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On a Family of Operators and their Lie Algebras
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Abstract.  An infinite family of differential operators is constructed. Each of
these operators defines a Lie bracket and the operator is a homomorphism from
the new Lie algebra to the standard Lie algebra. An interesting feature of these
operators is that they factorize into first order operators with integer coefficients.
This generalizes recent results of Zhiber and Sokolov

1. Introduction

In a recent paper Zhiber and Sokolov [6] study integrable hyperbolic equations of
Liouville type. They found a family of special operators with the property that
they define a new Lie bracket and are homomorphisms from the Lie algebra with
the newly induced bracket to the original Lie algebra. These operators have the
form

D+ 2u
D 4+ 2u

£%, = D(D+u

D+u
D+u

D + 3u)(D + 3u)
D + 3u)(D + 4u),

£ =D

£ = D(D+n)

£2 = D(D+u)(D+nu)

£t = D(D+u)(D+u)(D+u)

£y D(D + u)(D + u)(D + 2u)

£y, = D(D+u)(D +u)(D+u)(D +u)

£5, D(D +u)(D +u)(D + 2u)(D + 3u)

£y, = D(D+u)(D+u)(D+u)(D+u)(D +u)

£y = D(D+u)(D+u)(D+u)(D+u)(D + 2u)
( ) )
( ) )

)(
)(

where D is the total derivative operator with respect to the independent variable x
and u is the dependent variable. They are the polynomial homogeneous operators

* J. P. Wang gratefully acknowledges the support from Netherlands Organization for
Scientific Research (NWO) for this research.

ISSN 0949-5932 / $2.50 (©) Heldermann Verlag



504 SANDERS AND WANG

with D and u of equal weight of order < 7 with the property that for all P and
@, one has

[£7P, £°Q) € im £™, (1)

where P, () are functions of z and the derivatives of u. Here the bracket is given
by

[P,Q] =Q'P - P'Q,
where P’ is the Fréchet derivative of P. According to [6] these operators form
a complete list all homogeneous operators of the weigth (1,1) and of order < 7
satisfying the homomorphism condition. In particular, contrary to our somewhat
restricted approach, no a priori assumption is made on the factorization of these
operators.
The Lie algebra of such P and () with this bracket is denoted by g. These
operators are claimed to lead to a not necessarily anti-symmetric generalization of
Hamiltonian operators. Of course, the occurrence of all these regular sequences of
integers in a problem that starts from a rather innocent looking condition (1) on
the operator is rather startling and the authors of [6] suspect that there is some
deep mathematics behind this.
In this paper we show how this sequence continues by explicitly producing the
family of operators and the corresponding Lie brackets. We show that for n > 4
there exist operators £7; where a = 0,1 and g =0 for n odd, and = 0,1 for
n even, see Figure 1. We do this by studying multiplicative deformations, that is,
when we have an operator that works, we multiply it from the right with a first
order operator and derive the properties of this first order operator assuming the
product is in the family. Thus our study does not answer the question of Zhiber
and Sokolov whether these operators are unique. But we do prove that they are
unique under multiplicative deformations. No deep mathematics is needed to get
to these results, which of course does not imply that there is no deep mathematics
behind it. Although the proofs in this paper are fairly straightforward, the reader
should appreciate the amount of work that went into guessing the right form of
the operators and Lie brackets. This was done using Maple V [1] and Form 3.0 [5]
programs.

2. Main results

We consider the Lie algebra of evolutionary vectorfields based on a the independent
variable z and the dependent variable u. Let D be the total derivative operator
with respect to . We write u; = D'u. Given any two expressions P and Q
depending on z and a finite number of the u;,7 = 0, - -, their bracket is defined
to be [P,Q] = Q'P — P'Q, where P’ is the Fréchet derivative of P, cf. [3] for the
theoretical foundations.

We study a kind of special local differential operators R, which produce a Lie-
subalgebra, that is, for any P and @, there is a By (P, Q) such that

and so the domain of R is a subalgebra. If we view By as a 2-form on the domain
of R, then this form is antisymmetric, and obeys the Jacobi identity modulo the
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Figure 1: The operators to order 9

kernel of R, so it defines a (possibly new) Lie bracket on a suitable domain.
Before we give the results, we define the following notation, which will use through-
out the paper.

Definition 2.1.  Let I; = D + oyu, with o; € C. Define L} = []._, T},
Al =q,, AL =A% — A%  and A2 =Al — Al .

Theorem 2.2.  For every even n there exist 4 and for every odd n there exist
2 operators of the type R = L, as long as the order n s larger than 4, such
that for every P,Q there is a B, (P, Q) satisfying [L} P,LTQ] = L!'B, (P, Q). The
sequences of a;, 1 =1,-+-.n are

£052:0,1,1,1,1,--+,1,1, n € Z,
£gl+2:0717171:17 . 71;2; ’I’LEQZ,
£71lf—220717172:37"'7771_1;”_1, ’I'LEQZ,
£TIL6F2:0717172:37 N 1;”, n € 7.

Here the first subindez is Aj, the second one is |A2_ ,|. Moreover, the bracket
B, (P, Q) = Z,(P,Q) + Dg[L} P] — Dp[L} Q], where, for any odd n,

Zn(P,Q) = ANL3P-Q—-L3Q-P)—AL(L5P-LiQ - L5Q Ly P), (3)
and for any even n = 2m,

Z,(P,Q) = Ay(I3P-Q —15Q - P) — A (L5 P L7Q — L5 Q - L P)

m—1

+Ai Z (_l)i(L?+2P ) LZ—H—lQ - ]L:':LQQ ) ]LZ—H-lP)- (4)

1=2
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Proof. The existence of the operators and Lie brackets is proved in section 3,
combining the results in the Lemmas. The uniqueness under multiplication, that is
to say, proving that given R there exist one (if the order of R is even) or two (if the
order of R is odd) uniquely determined operators [' such that RI' again satisfies
the conditions, is the subject of section 4, as well as proving the nonexistence of
any such I' in case the sequence of R ends with 1,1,2 orn—4,n—-3,n—3. =

Corollary 2.3. The generating function for the number of operators of given
order is

144 N 2t5

1—¢t 1-1*

3. Existence of the operators

Lemma 3.1. R is an operator satisfying (2) if and only if for any P,Q € g,
there is a Zg € C*(g,9) such that

RRPIQ — RIRQIP = RZn(P, Q).
Proof Let us compute the following bracket

RP,RQ] = Dxg[RP]— Dyp[RQ]
= R(Do[RP] — Dp[RQ]) + R'[RP]Q — R'[RQ]P.

So, if and only if the lemma is valid, there exists By € C?*(g, g) satisfying (2) with

Lemma 3.2.  Assume R is an operator satisfying (2). For any operator ', R’
18 also such an operator if and only if

O(P,Q) = Zn(T'P,T'Q) + I'"[R['P]|Q — T'[RCQ]P (5)

1s in the image of the operator ' for all P,Q € g.

Proof. According to Lemma 3.1, we need to compute

(RD)'[RI'PIQ — (RD)'[RIQ)P
= R[RCPIFQ — R'[RCQITP + R(I'[RTP|Q — T'[RTQ]P)
= R(Zg(TP,TQ) + I'"[R['P]Q — T'[RTQ]P)
Therefore, we only need to check whether the expression O(P, Q) is in the image

of the operator I'. [ ]

Lemma 3.3. Let a; =0 and ap = a3 = 1. Suppose n > 3. Define R = L}
and

Then, if A, ., = Al =a, with a =0 or 1 (and therefore AZ,, =0),

Zn(Fn—}—lPa Fn—HQ) + Fr,n+1[]UlIFn+1P]Q - F;-L+1[]L711Fn+1Q]P = Fn—HZn—H(Pa Q)
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Proof.  We directly compute

Fn—l—lZn—l—l(P Q) n+1[Ln+1P]Q+Fn+1[]Uf—}_lQ]P—Zn(Fn_i_lP, Fn+1Q)
= Dna(A (BT P-Q-157Q - P))
—Fn+1(A;+1(L§‘“P [p1Q — LM Q- Tyt P))
+1[]Ln+1 P]Q + P +1[]Ln+1 Q]P
AP T 1Q — LT Q - Tyt P)
+AL AP T, T, Q — L5 Q - T, T, 1 P)
= A711+1(LQ+IP Q-1 Q T P)
n+1(]l*g+lp [1Q—L3Q T, P)
—AiH(M“P Tplp1Q — L3 Q Tl gy P)
+AL LT P Tl 1Q — L' Q - Tyt P)

= _Aiﬂ(]]-'gﬂp @ — ]LQHQ -y P)
= 0’

where we used the fact that either A) , = A% +1 or A?, | =1 = a,. This shows
that we have an inductive relation for such a family of L} and Z,, for o = 0,1.
We have not yet shown how the induction starts, but for this we can refer to [6],
as listed in section 1. |

Suppose now all the T'; satisfy the relations given in Lemma 3.3 up till [, but
['yi1 does not, ie., A2, #0.
We say that 'y 11 splits over L' if

Lo =T+ i, Vi=2,---,n—2.
Lemma 3.4. If ', splits over L} then
Co1i(P-Q)=TipnP-Q+P- Ty i1Q.

Proof. This is obvious, since a0 = 110+ @, 11U [

Lemma 3.5.  Suppose n > 5 and 'y 1 splits over L} . If LY = £7, this implies
o=, +1=2andif L} = £7) then I}, =T, =n—2. Let, for n =2m +1
odd and m > 2,

Zn—I—l(P Q): n+1(Lg+1P Q- LQHQ P)

—AL G (LETP - TpQ — LT Q- Tyt P)
+A"+1 (1)’ (]L?-:le LZ i+2@ ]l‘?—:—QlQ LZ+3+2 p)
=2

Then

Z (Fn+1P Fn-l—lQ) + Fn+1[]L"+1P]Q Fn+1[]}-‘?+1Q]P = Fn+IZn+1(Pa Q)
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Proof. @ We compute

11n+1Zn+1(P Q) = I [LIPlQ + T [LIT QIP — Zo(Tra P, 10 Q) =
= Lap(Ann(3HP-Q-1L57Q - P))
i1 (Ap (L3P T Q — LT Q - Ty P))

Al (A0 ) (D)L P-Lit,Q - LK Q - L), P))
=2
—T, L PIQ+ T, [LYT QP
_Agt(]lﬂ I_\n-HP : Fn-l—lQ - Lgrn—f—l@ . Fn-l—lP)
_+’A711(]]-473z Fn—HP ) Fnrn—HQ - LanHQ : Fnrn—HP)
= +ALLIP T, pi@Q — L2 Q - Tt P)
Ai-b-f—l (LQLHP : Fnrn-l—lQ - ]L:T’,LHQ ’ Fnrn-l—lp)

m

+An+1 ( 1) (]L?—:Fllp ]Lz+zl+2Q L?—:_IIQ LZ+11+2 )
=2

+AT DY (CD)' S Pt Q - LR Q- Lt P)
=2

= Aiqtl (]LQHP Talna@ — ]LQHQ Lplpga P)

+An+1 ( )(LZ_TP ]Ln+zl+2Q ]I-‘;L-i_—'—llQ H—‘Z+zl+2 )
=2
m+1

—A2L D (CD)E P, Q - L Q - L, P)
=3

= A2 (L3P -TolnQ — L3 Q - Tl P)
TAZ (LY P-LTQ - LTQ LT P)
= ()’

where we used the fact that either I, , =1+T7 or A}, =0. u

4. Uniqueness of the operators under multiplicative deformation

In this section we show, using the symbolic method [2, 4], which choice we have if
we want to go from R =L}, with n >4, to R, with ' =1, 11 = D + a,41u.
According to Lemma 3.2 we need to check whether the expression (5) is in the
image of the operator I'.

We do this term by term. First we pick out the terms in O(P, Q) without u and
its derivatives, denoted by H{ ' and integrate it. The image part is denoted by
Zy and the rest is put as zero to obtain the condition on oy, 1. On the next step
we pick out the term in O(P,Q) — I'Z, linear in u or its derivatives, denoted by
H™1! and treat it the same way as before. We continue this procedure until we
either get the obstruction, meaning no such operator exists or the operator RI.
To prove the uniqueness of the operators, we start to show there is at most one
solution for each case from even order to odd order (cf. Lemma 4.1) and two
solutions for each case from odd order to even order (cf. Lemma 4.2). Then we
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prove that there are no such operators starting from £7,, where « = 0,1 and
n € 27 by a long computation (cf. after Lemma 4.3), see Figure 1.

We carry out the above procedure by the symbolic method by mapping u; — 2,
P+ 2' and Q; — 1.

Notice that Ly = D" "1+ 37" | a;DI"*uD™ 7 4+ O(u®). The symbolic expression
of u-linear terms in L} P is

Ve (z, 2) = Za]:c-l—z]k”’ (6)

From formula (3) and (4), we obtain, for any n,
H(?—H(.T,y) — an+1(x"+1 _ yn+1) + an(az”y _ xy") _ Aé(mn—lyQ _ 3:2:1/”_1)

Lemma 4.1.  The function H™"'(x,y) has a factor z +y if and only if

A%m-}—l 0.

Proof. It is easy to see that
Hy™ (@, —2) = 2(Qami1 — Qam — Dy,,) 2" = 247 2®™

This has to be zero. ]

Notice that the function HZ™(z,y) has a factor = +y. We go to the next step.

Let us write out the symbolic expression of the linear term in u.

H2m ,
Hfm(m, Y, Z) = QQm(.’E, Y, Z) - @Zm(ya z, Z) — Qg Oxiz y):

where (cf. formula (6))
Pom (2, Y, 2) = QomPi™ (2, 2) + ComQom—12°™ 1 + Qom_193™ (2, 2)Y
=AYy (72 (o (Y + 2) + om—1y) + V3™ (2, 2)Y?) -

Lemma 4.2.  The function H?™(z,y, z) has a factor z + vy + z if and only if
1. asgm=1o0r2 when oy =0 and o =1 for j=2,---,2m — 1.

2. agm = 2m — 2 or 2m — 3 when oy = 0, ap = 1 and o5 = j — 2 for
j=3,---,2m—1.

Proof.  Let us compute H?™(z,y, —z — y) in both cases. For the first case

2m _ jk2m]
(@, -z — E:O‘J

2m—1

- Z(_y)j—kam—j+a2m(_y)2m k 51 om—1
=k
me—I—l—k _ 2m—k

z(—~y) om—k 1_2m—1
= m - _6 m .
Tty + aom (=) kT
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Therefore

H™(z,y,—x —y) =

2m—1 2m—1
Ty — Yyx _ _
= (ogm —1) T4y - (agm - a2m)y2m '+ g™
x?mfl — 2m—1 3 3
_(a2m _ 1)y p yy + (agm _ a2m)x2m 1 _ anme 1
an(x2m _ y2m) + (x2m71y _ xy2m71)
—Qgm
rT+y
$y($2m_2 _ y2m—2)

= (ogm — 1)(c2m —2) Tty

This proves the first case of the lemma. For the second case

2m
(@, —r —y) =Y oy(—y) Fam
i=k

2m—1

= 2 G- + ag ()

O (27— ya®™E) 4 0fa”™

2?1k (b — 22 + ky — 3y) — 2(—y)?™* (2mz — 22 + 2my — 3y)
(x +y)?

Foan(—9) ™ + 8@ — ya™=?) 4 527,

Therefore

HY™(z,y, —x —y) =
y22?mt + 29?1 (2ma — 22 + 2my — 3y)
(z +y)?
2?y?mt 4 ya?™=t (2my — 2y + 2mz — 3x)
(z+y)?
0, (22T = P A Age (2P — ya® ™)
Qo (2™ — y?™) + (2m — 3)(2®™ "ty — ay?™7Y) — (@727 — 22yt
r+y
gyl yg2mel
) Tty

= (agm —2m+2)

—(Q/Qm —2m+ 2)

—Qom

(agm = 2m +2) (@™ 1y — zy®™ 1)
r+vy

+a2m
2m—1 2m—1
Yy—xy

Tr+y

= ((0om — 2m + 2)(zm — 2m + 3)2

This completes the proof of the Lemma. [ |

Now we prove that for the first case, starting from L?™ with as,, = 2 and for the
second case, with ag,, = 2m — 3, we can not find such L*™*'. To do so, we need
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to write out Hg™ '(z,y) using formula (4).

Hgm+1($’ y) =

= Qomi1 (l_2m+1 o y2m+1) + O!Qm(.Tme o nym)
m—1
—Aém(me_lyQ _ x2y2m—1) + A%m Z(_l)i(me—iyi—H _ xz’—l—lme—i)‘
1=2

Lemma 4.3.  The function H¥ " (z,y) has a factor x +y if and only if
A} = (m—2)A3 .
Proof. It is easy to see that
H{™ N (@, —z) = 2(A3,,.1 — (m — 2)A3,)z”™

This has to be zero. The proof of the lemma follows. |

Now let write out the the possible sequences of a; (m > 1):
1.y =0,;=1for j=2,---,2m — 1, agp, = 2 and agpm41 = m+ 1.

2. 01 =0, p=1and o =j5—2for j=3,---,2m -1 g, = 2m — 3 and
a2m+1=m—1.

We show that for such ¢;’s one has H™ Y (x,y, —x—y) # 0, that is, such operators
do not exist.

Hi(zm+1 (.T, Y, Z) =
Hy™ (z,y)

= {P2m+1 (l" Y, Z) — P2m+1 (ya z, Z) — Q2m+41 Tty

where (cf. formula (4))

P2m+1($, Y, Z) =
= Q1™ 2) + Qo Qom 177 + Qo Pa™ T (7, 2)y
— A, (Pt (y, 2) + 3 (z, 2)yP)

m—1
AL > (=1 (@ g (3, 2) + Ui (e, 2)y ).
i=2
For the first case,
2m+1
£m+1($’ —z—y)= Z aj(_y)]—kx2m+1—]
j=k
2m
— Z(_y)jkaQm—Hf] + (m+ 1)(_y)2m+17k - 5im2m + (_y)mekx
j=k
p2m+2—k _ x(_y)2m+1—k

— +(m=+1)(= 2m+1—lc_51x2m+ _ 2m—kx.
oy ( )(=y) p (~v)
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So Pom+1(2,y, —x —y) =
g — gy 2.2 2m—1
= (m+1 +(m+1 m_—(m— 2y ™ 'x
( ) o ( )%y ( )y

+2(m + 1)z°™ + 2 —3(m + 1)y*™

T +y
_2x2m—1y B x2m71y2 _ xyZm
Tr—+y
m=1 i1/ . N2m—i _ ,..2m
+ (y ( .’L‘) yxr + (m + 1)x2m _ mefly)
= x+y
m—1 om_ i+1 2m
T — -
( ( y) Yy + (m + 1)y2m - y2m—1x)
P r+vy
_ (mA41)2? 4+ (m? — m+ 4)2®y — (m+ 1)y
T +y
+2y3x2m—1 +ym+1(_x)m+1
(z +y)?

Finally,

H12m+1($a Yy, —T — y) =
(m + 1)22*™ + (m? — m + 4)2°™y — (m + 1)z*™ 1y?

T+y
+2y3x2m—1 — gyt
(+y)?
_(m+ 1%+ (m? — m+ )y*" e — (m+ 1)y*™'a?
T4y
_(m N 1) (m + 1)($2m+1 _ y2m+1) + 2(x2my . nym) o ($2m—1y2 . $2y2m—1)
Tr+y
gy (a2 — y2met)
—(m+1
( ) (z+y)?
_ (m B 1) (m B 2) (mey _ xyZm) B x3y3(ac2m_4 _ y2m—4) (7)
x4y (x+y)? '
For the second case,
2m+1
2m+1 _ S j—k, 2m+1—j
p (T, - —y) = Z aj(~y) "z
j=k
2m
= D= ()t agp (—y) P
j=k

C(—y)?™F g 4 6L (@™ — ya?™ ) 4 6207
oI (ky — 22 + ky — 3y) — 2(—y)?*™ 1k 2mz — z + 2my — 2y)
(z +y)

+H(m = 1) (=) = (=y)*" Fr + G (2 — ya®™ ) + Gt

So
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Pomt1 (T, Y, —T —y) =
2?7 (—x — 2y) — zy®™ (2mz — x + 2my — 2y)

= (m—1
( ) (z +y)?
+(m ( y + y2m—1x + me _ yme—l)
(2m—3) —x?My + 2y (2max — x + 2my — 2y)
g’ (z +y)?

+(2m = 3) (y2°™ " = (m — 1)y*" — y*" 'z + (m — 1)z”™)
X ()Pt (2m—i = 1y + (2m = i — 2)a)

— (z +y)?

m—1 om

yx*™ (2my — y + 2max — 2x) 9 om1

+ —(m—1)z"™ — "™

;g;( e ( ) y)
LN y) T e iy — )

— (z +y)?

m—1 2m

zy ™ (2mx —z + 2my — 2y _

. ( ( - )—(m—l)y2m—y2m lx)

Py (z +y)

_ (m- 12222 + (m — 1)(2m — 3)z®*™ 1y + (m — 1)(3m — 5)z?
(z +y)?
+(2 B Qm) y3x2m—1 + (_x)m+1ym+1
(= +y)?

Finally,

H12m+1(‘ra Y, =T — y) =
(m —1)22*™+2 4+ (m — 1)(2m — 3)z*™ My + (m — 1)(3m — 5)z?
(z +y)?
3,2m—1 _ .3, 2m—1
yx -y
+(2—-2m
( ) (z +y)?
C(m =12 4 (m = 1) (2m = 3)y*™ ' + (m — 1)(3m — 5)y*"a?
(z +y)?
(m _ 1)(x2m+1 _ y2m+1) + (2m _ 3) (a,/.Zmy _ a,/.yQ’rn)
Tty

-4 _ y2m74)

(z +y)?
(m _ 2) (x2m+1y _ y2m+1$) + (m _ 2) (mey2 _ y2m$2)

(z+y)?
2m—4)

x3y3 ($2m—4 _

2m) 3 3(l.2m—4

_ Un—U(Un—%@%w_xy 7y —y%“5>' (8)

T+y (z+y)?
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5. Open problems

We have shown in this paper the existence of a certain infinite family of operators.
Notice that the £, family, @ = 0,1, behaves exactly as the £7,family, and the
obstruction expressions (7) and (8) are in both cases equal. However, we have no
explanation for this symmetry.

Another question is whether the Lie brackets that are defined are mutually com-
patible.

Finally it remains to be shown that these operators, characterized by the property
(1) are truly unique, not only up to multiplicative deformations. This would imply
that they always factorize into first order operators, as is the case for order < 7,
c.f. [6]

Acknowledgement. The authors thank Professor V. V. Sokolov for drawing
their attention to this problem.

References

[1] Char, B. W., K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and
S. M. Watt, “Maple V Language Reference Manual,” Springer—Verlag, Berlin,
1991.

[2] Gel'fand, I. M., and L. A. Dikii, Asymptotic properties of the resolvent of
Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations,
Uspehi Mat. Nauk, 30(5(185)) (1975), 67-100. English translation: Russian
Math. Surveys, 30 no. 5 (1975), 77-113.

[3] Olver, P. J., “Applications of Lie Groups to Differential Equations,” Graduate
Texts in Mathematics 107 Springer-Verlag, New York, second edition, 1993.

[4] Sanders, J. A., and J. P. Wang, On the integrability of homogeneous scalar
evolution equations, J. Differential Equations 147(2) (1998), 410-434.

[6] Vermaseren, J. A. M., “New Features of FORM,” Technical report, Nikhef,
Amsterdam, 2000; math-ph/0010025.

[6] Zhiber, A. V., and V. V. Sokolov, FEzactly integrable hyperbolic equations of
Liouville type, Uspihi mat. Nauk 56(1) (2001), 63-106. English translation:
Russian Math. Surveys 56 (2001).

Jan Sanders and Jing Ping Wang
Vrije Universiteit

Faculty of Sciences

Division of Mathematics

and Computer Science

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

Received June 14, 2001
and in final form July 30, 2001



