. Hence M C £, and £ = £. So £ itself is already maximal.

(b) V. # {0} and V # U_;. We construct £ by adding to £ all finite-
dimensional submodules in W, . According to lemma 5.4 £ is finite-
dimensional, and taking commutators among elements in £’ does not take
us outside £'. Clearly, £ is maximal.

(c) V =U_;. Then £ is contained in a multi-graded transitive Lie algebra £',
which can be chosen maximal (see [10, 9]). |

A special situation occurs when @), = 0 for all a € R. In this case we can
characterize the finite-dimensional g-modules by the weight.

Lemma 5.7.  Let £ be such that [V,[V,g|]] = 0, and suppose that v € W]|y]
is a lowest weight vector for g, satisfying [hi,v] = —\jv with all \; non-negative
integers. Then v generates a finite-dimensional g-module.

Proof. It is enough to prove that (ad &)**'v = 0, as these last relations are
the defining relations for the irreducible module of lowest weight (A1,..., A;,) (see
[3], §21). Due to the structure of sly(C)-modules this is equivalent to proving that
(ad €;)v = 0 for a natural number a. For ¢; € go this is clear, since the go-module
generated by v is finite-dimensional. So now consider & , with deg(é;) =1. (We
use the notations from section 4., but write X, = ev’ omitting ) everywhere.)
This element has the form

_ 1 -
Xy = 3 ngl/g + ng(Lg — L/g)

Since v is x-independent, we have

[XO, v] = Zxﬂ[f‘ga v].
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Now L} = [85,Xy] € §_ for B # 0. Hence in [LZ,v] only the term [L3,v] =
[—hs, v] contributes. Hence

[Xo,v] = mo[—hs, v] = ToAs0.
The next step gives, by using [Xo, zo] = [szohs, 7o) = —27 (lemma 3.4)
[Xo, [Xo, 7]] = [Xo, o] Asv + T0As[ X0, v] = =25 A0 + 32X 20 = (X)) (A5 — 1) 20

Inductively we find

a—1
(ad Xp)*v = 1_[(/\s —i)xd.

=0
Hence (ad X()% =0 for a = A\, + 1. u

Remark 5.8.  The characterization in lemma 5.7 does not hold when @, # 0.
As an example, consider in three variables £ with

8 = (On, 200, + 210y, + 2y20y,, 7%y + 22Y10y, + 27Y20y, + Y10,,).

In this case all v € W][y] are g-lowest weight vectors. The space of lowest weight
vectors v for which [hy,v] = —Av with A > 0 is

<ay17 aym y18y17 ylaym y28y17 y28y2>a

while the space of lowest weight vectors generating a finite-dimensional g-module
is

<ay1 ) 8:!/2’ ylayza ylayl + 2y28y2>-

The graded transitive Lie algebra £ containing g above and (0y,, Oy,, ¥10y,, Y1 +
2y0y,) is maximal (we added all g-modules that are possible). This example
appears in section 5 of [10] for the case A = 2.

6. £ as a gop-module; trivial modules in V

Now we consider the case that V' contains some trivial gyo-modules, say
Vi, -+ > Vin—m—k) With coordinates zi,...,2,—m—x. Let yi,...,yx be the remain-
ing coordinates. From now on W][y| will refer to the variables yi,...,y, only.
Since [F, Yi0.,] = biy;0,; with b; > 0 we see that terms of the form y;0,, are not
present in Iy,. Also g contains no z; or d,;:

Lemma 6.1.  Let V' contain n — m — k trivial g-modules, with coordinates
Z1y-+y Zn-m—k- Then z; and 0,; do not occur in g (i,j=1,...,n—m—k).

Proof.  Since, by assumption [0,,, X] = 0 for all X € gy, the only place where
z; or 0, can appear is in the terms of @, in X, € g;. Since all terms T in
Qq satisfy [E,T] =T, we see that T contains a yj, hence, like above, 9, is not
possible. Hence the only possibility is 7' = y,2;0,,. But now [0,;,T] is a term in

M with E eigenvalue +1. This is impossible. n
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This lemma implies that £ with trivial modules is an extension of one without
trivial modules, namely the algebra in x and y variables only. We denote this
algebra by £(z,y):

L(z,y) =g X (Iy NClzy, ..., 2m]W[y]).

We will study £ as an extension of £(z,y). If we split £(x,y) into irreducible

g-modules, we see that the z-dependence within such a module M is “constant”:

if P(z)v € £, for v € M, then also P(z)w € £ for all w € M. It follows that

if M contains an element that doesn’t act nilpotently in £, then P(z) must be

constant. This happens in particular for simple Levi subalgebras in £, as well as

for |/9. Hence only M C N £(z,y) can get z-dependent coefficients.
Important is the following lemma.

Lemma 6.2.  Suppose V C £ contain the mazimal trivial go-module W =
(Ons--vy0,,_, ) with complementary module W = (0y,,...,0y,). Then Iy is an
wdeal in L.

Proof.  Suppose Y € Ijy. We need to prove that [X,Y] € Iy for all X € £.
There are 4 cases to consider:

(1) Oy, € 8-1; [0, Y] € Iy is clear.
(2) X € go; since W is a go-submodule, [X,Y] € Iyy.

(3) Xo € gi1; since @, contains no terms of the form y,y;0,, or vy;2,0,,,
[Xa, Y] € Iy

(4) X € Iy; the argument is the same is in (3).

Hence I is an ideal. [

From this lemma we can obtain a sequence of spaces W; (and hence W(;)) compati-
ble with the z and y-variables. Let us describe this construction. First we consider
L(z,y) == gx (IwNW[y]). If Z(N') denotes the center of the nilradical of £(z,y),
then we define W, = Z(W) N W, say W; = (yf:), cel yg)). Here ¢ is the number
of steps that has to be taken in the process below. By construction [8ygt),X ]=0

for i =1,...,4; and X € 9V; from this using lemma 6.2 one easily obtains that

the variables y@, .. ,yg) appear only in the coefficients of 8y(t), e 8y(t).
1 it

After this first step we continue with £(z,y)/Iw,, and we obtain in a
similar fashion W} ;, which in £(x,y) lifts to W;_; = W]_; + W;. This process
we repeat till W is exhausted; then we proceed with £/Iy,. Hence we can
choose the go-modules W(yy,..., W such that the first ones are subspaces of

W =(0,,.--,0,,_,._,), while the last ones are subspaces of W = (0,,,...,0y,)-

We can choose the y and z coordinates such that W),..., W are spanned by
monomials.

Proposition 6.3.  Let £ be graded transitive Lie algebra, such that V contains
trivial go-modules. Then: £ is not mazimal.
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Proof. = We construct the spaces W(y,...,W(; as described above. Conse-
quently, any X € O is of the form

X=Y"P;",..., z<i—1)))az§i) +) 0 Qi(z W, y<i—1>)ay;i). (5)
b5J 2

We give to terms of the form occurring in (5) a Z-valued degree, which we call
the zdeg, such that all terms in 91 have non-positive degree. (Remember that
z-dependent terms only occur in 91.) To start we put zdeg(z](-l)) =1=:d, for all
j. Next for X € 91 we write

X = Z Pyj(z 8 2 + other terms

Let dy(X) be the maximum over the zdeg of the monomials occurring in P, ; and
dy = maxy dy(X). We now put zdeg(z](-2)) = dy > dfj. This way we continue: for
d3 we take a (natural) number at least as big as the maximum over the zdeg of the
monomials occurring in P, and we put zdeg(z](-?’)) = d3. In the end we gave all
z and y variables a degree, which is the same (namely d;) for variables belonging
to the same module W

By construction, all terms 7 occurring in X € 9 have zdeg(T) < 0.
Moreover there are only finitely many terms 7" with zdeg(7") < 0. Thanks to (4)
and recalling that Iy N £; C N for ¢+ # 0, we see that all terms occurring in Iy
have zdeg(7T) < 0.

Now we make an extension of £, which we denote by (£(z,v),d), where
d=(di,...,d;). We add to £(z,y) the following z-dependent elements

(20 22k XX e Wyl Nty @ (24 .. "’"’“8) (6)

nmk nmk

with >, a;zdeg(z;) < —zdeg(T) for all terms T in X, and ), b;zdeg(z) <
zdeg(z). By construction, (£(z,y),d) D £, and (£(z,y),d) is a graded transitive
Lie algebra. However, increasing d; to d; = d; + 1, while fixing dy,...,d;—1, we
obtain £', which properly contains £: zféayk isin £', but not in £. Hence £ is
not maximal. ]

Remark 6.4. When we write (£(z,y), d), we assume throughout that we have
a sequence of space W; like above, 7 =1,...,%, such that the ﬁrst say { spaces
consists of (all) trivial go-modules, and d; = zdeg(z ()) for all z ) e W, - We can
(and will) assume that d; is a non-negative integer, but moreover that d; > 1 for
i=1,...,t. Note that the zdegree is constant on all irreducible submodules Vi)
in V.

The situation in lemma 6.3 is not completely satisfactory. Take an £ for
which V' contains some trivial g-modules. Sometimes it is possible to construct
a maximal £' properly containing £. Let us denote V', g etc. corresponding to
£ by V', g etc. From proposition 6.3 we know that V' contains no trivial g’-
modules: hence some variables among z1, ..., 2, _m_k (say the first a) are turned
into z-variables. Hence

g :g(l)X"'Xg(T)X"'Xg(r’)

bl
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with 7/ > r. Corresponding to g+ x---xg"") we have the partial Euler operator,
denoted by Z:
n—m—k
7 = Z 2i0,, + Z izi0,, + Zb]yJ
1=a+1

Like in lemma 5.4 we have that ¢; > 0 and b; > 0 for all 7 and j. It seems difficult
to investigate whether a maximal £’ containing £ always exists. A criterion is
given in the following lemma.

Lemma 6.5.  Suppose V. C £ contains trivial go-modules. If there exists an
£ = (L(x,y),d) such that

(1) £ is contained in (£'(z,y),d);
(2) The vector field Y,
- O
Y = Z diy; 3%(;)
Z,j
is in £ (z,y),

then £ 1s contained in a maximal graded transitive Lie algebra.

Proof. We define the vector field Z,
NOPS OP-S
Z = Z.E]_ dzzj 3%@ + Z.Ej d,yj 8y](¢).

By assumption (2) above, we have that Z € (£'(z,y),d). We will say that a term
T in W, has zdegree d if [Z,T] =T. Since Z € (£'(z,y),d), we can find a basis
in (£'(z,y),d) of homogeneous elements with respect to the zdegree. If {X;} is a
zdegree-homogeneous basis in £', then zdeg(X;) < 0 implies X; € M. We now
extend (£'(z,y),d) to a maximal graded transitive Lie algebra. Let z1,...z, be
the variables of zdegree 1. We consider the vector fields Z; defined by

Zi=zZtfori=1,...,a

We show that {X;}U{Z;} (j=1,...,dim£&" and i =1,...,a) form a basis of a Lie
algebra, which we denote by £”. First direct calculation shows that [Z, Z;] = Z,
and [Z;, Z;] = 0. It remains to check [Z;, X;]. We distinguish several cases:

e X;=0,,. Then

[Zi, Xj] = (72, 0..) = 2] Z,0,.) + [21,0,.)Z = —20,, — Z

o X, =2%0,. Then
[Zi, X;] = [2iZ, 205, = |2, 260512 = —Zp
o X; ¢ and X; does not contain 0,,. Hence zdeg(X,) = 0 and

(Zi, Xj| = [2:Z, X;j] = 2 Z, Xj] + |2, X;]Z = 0.
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e The remaining case: X; € 9, zdeg(X;) = d and X, does not contain 0, :
[Zi,Xj] = ZZ[Z, X]] + [ZZ,X]]Z = dZZXJ
If d =0, then [Z;, X;] =0, while if d < 0, then z;X; € £, as desired.

Finally we see that £"” contains an extra simple Levi subalgebra, isomorphic to

sl(a+1,C), with basis {0,;,2:0,; (i # j), Z + 2i0,;, Z;} where 4,5 =1,...,a. The

corresponding Euler operator is exactly Z. Since [Z, Bz(i)] = d;0_» for all 4,5 and
i i

by our assumption d; # 0 for all i < £ (remark 6.4), we see that in V" = U_; NR"
there are no trivial gj-modules. By proposition 5.6, £ (and hence £) is contained
in a maximal graded transitive Lie algebra. ]

Let us demonstrate how this lemma can be used. We say that a term 7,

T =z .. .aﬁfnmy](-:l) ... y](-:")ay;i)

has type (iy,...,0;7). Here we can assume that i; < iy--- < i,. We say that a
vector field v has type (i1, ...,1%;%) if all terms in v are of this type. Note that all
y-dependent term that occur in gy are of type (4;4). Consequently, all terms in
a lowest weight vector of a certain type, form by themselves also a lowest weight
vector for go. Unfortunately, the terms (), that appear in X, € g; break the
decomposition in different types. But if all ), = 0 then we obtain the following
result.

Proposition 6.6.  Let £ be such that [V,[V,8]] =0. Then £ is contained in a
mazimal graded transitive Lie algebra.

Proof.  We can extend £(z,y) to a maximal £(z,y) (in W,,+x) by proposition
5.6. Since all terms in g preserve the type of a term (Q, = 0 !), we can assume that
the g-modules in Iy, are generated be lowest weight vectors of a certain type. It
is possible to choose d = (di, ..., d;) such that (£ (z,y),d) contains £. Consider

— ()
Y = Z diyj ay](i).
1,

Clearly [Y,X] = 0 for all vector fields X of type (7;7); hence [Y,g] = 0, which
implies Y € £'(z,y). Applying lemma 6.5, we find that £ is contained in a
maximal graded transitive Lie algebra. u

7. The low dimensional cases

We now apply the results of the previous sections to describe all maximal
graded transitive Lie algebras £ in the cases n < 3.

Let us start with n = 1. Since m > 1, we see that n = m, and hence
£ = g. So £ is simple, and looking at table 1. we obtain that £ = A;;, i.e.
£ = (0, 20, 120,;).

For n = 2 we have the possibilities m = 1 and m = 2. If m = 1, then
g = Ay as above, and dim V' = 1. Using lemma 5.2, this implies that

1
g = (Oy, 20, + b1y0y, 20, + Eblxyay).
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with b, > 0. If b, # 0, we can add the lowest weight vectors 8, and y9,, and
obtain the algebra

1
£ = (0;, 20, + b1yd,, 20, + Eblxyay, Y0y, 270, (k < by)).

If by = 0 then £ is contained in A;;; X Aj;, hence £ is not maximal. If m = 2
there are two possibilities: either £ is simple, £ = Ay, or £ is semi-simple,
£ = A1 x Ai;1. Note that up to now all algebras are multi-graded.

We continue with n = 3, hence m =1l orm=2orm=3. If m =1
then g = A;;; as above. Now gy = C, hence all irreducible representations are of
dimension 1. Again using lemma 5.2 we obtain

_ 1 1
8 = (Ou, 20, + b1y10y, + boy20,,, %0, + iblxylﬁyl + §b1xy18yl + cyid,,). (7)

If by =0 or by =0, then ¢ =0 (lemma 6.1), and £ is not maximal (proposition
6.3), but is contained in a maximal one (proposition 6.6). So consider ¢ = 0 and
we can assume that by > b; > 0. Moreover b; and b, are integers. If b is the
biggest integer 5 with 8 < by/b; then we obtain that £ is generated by g and
the g-lowest weight vectors y10y,, y20y,,0,, and y? Oy, with 8 <b.

If ¢ # 0, then for X = 220, + %blxylayl + %blxylayl + cy?9,, we need
[.’an + blylayl -+ bgygayz, X] = X,

which implies that b; + %bg =1, 50 by = 2(by — 1). The lowest weight vectors that
generate a finite-dimensional g-module are given by

8?/1 ) 8?/27 ylayza ylayl + 2y28y2a

compare to remark 5.8. This finishes the case m = 1. If m = 2, then either
g = Ayy or g = A1 x Ay, In both cases the lowest weight vectors in Iy
are given by 0,, and y,0,,. If m = 3 then by table 1 there are 4 possibilities:
Aszq, Ao X Av, A1 X Arn X Ay and By (or the isomorphic Cy).

We will not discuss the case n = 4 completely. However, there is one
interesting case for £, namely m = 1 and k = 2, i.e. V contains one trivial
go-module. Only in this case, we have a trivial go-module in V', while @) # 0 is
possible; consequently we have no proposition guaranteeing that £ is contained in
a maximal algebra. We show that it is, nevertheless. We have that g is as given
in (7) with by = 2(by — 1) > 0. Further that £(z,y) is contained in the maximal
algebra £'(z, y) with lowest weight vectors (see above) 0y, , Oy,, Y10y, , Y10y, +2y20y, -
We try to apply lemma 6.5, with d; = 1 (as always), dy = § and ds = 20,
hence 6y10,, + 20y20,, € £'(z,y), and § is chosen big enough to ensure that £
is contained in (£'(z,y),d). That this is possible is not obvious, since dy and
d3 are connected by a relation (otherwise we would increase first do and then ds
sufficiently). Let a and b be the maximal numbers such that the terms 2°0,, and
2%9,, appear in £. Now choose § = max{a,b}. Then zdeg(z°d,,) = a—§ < 0 and
zdeg(2°9,,) < b— 25 < 0. It remains to check the term 2°9,,0,, appearing in £.
However taking the commutator of this term with d,, we see that ¢ < b. Hence
zdeg(2°0y,0y,) < b+ 6 — 20 < 0. Applying lemma 6.5, we see that £ is contained
in a maximal £ with g”" = A1 X Ay
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8. Conclusion

We were able to give a fairly detailed description of the structure of graded
transitive Lie algebras £. In particular the maximal ones are described. It turns
out that these maximal ones have so much structure that they can be described
by general (n independent) theorems. Two questions are not answered completely
satisfactory. First the problem of @), ; can we describe in more detail when @), # 0
is possible? Second, if @), # 0 and V contains trivial gyo-modules, we do not know
whether £ is contained in a maximal one. Do there exist £ not contained in a
maximal one? For such £, according to section 7., n > 5.

Going back to Lie’s original problem, we can hope that these results will
help in two directions. First the graded, but non-transitive case, and second
the transitive, but not necessarily graded case. The last problem is particularly
interesting, but also very difficult. The realization theorem of Guillemin and
Sternberg (see [2]) states that any pair (£;£,) of abstract Lie algebras, where
£, is a subalgebra in £ of codimension n containing no ideals of £, can be
realized as a transitive Lie algebra of formal vector fields in n variables. Moreover
this realization is unique up to a (formal) change of coordinates. In particular,
if £ is simple, £, can be chosen arbitrary. Hence the classification of finite-
dimensional transitive Lie algebras of formal vector fields entails the classification
of all subalgebras of a simple Lie algebra.
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Appendix — Notations

For the benefit of the reader, we provide a list with notations that are used in
different sections.

Name

Description

gﬁ

n

AIVNEIIRHLS

Qs

Iﬁ)

EG)

NS R Y

dimension of the space

Lie algebra of polynomial vector fields on C"
vector fields in W, of degree k

graded transitive Lie algebra (subalgebra of W,,)
Euler operator

radical of £ (largest solvable ideal in £)
nilradical of £ (largest nilpotent ideal in £)

M N U_; (constant vector fields in 9R)

(X egX =y, Po)d.}

£/Iy (semi-simple summands of £ modulo Iy)
graded Levi subalgebra of £, such that g/l is isomorphic to g
n—dimV = dim(U_; N g)

roots of g or g

simple root in R such that dege; =1

all « > 0 such that a +a; € R

Euler operator of j* simple summand in g
number of simple summands in g

sum of all E0)

the variables x4, ..., z,, or , occurring in g
the variables in V*, not in trivial modules

the variables in V*, but not occurring in g
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