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in arbitrary finite dimension
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Abstract. The present paper offers the classification of naturally graded p -
filiform Lie algebras in arbitrary finite dimension n . For sufficiently high n ,
(n ≥ max{3p − 1, p + 8}), and for all admissible value of p the results are a
generalization of Vergne’s in case of filiform Lie algebras [11].
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1. Introduction

A Lie algebra (g, µ) is a vector space g over a field K , with a bilinear mapping
µ : g × g → g denoted (X, Y ) → µ(X, Y ) = [X, Y ] and called bracket product,
verifying

[X, X] = 0,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

for all the elements X, Y, Z of g . The second condition is called Jacobi Identity
and denoted by Jac(X, Y, Z).

The dimension of the Lie algebra is the dimension of the vector space g .
In this paper, all Lie algebras g will be complex and with finite dimension. By
taking a basis (X0, X1, . . . , Xn−1) in g , the algebra is completely determined by
its structure constants, that is, for the set of complex constants {Ck

ij} , defined

by [Xi, Xj] =
∑n−1

k=0 Ck
ijXk . Then, we can identify the algebra g and its law µ .

Thus, the set Ln of laws of Lie algebras is an affine algebraic set defined by the
polynomials expressions

Ck
ij = −Ck

ji (1)
n−1∑
l=0

(C l
ijC

s
kl + C l

jkC
s
il + C l

kiC
s
jl) = 0 (2)
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(In this paper, we indicate by Xi /∈ [Xj, Xk] that Ci
jk = 0)

One could think of a programme of classifying all Lie algebras by considering
the above equations to be solved for unknown structure constants. This turns out
to be a very complicated problem because of the non-linearity of (2). In fact, the
general classification is an open problem.

The Levi’s theorem decomposes the classification of Lie algebras into the
classification of semisimple and solvable Lie algebras. The classification of the
former is well-known from the works of Killing and Cartan in 1914 and the
classification of solvable ones is actually reduced, module the study of derivations,
to that of the nilpotent Lie algebras. We only know the classification up to
dimension 7 [8].

The geometric approach to study nilpotent Lie algebras is one of the main
methods which has been developed over the last few years. The set Nn of nilpotent
algebra laws is an affine algebraic variety; two Lie algebras are isomorphic if and
only if they belong to the same orbit of naturally acting general linear group. In
this approach the notion of filiform Lie algebra appears in a natural way, the subset
Fn of filiform laws is an open set in Nn . We only know the classification of filiform
Lie algebras up to dimension 11 [6].

The family of p-filiform Lie algebras is a large family of Lie algebras,
comprising the filiform ones as a particular class. A nilpotent Lie algebra g ,
of dimension n , is called p-filiform if its characteristic sequence is (n−p, 1, . . . , 1).
It follows that every p-filiform Lie algebra, of dimension n , has nilindex n−p (the
converse is not true), and that 1 ≤ p ≤ n−1. Indeed, the filiform and quasifiliform
Lie algebras are the p-filiform ones with p = 1, 2 respectively. If p = n − 1 the
situation is trivial because the family is just reduced to the abelian algebra in the
appropriate dimension.

Filiform Lie algebras have maximal nilindex among the nilpotent Lie alge-
bras having the same dimension. The p-filiform algebras play a similar role to that
of the filiform Lie algebras in each dimension when the nilindex is smaller than
the maximal one. We know the complete classification of p-filiform Lie algebras
up to dimension 8 [5], and also know the classification for p = n− 2, n− 3, n− 4
and (partially) n − 5 for arbitrary finite dimension n [4], [1], [3]. However, the
classification of p-filiform Lie algebras of dimension n , with p = 1 or near to 1,
seems to be very difficult. As an application we have also studied some cohomo-
logical properties of certain p-filiform Lie algebras in which the determination of
the algebra of derivations of each p-filiform Lie algebra is essential [2].

In the cohomological study of the variety of laws of nilpotent Lie algebras
established by Vergne [11], the classification of a class of graded filiform Lie
algebras plays a crucial role. The classification obtained by Vergne allows an
easy description of filiform Lie algebras. The graduation considered by Vergne is
provided in a natural way from the descending central sequence of any nilpotent
Lie algebra. Accordingly, the algebras obtained in this way are called naturally
graded Lie algebras.

If g is a nilpotent Lie algebra of dimension n , it is naturally filtered by the
descending central sequence C0(g) = g , Ci(g) = [g, Ci−1(g)], i ≥ 1. There exists
a graded Lie algebra gr g associated with g and with this filtration. In general
g 6' gr g .
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Definition 1.1. Let g be a nilpotent Lie algebra. It is said that g is naturally
graded when g ' gr g .

Vergne has obtained the classification in the case of 1-filiform Lie algebras
in arbitrary dimension. She proves that, up to isomorphisms, there is only one
naturally graded filiform Lie algebra for each odd dimension (denoted by Ln ) and
two of them for each even dimension (denoted by Ln and Qn ).

Ln is the Lie algebra defined in the basis {X0, X1, . . . , Xn−1} by
{ [X0, Xi] = Xi+1 1 ≤ i ≤ n− 2.

Qn is the Lie algebra defined in the basis {X0, X1, . . . , Xn−1} , with n = 2q , by{
[X0, Xi] = Xi+1 1 ≤ i ≤ n− 2,

[Xi, Xn−1−i] = (−1)i−1 Xn−1 1 ≤ i ≤ q − 1.

This fact also allows other authors to deal with different aspects of the
theory. For example, using such graded filiform Lie algebras, in [9] Goze and
Khakimdjanov give the geometric description of the characteristically nilpotent
filiform Lie algebras.

Thus, it is clear that knowing the graded algebras of a certain class of
nilpotent algebras provides valuable information towards our knowledge of the
structure of such a class. They can later facilitate the study of several problems
that can appear within the whole of the class. For example, in order to classify
the families of nilpotent Lie algebras, the structure of the law of each algebra is
partially determined by the law of the naturally graded Lie algebra associated with
it.

The case p = 2 was clarified by Gómez and Jiménez-Merchán in [7]. For
each dimension n ≥ 10, we have one terminal algebra and one or two families
of non-split algebras, depending on whether n − 2 is even or odd; these families
generalise the types Ln and Qn ), and are denoted by
L(n, r) (r odd, 3 ≤ r ≤ 2

⌊
n−1

2

⌋
− 1) and Q(n, r) (n odd; r odd, 3 ≤ r ≤ n− 4).

However, for dimensions 7 and 9 there are one and two algebras, respectively.

The situation for 3-filiform Lie algebras [10] is a generalization of filiform
and quasifiliform cases. For n ≥ 11, there is one terminal family of algebras de-
pending on one parameter. Besides the previous ones, there are one or two families
that depend on two parameters when n−3 is even or odd, respectively, and denoted
by L(n, r1, r2) (r1, r2 odd, 3 ≤ r1 < r2 ≤ n−3) and Q(n, r1, r2) (n even, r1, r2 odd,
3 ≤ r1 < r2 ≤ n − 5). When n = 5, the Heisenberg algebra H2 appears. When
n = 8 and n = 9 one more algebra emerges in each dimension. When n = 10, one
has three algebras and one infinite family depending on one parameter.

In this paper, we obtain the complete classification of naturally graded p-
filiform Lie algebras in arbitrary finite dimension for all admissible values of p . The
authors of this paper would like to thank professor J.R. Gómez for his valuable
help.

2. Naturally graded p-filiform Lie algebras structure

In this section we will obtain a first approximation to the structure of naturally
graded p-filiform Lie algebras.

Generalities.

Let g be a naturally graded p-filiform Lie algebra and let
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{X0, X1, . . . , Xn−p, Y1, Y2, . . . , Yp−1}
be an adapted basis of g , (that is, X0 ∈ g− [g, g] ;
[X0, Xi] = Xi+1 for 1 ≤ i ≤ n− p− 1; [X0, Xn−p] = [X0, Yj] = 0, 1 ≤ j ≤ p− 1).

That implies

Ci(g) ⊃ 〈Xi+1, Xi+2, . . . , Xn−p〉, 1 ≤ i ≤ n− p− 1.

Lemma 2.1. Let {X0, X1, . . . , Xn−p−1, Y1, Y2, . . . , Yp−1} be an adapted basis
of the p-filiform Lie algebra g of dimension n. Then,

X1 /∈ C1(g) and Yj /∈ Cn−p(g), 1 ≤ j ≤ p− 1

Proof. Obviously, Yj /∈ Cn−p(g), 1 ≤ j ≤ p−1, otherwise g would not be a p-
filiform Lie algebra. Jac(X0, Yi, Yj), 1 ≤ i < j ≤ p− 1, implies that X1 /∈ [Yi, Yj] .

X1 /∈ [Xi, Yj], 1 ≤ i ≤ n− p, 1 ≤ j ≤ p− 1.

Nilpotency implies straightforwardly that X1 /∈ [X1, Yj] . Let ij, 2 ≤ j ≤ n − p ,
be the first value verifying X1 ∈ [Xij , Yj] , for each Yj . Then, Jac(X0, Xij−1, Yj)
implies a contradiction.

X1 /∈ [Xi, Xj], 1 ≤ i < j ≤ n− p .

From the nilpotency we deduce that X1 /∈ [X1, Xj], 2 ≤ j ≤ n − p . If
X1 ∈ [Xi, Xn−p], 2 ≤ i ≤ n − p , then Jac(X0, Xi−1, Xn−p) implies that X1 ∈
Im(adX0), and this is impossible. Let [Xr, Xs] be the first bracket such that
X1 ∈ [Xr, Xs], 2 ≤ r < s . Then, Jac(X0, Xr−1, Xs) implies a contradiction.

We immediately obtain the following corollary.

Corollary 2.2. Let g be a naturally graded p-filiform Lie algebra of dimension
n, gr g =

⊕
i∈Z gi and let {X0, X1, . . . , Xn−p, Y1, Y2, . . . , Yp−1} be an adapted

basis of g. Then,
g1 ⊃ 〈X0, X1〉,
gi ⊃ 〈Xi〉, if 2 ≤ i ≤ n− p,
gi = {0}, if i ≤ 0 or i ≥ n− p + 1.

We have proved that g = g1⊕g2⊕· · ·⊕gn−p with [gi, gj] ⊂ gi+j , for i+j ≤ n−p ,
satisfying 2 ≤ dim(g1) ≤ p + 1 and 1 ≤ dim(gi) ≤ p, 2 ≤ i ≤ n − p . We will
denote each case as follows

(n, r1, r2, . . . , rp−1), 1 ≤ r1 ≤ r2 ≤ . . . ≤ rp−1 ≤ n− p ,

to highlight the integers rj , 1 ≤ j ≤ p− 1, which indicate the positions of the co-
ordinates of (dim(g1), dim(g2), . . . , dim(gn−p)) different from those of (2, 1, . . . , 1);
that is, Yj ∈ grj

, 1 ≤ j ≤ p− 1. Analogously, µ(n, r1, r2, . . . , rp−1) represents the
family of laws.

Conditions for rj , 1 ≤ j ≤ p− 1.

We prove that rj, 1 ≤ j ≤ p − 1, are pairwise, not equal and all of them
odd. We also study the non-admissible cases and the cases in which split algebras
are obtained.

Proposition 2.3. Let g be a naturally graded p-filiform Lie algebra of law
µ(n, r1, r2, . . . , rp−1). Then, 1 ≤ r1 < r2 < . . . < rp−1 ≤ n− p.
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Proof. The proof involves many cases, namely, the following:

a) (n, 1, 1, . . . , 1),

b) (n, r, r, . . . , r), 2 ≤ r ≤ n− p ,

c) (n, r1, r1, . . . , r1, rs+1, rs+2, . . . , rp−1), 1 ≤ r1 = r2 = . . . = rs < rs+1 ≤ rs+2 ≤
. . . ≤ rp−1 ≤ n− p ,

c1) (n, 1, 1, . . . , 1, 2, rs+2, . . . , rp−1), 2 ≤ rs+2 ≤ rs+3 ≤ . . . ≤ rp−1 ≤ n− p ,

c2) (n, 1, 1, . . . , 1, rs+1, rs+2, . . . , rp−1), 3 ≤ rs+1 ≤ rs+2 ≤ . . . ≤ rp−1 ≤ n− p ,

c3) (n, r, r, . . . , r, rs+1, rs+2, . . . , rp−1), 2 ≤ r < rs+1 ≤ rs+2 ≤ . . . ≤ rp−1 ≤ n− p ,

d) (n, r1, r2, . . . , rs, rs, . . . , rs = rt, rt+1, rt+2, . . . , rp−1),

1 ≤ r1 < r2 < . . . < rs = rs+1 = . . . = rt < rt+1 ≤ rt+2 ≤ . . . ≤ rp−1 ≤ n− p ,

d1) rs = rs+1 = . . . = rt = 2, d2) rs = rs+1 = . . . = rt ≥ 3,

e) (n, r1, r2, . . . , rs−1, rs, rs, . . . , rs),

1 ≤ r1 < r2 < . . . < rs−1 < rs = rs+1 = . . . = rp−1 ≤ n− p ,

e1) (n, 1, 2, 2, . . . , 2), e2) (n, r1, r2, . . . , rs−1, rs, rs, . . . , rs), rs ≥ 3 In order

to obtain the proof we use the Jacobi identities and appropriate arguments about
p-filiformity along with a general change of basis.

Cases a) and b) show that all rj, 1 ≤ j ≤ p− 1, are not equally pairwise.

Case c) shows that several rj are not equal at the beginning of the sequence.

Case d) shows that several rj are not equal in the middle.

Case e) shows that several rj are not equal in the end of the sequence.

Proposition 2.4. Let g be a naturally graded p-filiform Lie algebra of law
µ(n, r1, r2, . . . , rp−1). Then, 3 ≤ r1 < r2 < . . . < rp−1 ≤ n − p such that all
rj, 1 ≤ j ≤ p− 1, are odd.

Proof. From the Jacobi identities and several changes of basis it follows that
if r1 = 1 then g is a split algebra. From the Jacobi identities it also follows that
r1 = 2 is not possible (that implies Y1 /∈ C1(g) ⇒ r1 = 1).

By using finite induction for j , we obtain that all rj, 1 ≤ j ≤ p − 1, are
odd.

Structure theorem.

In this section we obtain the general structure of laws of naturally graded p-filiform
Lie algebras in arbitrary finite dimension.

Theorem 2.5. (The structure of naturally graded p-filiform Lie algebras) Any
naturally graded non-split p-filiform Lie algebra of dimension n, n ≥ 3p − 1, is
isomorphic to one which its law can be expressed, in an adapted basis

{X0, X1, . . . , Xn−p, Y1, Y2, . . . , Yp−1}
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by 

[X0, Xi] = Xi+1 1 ≤ i ≤ n− p− 1

[Xi, Xj] = aijXi+j 1 ≤ i < j ≤ n− p− i, i + j 6= rk,
1 ≤ k ≤ p− 1

[Xi, Xrj−i] = ai,rj−iXrj
+ (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ p− 1

[Xi, Yj] = bjXi+rj
1 ≤ i ≤ n− p− rj, 1 ≤ j ≤ p− 1

[Yi, Yj] = cijXn−p if ri + rj = n− p,
1 ≤ i < j ≤ n− p− ri

satisfying that 3 ≤ r1 < r2 < . . . < rp−1 ≤ n− p, rj odd for all 1 ≤ j ≤ p− 1.

Proof. In this case the general expression of the family of laws is

[X0, Xi] = Xi+1 1 ≤ i ≤ n− p− 1

[Xi, Xj] = aijXi+j 1 ≤ i < j ≤ n− p− i, i + j 6= rk,
1 ≤ k ≤ p− 1

[Xi, Xrj−i] = ai,rj−iXrj
+ αj

i,rj−iYj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ p− 1

[Xi, Yj] = bijXi+rj
1 ≤ i ≤ n− p− rj, i + rj 6= rk,
1 ≤ j, k ≤ p− 1

[Xrk−rj
, Yj] = brk−rj ,jXrk

+ βj
rk−rj ,jYj 1 ≤ j, k ≤ p− 1, rk > rj

[Yi, Yj] = cijXri+rj
if ri + rj ≤ n− p,
1 ≤ i < j ≤ n− p− ri

(The undefined brackets, except antisymmetry, are null).

From Jac(X0, Xrk−rj−1, Yj), 1 ≤ j, k ≤ p− 1, rk > rj , it follows that βj
rk−rj ,j = 0

and brk−rj ,j = brk−rj−1,j .

From Jac(X0, Xi, Yj), 1 ≤ i ≤ n − p − rj − 1, i 6= rk − rj − 1, 1 ≤ j ≤ k − 1,
2 ≤ k ≤ p − 1, we obtain that bij = bj, 1 ≤ i ≤ n − p − rj (actually, the case
i = rk − rj − 1 has to be studied separately).

From Jac(X0, Xi, Xrj−1−i), 1 ≤ i <
rj−3

2
, 1 ≤ j ≤ p− 1, it follows that

αj
i,rj−i = (−1)i−1αj, 1 ≤ i ≤ rj − 1

2

Obviously, αj 6= 0, 1 ≤ j ≤ p − 1. If this is not so, that implies Yj /∈ C1(g) ⇒
rj = 1, which is a contradiction.

From Jac(X0, Yi, Yj), 1 ≤ i < j ≤ n−p−ri , it follows that cij = 0 if ri+rj 6= n−p .
By applying the change of basis defined by{

X ′
i = Xi 0 ≤ i ≤ n− p

Y ′
j = αjYj 1 ≤ j ≤ p− 1

we can suppose that αj = 1, 1 ≤ j ≤ p− 1.

3. Classification (General case)

Firstly, we present some examples of naturally graded p-filiform Lie algebras. We
finish this section with the maint classification theorem.
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3.1. Examples. All the examples are expressed by their law which refer to an
adapted basis {X0, X1, . . . , Xn−p, Y1, Y2, . . . , Yp−1} .
Further on, we will prove that almost all non-split naturally graded p-filiform Lie
algebras are the only ones listed below.

L(n, r1, r2, . . . , rp−1)

(rj odd, 1 ≤ j ≤ p− 1, 3 ≤ r1 < r2 < . . . < rp−1 ≤ n− p){
[X0, Xi] = Xi+1 1 ≤ i ≤ n− p− 1

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ p− 1

Q(n, r1, r2, . . . , rp−1)

(rj odd, 1 ≤ j ≤ p− 1, 3 ≤ r1 < r2 < . . . < rp−1 ≤ n− p− 2, n− p odd)
[X0, Xi] = Xi+1 1 ≤ i ≤ n− p− 1

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ p− 1

[Xi, Xn−p−i] = (−1)i−1Xn−p 1 ≤ i ≤ n−p−1
2

τ(n, r1, r2, . . . , rp−2, n− p− 1)

(rj odd, 1 ≤ j ≤ p− 2, 3 ≤ r1 < r2 < . . . < rp−2 ≤ n− p− 3, n− p even)

[X0, Xi] = Xi+1 1 ≤ i ≤ n− p− 1

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ p− 2

[Xi, Xn−p−1−i] = (−1)i−1(Xn−p−1 + Yp−1) 1 ≤ i ≤ n−p−2
2

[Xi, Xn−p−i] = (−1)i−1 (n−p−2i)
2

Xn−p 1 ≤ i ≤ n−p−2
2

[X1, Yp−1] = (p+2−n)
2

Xn−p

τ(n, r1, r2, . . . , rp−2, n− p− 2)

(rj odd, 1 ≤ j ≤ p− 2, 3 ≤ r1 < r2 < . . . < rp−2 ≤ n− p− 4, n− p odd)

[X0, Xi] = Xi+1 1 ≤ i ≤ n− p− 1

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ p− 2

[Xi, Xn−p−2−i] = (−1)i−1(Xn−p−2 + Yp−1) 1 ≤ i ≤ n−p−3
2

[Xi, Xn−p−1−i] = (−1)i−1 (n−p−1−2i)
2

Xn−p−1 1 ≤ i ≤ n−p−3
2

[Xi, Xn−p−i] = (−1)i(i− 1) (n−p−1−i)
2

Xn−p 2 ≤ i ≤ n−p−1
2

[Xi, Yp−1] = (p+3−n)
2

Xn−p−2+i 1 ≤ i ≤ 2

Lemma 3.1. The algebras L(n, r1, . . . , rp−1), Q(n, r1, . . . , rp−1),

τ(n, r1, . . . , rp−2, n−p−1), τ(n, r1, . . . , rp−2, n−p−2) are pairwise non-isomorphic.

Proof. We can see how these algebras are pairwise non-isomorphic by consid-
ering the subalgebra D2(g) = [D1(g),D1(g)], D1(g) = [g, g].

3.2. Main Theorem.

In this section we obtain the complete classification of naturally graded
non-split p-filiform Lie algebras for the general case (n must be high: n ≥
max{3p− 1, p + 8}).
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Theorem 3.2. Let g be a non-split n−dimensional naturally graded p-filiform
Lie algebra, with p > 1 and n ≥ max{3p− 1, p + 8}. Let µ(n, r1, r2, . . . , rp−1) be
the law of g ( 3 ≤ r1 < r2 < . . . < rp−1 ≤ n − p, and all rj , 1 ≤ j ≤ p − 1, are
odd) . Then,

a) If rp−1 = n− p, then g ' L(n, r1, r2, . . . , rp−2, n− p)

b) If rp−1 = n− p− 1, then

g ' L(n, r1, r2, . . . , rp−2, n−p−1) or g ' τ(n, r1, r2, . . . , rp−2, n−p−1)

c) If rp−1 = n− p− 2, then

g ' L(n, r1, r2, . . . , rp−2, n− p− 2) or g ' Q(n, r1, r2, . . . , rp−2, n− p− 2)

or g ' τ(n, r1, r2, . . . , rp−2, n− p− 2)

d) If 2p− 1 ≤ rp−1 ≤ n− p− 3, then

n− p odd ⇒ g ' L(n, r1, r2, . . . , rp−1) or g ' Q(n, r1, r2, . . . , rp−1)

n− p even ⇒ g ' L(n, r1, r2, . . . , rp−1)

Proof. We prove that by using finite induction for p .

When p = 2 and p = 3, the theorem is proved in [7], [10].

We suppose that the results are true for p = k and we will prove them for p = k+1.

In order to prove that the results are true for p = k + 1 it is necessary to
distinguish the following cases: I) rp−1 = n− p , II) rp−1 = n− p− 1,
III) rp−1 = n− p− 2, IV) rp−1 = n− p− 3, V) 2p− 1 ≤ rp−1 ≤ n− p− 4.

Case I: rp−1 = n− p

p = k + 1 implies that rk = n− k − 1.

Let g be a naturally graded (k + 1)-filiform Lie algebra, dim(g) = n ,
n ≥ max{3k+2, k+9} , which law is µ(n, r1, r2, . . . , rk−2, rk−1, n−k−1) satisfying
3 ≤ r1 < r2 < . . . < rk−1 < n− k − 2 < rk = n− k − 1 and all rj, 1 ≤ j ≤ k , are
odd.

The natural graduation associated to g is
g1 = 〈X0, X1〉
gi = 〈Xi〉 2 ≤ i ≤ n− k − 2, i 6= rj, 1 ≤ j ≤ k
grj

= 〈Xrj
, Yj〉 1 ≤ j ≤ k − 1

grk
= 〈Xn−k−1, Yk〉 = Cn−k−2(g)

The quotient algebra g′ = g/Cn−k−2(g) is a naturally graded k -filiform
Lie algebra of dimension n − 2 and law µ(n − 2, r1, r2, . . . , rk−2, rk−1) satisfying
3 ≤ r1 < r2 < . . . < rk−2 < rk−1 ≤ n− k − 3.

The law of g′ is known by induction hypothesis. Later on, we consider the
central extensions of g′ and we obtain the law of g .

As rk = n− k− 1 is odd we deduce that n− k− 3 is also odd. Thus, only
the following subcases must be considered:

i) g′ ' L(n− 2, r1, r2, . . . , rk−2, rk−1), rk−1 ≤ n− k − 3

ii) g′ ' τ(n− 2, r1, r2, . . . , rk−2, n− k − 3)

Subcase i) : g′ ' L(n− 2, r1, r2, . . . , rk−2, rk−1), rk−1 ≤ n− k − 3
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In an adapted basis, {X0, X1, . . . , Xn−k−2, Y1, Y2, . . . , Yk−1} the law of g′

can be given by

{
[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 1

We obtain the law of g by extending g′ by 〈Xn−k−1, Yk〉 . In an adapted
basis {X0, X1, . . . , Xn−k−2, Xn−k−1, Y1, Y2, . . . , Yk−1, Yk} , we can express the law of
g by 

[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[X0, Xn−k−2] = αXn−k−1 + βYk

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 1

[Xi, Xn−k−1−i] = aiXn−k−1 + diYk 1 ≤ i ≤ n−k−2
2

[Xn−k−1−rj
, Yj] = bjXn−k−1 + ejYk 1 ≤ j ≤ k − 1

From Jac(X0, Xi, Xn−k−2−i), 1 ≤ i ≤ n−k−4
2

, and Jac(X0, Xn−k−2−rj
, Yj),

1 ≤ j ≤ k − 1, it follows that


ai = (−1)i−1a 1 ≤ i ≤ n−k−2

2

di = (−1)i−1d 1 ≤ i ≤ n−k−2
2

bj = 0 1 ≤ j ≤ k − 1

ej = 0 1 ≤ j ≤ k − 1

Thus, the law of g is determined by
[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[X0, Xn−k−2] = αXn−k−1 + βYk

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 1

[Xi, Xn−k−1−i] = (−1)i−1(aXn−k−1 + dYk) 1 ≤ i ≤ n−k−2
2

Now let s = rank

(
α β
a d

)
.

s = 0 ⇒ α = β = a = d = 0. Then, we conclude that g is a split algebra.

s = 1 ⇒ ∃t ∈ C such that aXn−k−1 + dYk = t(αXn−k−1 + βYk)

With the change of basis defined by{
X ′

i = Xi, 0 ≤ i ≤ n− k − 2, X ′
n−k−1 = αXn−k−1 + βYk

Y ′
1 = Yk, Y ′

k = Y1, Y ′
j = Yj, 2 ≤ j ≤ k

it follows that Y1 /∈ [g, g] and Y1 ∈ Z(g). Then r1 = 1, which is a contradiction.

In case s = 2, a change of basis leads to

g ' L(n, r1, r2, . . . , rk−1, rk = n− k − 1)

Subcase ii) : g′ ' τ(n− 2, r1, r2, . . . , rk−2, n− k − 3)

The law of g′ is defined by

[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 2

[Xi, Xn−k−3−i] = (−1)i−1(Xn−k−3 + Yk−1) 1 ≤ i ≤ n−k−4
2

[Xi, Xn−k−2−i] = (−1)i−1 (n−k−2−2i)
2

Xn−k−2 1 ≤ i ≤ n−k−4
2

[X1, Yk−1] = (k+4−n)
2

Xn−k−2

The law of g can be expressed by
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

[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[X0, Xn−k−2] = αXn−k−1 + βYk

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 2

[Xi, Xn−k−3−i] = (−1)i−1(Xn−k−3 + Yk−1) 1 ≤ i ≤ n−k−4
2

[Xi, Xn−k−2−i] = (−1)i−1 (n−k−2−2i)
2

Xn−k−2 1 ≤ i ≤ n−k−4
2

[Xi, Xn−k−1−i] = aiXn−k−1 + diYk 1 ≤ i ≤ n−k−2
2

[Xn−k−1−rj
, Yj] = bjXn−k−1 + ejYk 1 ≤ j ≤ k − 1

[X1, Yk−1] = (k+4−n)
2

Xn−k−2

From Jac(X0, Xi, Xn−k−2−i), 1 ≤ i ≤ n−k−4
2

, a simple process of finite

induction leads to

{
ai = (−1)i−1(a1 − (n−k−2−i)

2
(i− 1)α), 1 ≤ i ≤ n−k−2

2

di = (−1)i−1(d1 − (n−k−2−i)
2

(i− 1)β), 1 ≤ i ≤ n−k−2
2

From Jac(X0, X1, Yk−1) it follows that bk−1 = (k+4−n)
2

α, ek−1 = (k+4−n)
2

β.

From Jac(X0, Xn−k−2−rj
, Yj), 1 ≤ j ≤ k − 2, it follows that bj = ej = 0.

Finally, from Jac(X1, X2, Xn−k−4) it follows that (−n+k+8)
2

a1 = 0, (−n+k+8)
2

d1 = 0.

As n 6= k + 8 it is deduced that a1 = d1 = 0. Thus,

ai = (−1)i (n−k−2−i)
2

(i− 1)α, di = (−1)i (n−k−2−i)
2

(i− 1)β, 1 ≤ i ≤ n−k−2
2

.

If (α, β) = (0, 0) or α 6= 0, by using changes of basis it follows that r1 = 1,
which is a contradiction. If α = 0 and β 6= 0, we obtain that rk = 1 which is also
a contradiction. Thus, g 6' τ(n, r1, r2, . . . , rk).

We conclude that in terminal case rp−1 = n−p (rk = n−k−1) the algebra
g is isomorphic to L(n, r1, r2, . . . , rk−1, rk).

Case II: rp−1 = n− p− 1

Let g be a naturally graded (k + 1)-filiform Lie algebra, dim(g) = n ,
n ≥ max{3k + 2, k + 9} , which law is µ(n, r1, r2, . . . , rk−2, rk−1, n− k − 2).

Then, the quotient algebra g′ = g/Cn−k−2(g) = g/〈Xn−k−1〉 is a naturally
graded (k + 1)-filiform Lie algebra of dimension n− 1 and which law is
µ(n− 1, r1, r2, . . . , rk−1, n− k − 2 = (n− 1)− (k + 1)).

Thus, the law of g′ ' L(n− 1, r1, r2, . . . , rk−1, rk = n− k − 2) is given by
[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 1

[Xi, Xn−k−2−i] = (−1)i−1Yk 1 ≤ i ≤ n−k−3
2

The law of g is defined by
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

[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[X0, Xn−k−2] = αXn−k−1

[X0, Yk] = βXn−k−1

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 1

[Xi, Xn−k−2−i] = (−1)i−1Yk 1 ≤ i ≤ n−k−3
2

[Xi, Xn−k−1−i] = aiXn−k−1 1 ≤ i ≤ n−k−3
2

[Xn−k−1−rj
, Yj] = bjXn−k−1 1 ≤ j ≤ k − 1

[X1, Yk] = bkXn−k−1

[Yi, Yj] = cijXn−k−1 if ri + rj = n− k − 1, 1 ≤ i < j ≤ k − 1

Jac(X0, Xi, Xn−k−2−i), 1 ≤ i ≤ n−k−3
2

⇒ ai = (−1)i−1(n−2i−k−1
2

)β .

Jac(X0, Xn−k−2−rj
, Yj), 1 ≤ j ≤ k − 1 ⇒ bj = 0.

Jac(X1, X2, Xn−k−4), Jac(X1, Xri−1, Yj), 1 ≤ i < j ≤ k − 1 ⇒ bk = 0, cij = 0.

The law of g can be expressed as

[X0, Xi] = Xi+1 1 ≤ i ≤ n− k − 3

[X0, Xn−k−2] = αXn−k−1

[X0, Yk] = βXn−k−1

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ k − 1

[Xi, Xn−k−2−i] = (−1)i−1Yk 1 ≤ i ≤ n−k−3
2

[Xi, Xn−k−1−i] = (−1)i−1(n−2i−k−1
2

)βXn−k−1 1 ≤ i ≤ n−k−3
2

If (α, β) = (0, 0) then dim(Z(g)) = p+2, which is a contradiction. In order
to prove the remaining ones we only need to use simple changes of basis. Thus,
g ' L(n, r1, r2, . . . , rk−1, rk = n−k−2) or g ' τ(n, r1, r2, . . . , rk−1, rk = n−k−2).

Case III: rp−1 = n− p− 2

Now, it can be assumed that

g′ ' L(n− 1, r1, r2, . . . , rk−1, n− k− 3) or g′ ' τ(n− 1, r1, r2, . . . , rk−1, n− k− 3).

If g′ ' L(n− 1, r1, r2, . . . , rk−1, n− k − 3) it is proved that
g ' L(n, r1, r2, . . . , rk−1, n − k − 3), g ' Q(n, r1, r2, . . . , rk−1, n − k − 3) or there
is a contradiction.

If g′ ' τ(n− 1, r1, r2, . . . , rk−1, n− k − 3) it is proved that
g ' τ(n, r1, r2, . . . , rk−1, n− k − 3) or there is a contradiction.

Case IV: rp−1 = n− p− 3

This is a particular case of the general case. It is separately studied for technical
reasons.

Now, it can be assumed that g′ ' L(n− 1, r1, . . . , rk−1, n− k − 4),
g′ ' Q(n− 1, r1, . . . , rk−1, n− k − 4) or g′ ' τ(n− 1, r1, . . . , rk−1, n− k − 4).

g′ ' L(n− 1, r1, . . . , rk−1, n− k − 4) ⇒ g ' L(n, r1, . . . , rk−1, n− k − 4).

g′ ' Q(n− 1, r1, . . . , rk−1, n− k − 4) ⇒ contradiction.

g′ ' τ(n− 1, r1, . . . , rk−1, n− k − 4) ⇒ contradiction.
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Remark 3.3. The case g′ ' τ(n − 1, r1, r2, . . . , rk−1, n − k − 4) is specially
complicated from a technical viewpoint but, in essence, it is analogous to the
above cases.

Case V: 2p− 1 ≤ rp−1 ≤ n− p− 4

Now, the algebra g is a naturally graded (k +1)-filiform Lie algebra, dim(g) = n ,
which law is µ(n, r1, r2, . . . , rk). The algebra g′ = g/Cn−k−2(g) = g/〈Xn−k−1〉
is a naturally graded (k + 1)-filiform Lie algebra of dimension n − 1 and law
µ(n− 1, r1, r2, . . . , rk).

Two subcases may be distinguished: n−k is either even or odd. The proof
is analogous to the above cases.

4. Exceptional Algebras

In order to classify naturally graded p-filiform Lie algebras, the dimension n must
be ≥ 3p− 1. For all the expressions to be true it is also necessary that n ≥ p + 8.
In this section we study the cases where n < max{3p− 1, p + 8} . There are some
difficulties and other algebras appear: the exceptional algebras.

As 3p − 1 > p + 8 for p ≥ 5, it follows that max{3p − 1, p + 8} = 3p − 1
for p ≥ 5. Consequently, we only have to study the case p ≤ 4.

The cases p = 2 and p = 3 have already been studied in [7], [10]. Thus, we
only consider p = 4 when n < max{3.4− 1, 4 + 8} = 12.

As 3 ≤ r1 < r2 < r3 ≤ n − p = 11 − 4 = 7, it is deduced that only case
µ(11, 3, 5, 7) may be studied.

Theorem 4.1. The naturally graded non-split 4-filiform Lie algebras of dimen-
sion 11, are L(11, 3, 5, 7), ε1(11, 3, 5, 7) and ε2(11, 3, 5, 7), being

ε1(11, 3, 5, 7) :



[X0, Xi] = Xi+1 1 ≤ i ≤ 6

[Xi, Xrj−i] = (−1)i−1Yj 1 ≤ i ≤ rj−1

2
, 1 ≤ j ≤ 3,

(r1, r2, r3) = (3, 5, 7)

[Xi, Y1] = Xi+3 1 ≤ i ≤ 4

[Xi, Y2] = Xi+5 1 ≤ i ≤ 2

ε2(11, 3, 5, 7) :



[X0, Xi] = Xi+1 1 ≤ i ≤ 6

[X1, X2] = Y1

[Xi, X5−i] = (−1)i−1(X5 + Y2) 1 ≤ i ≤ 2

[Xi, X7−i] = (−1)i( (i−3)(i−4)
2

X7 − Y3) 1 ≤ i ≤ 3

[Xi, X6−i] = (−1)i(3− i)X6 1 ≤ i ≤ 2

[Xi, Y2] = −2Xi+5 1 ≤ i ≤ 2

Remark 4.2. The exceptional naturally graded non-split p-filiform Lie alge-
bras are

i) p = 2 ⇒ ε(7, 3), ε1(9, 5) and ε2(9, 5) [7].

ii) p = 3 ⇒ H2 , ε(8, 3, 5), ε(9, 3, 5), ε1,γ(10, 3, 5), γ = reiθ, r ≥ 0, θ ∈ (−π
2
, π

2
] ,

ε2,0(10, 3, 5), ε2,1(10, 3, 5) and ε2,3(10, 3, 5) [10].
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iii) p = 4 ⇒ ε1(11, 3, 5, 7) and ε2(11, 3, 5, 7).
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