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Poisson Algebras of Spinor Functions
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Abstract. Poisson algebras of spinor-valued functions arise as we extend the
classical Hamiltonian formalism to vector-valued symplectic forms.

1. Introduction

The classical Hamiltonian formalism involves a non-degenerate skew-symmetric
bilinear form ψ on a finite dimensional real vector space v ; a space of functions,
C∞(v), or just the polynomial functions S(v); a Lie algebra of first order differ-
ential operators, Vect(v), or Vectpol(v), acting on the function space; and a map
from the former to the latter, f 7→ Hf . These objects satisfy a number of relations
coded into the fact that the Poisson bracket

{f, g} = ψ(Hf , Hg)

defines a Lie algebra structure on the function space.

Furthermore, as H. Weyl observed, both the Heisenberg Lie algebra nψ =
v× R with bracket

[(v, t), (v′, t′)] = (0, ψ(v, v′))

and the symplectic Lie algebra sp(ψ) are naturally subalgebras of the Poisson
Lie algebra — namely those constituted by the polynomials of degree ≤ 1 and
of degree 2, respectively. These identifications are compatible with the inclusion
sp(ψ) ↪→ Der(nψ) and, moreover, Der(nψ) = sp(ψ) ⊕ v ⊕ Rδ with v acting by
inner derivations and δ · (v, t) = (v, 2t).

In this article we generalize this formalism to vector-valued skew-symmetric
forms

Φ : v× v→ z

which are symplectic, in the sense that there exist inner products in v and in z

such that the transformations Jz ∈ End(v) defined by

(1.1) 〈Jzu, v〉v = 〈z,Φ(u, v)〉z
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satisfy J2
z = −|z|2I or, polarizing the latter,

JzJw + JwJz = −2〈z, w〉I.

The datum of Φ and the two compatible inner products is therefore equivalent to
a structure of C(z)-unitary module on v .

The inner product in z is determined by Φ up to a positive multiple, as we
explain below. We will fix one and use it as freely as Φ itself. On the other hand,
the existence of one compatible inner product on v implies that of infinitely many.
Of course, the “Weyl Calculus” should be purely symplectic and not depend on
any particular choice of metric in v , as will indeed be the case.

The Poisson Lie algebra attached to a symplectic Φ will be modeled on the
vector space

F̃ = C∞(v× z)⊕ Λ2z∗.

The Hamiltonian vector fields will be ordinary vector fields on v × z acting on
F̃ as linear differential operators. The role of the Heisenberg Lie algebra will be
played by n = v× z ∼= v⊕ z endowed with the bracket

[(v, z), (v′, z′)] = (0,Φ(v, v′));

n is a two-step nilpotent Lie algebra with center z , often called of Heisenberg type
[4]. One has

Der(n) ∼= sp(Φ)⊕ Hom(v, z)⊕ Rδ,

where

sp(Φ) = {(A,B) ∈ sl(v)× sl(z) : Φ(Au, v) + Φ(u,Av) = BΦ(u, v)}.

Moreover, letting

spo(Φ) = {A ∈ gl(v) : Φ(Au, v) + Φ(u,Av) = 0}

one has

sp(Φ) ∼= spo(Φ)⊕ so(z),

with so(z) acting on v by a direct sum of spin representations [9]. All these Lie
algebras will be realized as subalgebras of the Poisson algebra, defined by algebraic
and differential conditions along z .

A similar calculus is obtained if we replace functions and vector fields on
v × z by objects defined on v × S(z), with S(z) the unit sphere in z and we
replace the covariant derivative D by the induced one on the sphere. While that
alternative setup is more natural in some ways, the present one simplifies the
calculations considerably and induces the alternative one upon restriction.

This paper benefited substantially from the corrections of the reviewer, to
whom we are thankful. Related references to Lie algebras of Heisenberg type, their
automorphism groups and associated metaplectic representations are discussed in
[1], [2], [3], [4], [5], [8] and [9].
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2. Preliminaries

Fix a symplectic Φ : v × v → z and a corresponding inner product 〈z, w〉 in z .
This determines the linear family of ordinary skew-forms on v

φz(u, v) = 〈z,Φ(u, v)〉.

which are non-degenerate for all z 6= 0. It should be emphasized that this non-
degeneracy is strictly weaker than the condition for Φ to be symplectic [7], but it
does not seem to lead to an analogous generalization of the Weyl Calculus.

For z, w ∈ z , z 6= 0, define Kz,w, Az,w ∈ End(v) by

(2.1) φz(Kz,wu, v) = −|z|2φw(u, v)

Az,w =
1

2

(
Kz,w + 〈z, w〉I

)
.

Both operators depend linearly on z and w . Since Az,w = −Aw,z , one has a linear
map

A : Λ2z→ End(v).

Explicitly,

A :
∑
i<j

cijzi ∧ zj 7→
∑
i<j

cijAzi,zj .

Identifying z with z∗ via the given inner product, ones gets a linear map α 7→ Aα
from Λ2z∗ into End(v).

Note that Kz,w and Az,w are defined by the linear family of forms φz ,
independent of any metric in v . If, however, a compatible metric is chosen so that
the Jz are defined by (1.1), then

Kz,w = JzJw.

Identify Λ2z∗ with the orthogonal Lie algebra so(z) in the usual way:
B ∈ so(z) is identified with the 2-form αB(z, w) = 〈Bz,w〉 , or, equivalently,
α ∈ Λ2z∗ is identified with the element Bα ∈ so(z) such that 〈Bαz, w〉 = α(z, w).

Recall that the map z 7→ Jz extends to a representation of the Clifford alge-
bra C(z) by endomorphisms of v . The multiplicative subgroup of C(z) generated
by the double products zz′ , with |z| = |z′| = 1, is Spin(z) and the corresponding
representation on v is a direct sum of spin representations.

Proposition 2.1. With the identification Λ2z∗ ∼= so(z),

(a) α 7→ Aα is the spin representation of so(z),

(b) (Aα, Bα) ∈ sp(Φ).

Proof. For (a), just note that the spin representation satisfies

4Jz∧wv = JzJwv − JwJzv
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(see, e.g., Corollary I.6.3 in [6]) and that, in C(z), zw + wz = −2〈z, w〉 for all
z, w ∈ z . For (b), take s, z, w ∈ z and u, v ∈ v and compute

〈s,Φ(JzJwu, v)〉 = 〈JsJzJwu, v〉
= −〈JzJsJwu, v〉 − 2〈z, s〉〈Jwu, v〉
= 〈JzJwJsu, v〉+ 2〈s, w〉〈Jzu, v〉 − 2〈z, s〉〈Jwu, v〉
= 〈Jsu, JwJzv〉+ 2〈s, w〉〈Jzu, v〉 − 2〈z, s〉〈Jwu, v〉.

Since JwJz = −JzJw − 2〈z, w〉I ,

Φ(JzJwu, v) + Φ(u, JzJwv) = −2〈z, w〉Φ(u, v) + 2〈z,Φ(u, v)〉w − 2〈w,Φ(u, v)〉z.

Let Bz,w be the infinitesimal rotation in z defined by

Bz,w(z′) = 〈z, z′〉w − 〈w, z′〉z

and recall that Az,w = 1
2
(Kz,w + 〈z, w〉I). One obtains

Φ(Az,wu, v) + Φ(u,Az,wv) = Bz,wΦ(u, v).

Recall that n = v× z ∼= v⊕ z endowed with the bracket

[(v, z), (v′, z′)] = (0,Φ(v, v′))

is a two-step nilpotent Lie algebra, with center z . Its algebra of derivations has the
following structure [9]. If (A,B) ∈ sp(Φ), then (v, z) 7→ (Av,Bz) is a derivation of
n , yielding an inclusion sp(Φ) ↪→ Der(n). Hom(v, z) is also contained in Der(n), as
the abelian subalgebra consisting of the maps (v, z) 7→ (0, T (v)), T ∈ Hom(v, z).
Furthermore, one has the semidirect sum decomposition

(2.2) Der(n) = sp(Φ)⊕ Hom(v, z)⊕ Rδ

and the direct sum decomposition

(2.3). sp(Φ) = spo(Φ)⊕ so(z)

Both sp(Φ) and spo(Φ) are real reductive Lie algebras, the latter acts
trivially on the center, so(z) acts by rotations on z and by the spin representation
on v and δ(v, z) = (v, 2z). In matrix form, if z ∼= R

m and v ∼= R
n , then

Der(n) ∼= {
(
A 0
C B

)
: Φ(Au, v) + Φ(u,Av) = BΦ(u, v)}

where A,B,C, are n× n , m×m and m× n real matrices, respectively,

sp(Φ) ∼= {
(
A 0
0 B

)
: Φ(Au, v) + Φ(u,Av) = BΦ(u, v), tr(A) = tr(B) = 0}

spo(Φ) ∼= {
(
A 0
0 0

)
: Φ(Au, v) + Φ(u,Av) = 0, },
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Hom(v, z) ∼= {
(

0 0
C 0

)
}, δ ∼= {

(
2In 0
0 Im

)
}.

The presence of the summand so(z) shows that the inner product in z is deter-
mined by Φ up to a positive scalar. Indeed, sp(Φ) and spo(Φ) are defined by
Φ and are both real reductive, hence the sum of an abelian and a semisimple
subalgebra. Therefore so(z) is the semisimple part of the centralizer of spo(Φ) in
sp(Φ) and, as such, it is canonically attached to Φ. Since it acts in the standard
irreducible manner on z and preserves the inner product, the latter is unique up
to homotheties. Furthermore,

so(z) ∼= {
(
AB 0
0 B

)
: B ∈ so(m)}.

where B 7→ AB is a direct sum of spin representations of so(m).

Let

F = C∞(n) = C∞(v× z).

Those functions f(v, z) which are polynomial in both v and z constitute a bi-
graded subspace of F

F (·,·) =
⊕
p,q≥0

F (p,q),

where F (p,q) are the polynomials which are homogeneous of degree p in v and of
degree q in z .

For any subspace P ⊂ F we let

P̃ = P ⊕ Λ2z∗.

An element of F̃ can be viewed as a function F : v× z3 → R of the form

F (v, z1, z2, z3) = f(v, z1) + α(z2, z3),

with f smooth and α bilinear and skew-symmetric.

We will consistently identify a vector space u with its tangent space at each
point and denote by

Duf = uf = u · f

(u ∈ u) the derivative of the function f in the direction u . If X is a vector field
on u , DuX will denote the canonical covariant derivative of X in the direction
u . Constant vector fields will be identified with the corresponding elements of u .
If X is a vector field on n = v × z , we will sometimes write X = X ′ + X ′′ with
X ′, X ′′, tangent to v and z , respectively. If X,Y, are vector fields on n which are
tangential to v , we will denote by φ(X, Y ) the function on n

φ(X,Y )(v, z) = φz(X(v,z), Y(v,z)) = 〈z,Φ(X(v,z), Y(v,z))〉



70 Kaplan, Saal and Tiraboschi

3. The main result

The differential equation

(3.1) DzDxf(v, s) + |s|−2DKs,z(x)f(v, s) = 0

where s, z ∈ z and v, x ∈ v , is linear and homogeneous of degree -1 in each of the
variables v and s . Therefore, the set E ⊂ F of its solutions is a linear subspace,
containing

E (·,·) =
⊕
p,q≥0

E (p,q), E (p,q) := E ∩ F (p,q),

as a dense subspace. For emphasis: E (p,q) consists of the polynomial functions on
v× z of bidegree (p, q) which satisfy the equation (3.1).

Theorem 3.1. There exist an extension of the natural action of Vect(n) on
F = C∞(n) to a bilinear map Vect(n)× F̃ → F ,

(X,F ) 7→ X · F,

a linear map F̃ → Vect(n)
F 7→ HF

and a bilinear operation F̃ × F̃ → F̃

(F,G) 7→ {F,G},

satisfying the following properties. Let X,Z, be vector fields on n tangential to v

and z respectively, and let F,G ∈ F̃ , with F = f + α, f ∈ F , α ∈ Λ2z∗ . Then:

(a) φ(H ′F , X) = X · F and 〈H ′′F , Z〉 = Z · α

(b) f ∈ E ⇔ DZ(Hf ) = 0

(c) HHαf = DHα(Hf ) + Aα(Hf )

(d) [HF , HG] = H{F,G}

(e) F̃ is a Lie algebra under {·, ·} and E , Ẽ , Ẽ (·,1) are subalgebras.

(f) E (1,1)⊕E (0,1) is a subalgebra, isomorphic to n = v⊕z as a graded Lie algebra.

(g) E (2,1) and Ẽ (2,1) are subalgebras, with spo(Φ) ∼= E (2,1) and sp(Φ) ∼= Ẽ (2,1)

(h) Der(n) ∼= Ẽ (2,1) ⊕ F (1,1) ⊕ Rδ and, with the identification in (f), the first
two terms act on n by inner derivations of the Poisson algebra.

Proof. Define the bilinear map Vect(n)× F̃ → F by

Y · (f + α) = DY f + Y · α

where f ∈ F , α ∈ Λ2z∗ and the last term is the function on n defined by

(3.2) (Y · α)(v, s) = −φs(Aαv, Y ′(v,s))− α(s, Y ′′(v,s))
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which is clearly smooth. By definition, Y · F̃ ⊂ F and Y · f = DY f = Y f for
f ∈ F .

Define the Hamiltonian vector field associated to a F = f + α ∈ F̃ as the
element in Vect(n) given by Hf+α = Hf + Hα, where Hf is determined by the
conditions

(3.3) φs((H
′
f )(v,s), X) = DXf(v, s), H ′′f = 0

while

(3.4) (Hα)(v,s) = −Aαv −Bαs.

If we set fz(v) = f(v, z), then (3.3) says that (Hf )(·,z) is the usual Hamiltonian
vector field of fz with respect to the symplectic form φz . The Hamiltonian Hα

of a 2-form, on the other hand, is an infinitesimal spin in v and an infinitesimal
rotation in z , namely, those determined by −α .

Finally, define the Poisson bracket in F̃ by

(3.5) {f + α, g + β} = {f, g}+Hα · g −Hβ · f + [α, β],

where [α, β] denotes the Lie bracket in Λ2z∗ ∼= so(z) and {f, g} = Hg · f .

We will now prove that the objects just defined satisfy (a) to (h).

(a) By (3.2), (3.3) and (3.4), one has

φs((Hf )(v,s), X) = DXf(v, s),

φs((H
′
α)(v,s), X) = X · α(v, s),

〈(H ′′α)(v,s), Z〉 = −〈Bαs, Z〉 = −α(s, Z) = Z · α(v, s).

(b) Differentiate the equation φs((Hf )(v,s), X) = DXf(v, s) with respect to
s in the direction z . Since s 7→ φs is linear and X can be assumed to be a constant
vector field, one gets

(3.6) φz((Hf )(v,s), X) + φs((DzHf )(v,s), X) = DXDzf(v, s).

By (2.1) with u = X and v = Hf ,

φs(Hf , Ks,zX) = −|s|2φz(Hf , X)

and therefore

(3.7) Ks,z(X) · f = φs(Hf , Ks,zX) = −|s|2φz(Hf , X).

We see from (3.6), (3.7) and the non-degeneracy of φz , that

f ∈ E ⇔ Ks,z(X)f + |s|2DXDzf = 0 ⇔ DzHf = 0.

(c) Differentiating the function X · f(v, s) = φs((Hf )(v,s), X) with respect
to v in the direction (Hα)(v,s) = −Aαv − Bαs while taking X ∈ v constant, we
get

−φBα(s)((Hf )(v,s), X) + φs((DHαHf )(v,s), X)) = [Hα, X] · f(v, s) +XHα · f(v, s)
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On one hand,

−φBα(s)(u, v) = −〈Bα(s),Φ(u, v)〉 = 〈s, Bα(Φ(u, v))〉.

Since (Aα, Bα) ∈ sp(Φ),

〈s, Bα(Φ(u, v))〉 = 〈s,Φ(Aαu, v)〉+ 〈s,Φ(u,Aαv)〉 = φs(Aαu, v) + φs(u,Aαv),

so that

−φBα(s)((Hf )(v,s), X) = φs(Aα(Hf )(v,s), X) + φs((Hf )(v,s), Aα(X)).

On the other hand,

[Hα, X] = DHα(X)−DX(Hα) = 0 + Aα(X).

Therefore

φs(Aα(Hf )(v,s), X) + φs((Hf )(v,s), Aα(X)) + φs((DHαHf )(v,s), X)

= (Aα(X) +XHα) · f(v, s).

The terms φs((Hf )(v,s), Aα(X)) = Aα(X)f(v, s) cancel out and XHα · f(v, s) =
φs((HHαf )(v,s), X), so the equation becomes

φs((AαHf +DHαHf )(v,s), X) = φs((HHαf )(v,s), X),

proving the assertion.

(d) If F = f and G = g are in F , the assertion reduces to the standard
identity for ordinary symplectic forms, because of the remark after (3.4). If F = α
and G = β are in Λ2z∗ , (3.5) reduces to {α, β} = [α, β] . Since

(Hα)(v,s) = −Aαv −Bαs

and α 7→ Aα and α 7→ Bα are Lie algebra morphisms,

[Hα, Hβ](v,s) = −[Aα, Aβ](v)− [Bα, Bβ](s)

= −A[α,β]v −B[α,β]s = (H[α,β])(v,s) = (H{α,β})(v,s).

Finally, if F = α ∈ Λ2z∗ and G = g ∈ F ,

[Hα, Hg] = DHα(Hg)−DHg(Hα)

= HHαg − Aα(Hg) + Aα(Hg) = HHαg = H{α,g}.

The first equality is just the definition of the commutator of two vector fields. The
second follows from

DHα(Hg) = HHαg − Aα(Hg),

which is (c), and from

(DHgHα)(v,s) = DHg(−Aαv −Bαs) = −Aα(Hg),

while the third equality follows from the definition of {α, g} .
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(e) Our Poisson bracket is clearly bilinear and skew-symmetric, so we must
prove that it satisfies Jacobi’s identity. This identity holds in F because of the
corresponding classical statement for scalar-valued forms, while Λ2z∗ is already a
Lie algebra. Therefore we need to verify it in the cases {α, {f, g}} and {f, {α, β}}
(α, β ∈ Λ2z∗ , f, g ∈ F ).

In the first case, we have

{α, {f, g}}(v, s) = Hα · {f, g}(v, s), {f, g}(v, s) = φs((Hf )(v,s), (Hg)(v,s))

so that

{α, {f, g}}(v, s) = Hα · {f, g}(v, s)
= φ−Bα(s)((Hf )(v,s), (Hg)(v,s)) + φs((DHαHf )(v,s), (Hg)(v,s))

+ φs((Hf )(v,s), (DHαHg)(v,s)).

But

φ−Bα(s)((Hf )(v,s), (Hg)(v,s)) = −〈Ba(s),Φ((Hf )(v,s), (Hg)(v,s))〉
= 〈s, BαΦ((Hf )(v,s), (Hg)(v,s))〉

which can be written as

〈s,Φ((AαHf )(v,s), (Hg)(v,s)) + Φ((Hf )(v,s), (AαHg)(v,s))〉

= φs((AαHf )(v,s), (Hg)(v,s)) + φs((Hf )(v,s), (AαHg)(v,s)).

Therefore

{α, {f, g}} = φ(AαHf , Hg) + φ(Hf , AαHg) + φ(DHαHf , Hg) + φ(Hf , DHαHg)

= φ(AαHf , Hg) + φ(Hf , AαHg) + φ(HHαf − AαHf , Hg) +

φ(Hf , HHαg − AαHg)

= φ(HHαf , Hg) + φ(Hf , HHαg)

= φ(H{α,f}, Hg) + φ(Hf , H{α,g})

= {{α, f}, g}+ {f, {α, g}}.

In the other case,

{f, {α, β}} = {f, [α, β]} = −H[α,β] · f = −[Hα, Hβ] · f
= −HαHβ · f +HβHα · f = −Hα · {β, f}+Hβ · {α, f}
= −{α, {β, f}}+ {β, {α, f}} = {{f, α}, β}+ {α, {f, β}}.

We now prove that E , Ẽ ⊂ F̃ are subalgebras. From (b), we can deduce
that E is a subalgebra if and only if DzH{f,g} = 0 for z ∈ z and f, g ∈ E . The
last equation follows from (d) and the fact that Dz is a derivation on vector fields.
Since H{α,f} = HHαf , it follows from (c) and (b) that Dz(H{α,f}) = 0 for all z ∈ z .

Because of (b), {α, f} ∈ E . So, Ẽ is a subalgebra as well.
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For f ∈ E (·,1) define fo ∈ C∞(v, z) by f(v, z) = 〈fo(v), z〉. Let now
f, g ∈ E (·,1) and α ∈ Λ2z∗ . Because of (b), Hf and Hg depend only on v ∈ v .
Therefore, the functions

{f, g}(v, s) = φs((Hf )v, (Hg)v)

and

{α, f}(v, s) = Hα · f(v, s) = −DAαvf(v, s)−DBαsf(v, s)

= −〈DAαvfo(v), s〉 − 〈Bαs, fo(v)〉

are both smooth in v and linear in s and therefore lie in E (·,1) . Hence both E (·,1)

and Ẽ (·,1) are subalgebras.

(f) For u ∈ v and z ∈ z define the real-valued functions on n :

(3.8) qu(v, s) = 〈s,Φ(u, v)〉, cz(v, s) = 〈s, z〉.

Then the map Θ : u+ z 7→ qu + cz determines a Lie isomorphism

N ∼= E (1,1) ⊕ E (0,1).

Indeed, we easily see that Hqu = u and Hcz = 0, so, from (b), qu + cz ∈
E (1,1) ⊕ E (0,1) . Also,

{qu, qu′}(v, s) = (Hqu′
· qu)(v, s) = 〈s,Φ(u, u′)〉 = cΦ(u,u′)(v, s),

while {qu, cz} = (Hcz · qu) = 0 and {cz, cz′} = 0. Since the bracket in n is given
by [u+ z, u′ + z′] = Φ(u, u′), we have

Θ([u+ z, u′ + z′]) = cΦ(u,u′) = {qu, qu′} = {qu + cz, qu′ + cz′}
= {Θ(u+ z),Θ(u′ + z′)},

so Θ is a Lie morphism. To see that it is surjective, let g ∈ E (1,1) . Since g is
bilinear, there exist T ∈ Hom(v, z) such that

(3.9) g(v, s) = gT (v, s) := 〈s, Tv〉, for v ∈ v, s ∈ z.

Because g ∈ E , Hg is constant along z . Therefore

〈s,Φ((Hg)v, X)〉 = φs((Hg)v, X) = X · g(v, s) = 〈s, TX〉.

We conclude that Φ((Hg)v, X) = TX and, consequently, Hg is also independent
of v . Letting u = Hg ∈ v ,

g(v, s) = 〈s, Tv〉 = 〈s,Φ(u, v)〉,

from which g = qu . On the other hand, if g ∈ E (0,1) , then g(v, s) = 〈s, z〉 with
z ∈ z , hence g = cz , showing that the map is onto.

(g) We must prove that the operators G 7→ {F,G} with F ∈ E (2,1) realize,
upon restriction to E (1,1)⊕E (0,1) ∼= n , all of spo(Φ), viewed as subalgebra of Der(n).
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Let f ∈ E (2,1) = E ∩ F (2,1) , i.e., f(v, z) is a homogeneous polynomial of
degree 2 in v and of degree 1 in z , satisfying the differential equation (3.1). As
we have already observed, its Hamiltonian Hf is just the classical Hamiltonian
relative to φs and it is independent of s ∈ z . Therefore

φs((Hf )v, v
′) + φs(v, (Hf )v) = 0,

showing that Hf ∈ spo(Φ). Since Hgf = {f, g} , we conclude that E (2,1) acts on n

as spo(Φ).

To see that E (2,1) is isomorphic to spo(Φ) define, for any Q ∈ spo(Φ), the
function

(3.10) pQ(v, s) :=
1

2
〈s,Φ(Qv, v)〉 v ∈ v, s ∈ z

and prove that HpQ = Q. Indeed, φs(Qu, v) + φs(u,Qv) = 0, so

φs((HpQ)(v,s), X) = X · pQ(v, s) =
1

2
φs(QX, v) +

1

2
φs(Qv,X) = φs(Qv,X).

Therefore pQ ∈ E (2,1) . Moreover, two functions in E (2,1) with the same Hamiltonian
are equal, therefore f 7→ Hf is the inverse map of Q 7→ PQ . Because of (d), F 7→
HF is a Lie morphism. From Proposition 2.1 and the fact that Ẽ (2,1) = E (2,1)⊕Λ2z∗ ,
we conclude that sp(Φ) ∼= Ẽ (2,1) and, therefore, that Ẽ (2,1) acts as sp(Φ).

(h) Identifying n with E (1,1)⊕E (0,1) , sp0(Φ) with E (2,1) and Hom(v, z) with
F (1,1) , we must prove that the action of Der(n) on n is by inner derivations of the
Poisson bracket. Equivalently, that the functions qu , cz , pQ and gT , as defined in
(3.8), (3.9) and (3.10), satisfy the following commutation relations:

(i) {pQ, qu} = qQu

(ii) {α, qu + cz} = qAαu + cBαz

(iii) {gT , qu} = cTu

(iv) {gT , cz} = 0

for all u ∈ v , z ∈ z , α ∈ Λ2z∗ , T ∈ Hom(v, z) and Q ∈ spo(Φ).

To prove (i), just compute

qu(v, s) = −HpQqu(v, s) = −〈s,Φ(u,Qv)〉 = φs(Qu, v) = qQu(s, v).

For (ii),

{α, qu}(v, s) = Hα · qu(v, s) = −DAαvqu −DBαsqu

= −〈s,Φ(u,Aαv)〉 − 〈Bαs,Φ(u, v)〉
= −〈s,Φ(u,Aαv)〉+ 〈s, BαΦ(u, v)〉
= −〈s,Φ(u,Aαv)〉+ 〈s,Φ(Aαu, v)〉+ 〈s,Φ(u,Aαv)〉 = 〈s,Φ(Aαu, v)〉
= qAαu(v, s),
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and, similarly,

{α, cz}(v, s) = Hα · cz(v, s) = −DBαscz = −〈Bαs, z〉 = 〈s, Bαz〉 = cBαz(v, s).

Finally, (iii) follows from

{gT , qu}(v, s) = Hqu · gT (v, s) = DugT (v, s) = 〈s, Tu〉 = cTu(v, s),

and (iv) from
{qT , cz}(v, s) = Hcz · gT (v, s) = 0.

Remark 3.2. F (·,1) is not closed under { , } . Also, in general, {F,G} 6= HF ·G ;
instead one has the identity (3.5). For example, let F = f and G = α . Then
{f, α} = −Hαf = (Aαv)f+(Bαs)f while (Hf )(v,s)·α = −φs(Aαv,H ′f )−α(s,H ′′f ) =
φs(Hf , Aαv) = (Aαv)f.
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