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Abstract. In this paper we study the class F of Lie algebras having a flag of
subalgebras, and the class Ch lm of Lie algebras having a maximal chain of lower
modular subalgebras. We show that F ⊆ Ch lm and that both are extensible
formations that are subalgebra closed. We derive a number of properties relating
to these two classes, including a classification of the algebras in each class over
a field of characteristic zero.
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1. Introduction

This paper is a further contribution to the study by a number of authors of
the relationship between the structure of a Lie algebra and that of its lattice
of subalgebras. We say that a Lie algebra L has a flag of subalgebras whenever
there is a chain

0 = Ln < Ln−1 < · · · < L0 = L

where Li is an (n− i)-dimensional subalgebra of L for 0 ≤ i ≤ n . Clearly, every
solvable Lie algebra has a flag of subalgebras. In section 2 we seek a characterisa-
tion of those Lie algebras possessing a flag of subalgebras. In characteristic zero
such a Lie algebra must be either solvable or else a direct sum of copies of sl(2)
modulo its radical. For more general fields we have that L possesses a composition
series in which the composition factors are either one dimensional or else simple
algebras with a subalgebra of codimension one, as described by Amayo in [2].

A subalgebra Q of L is called a quasi-ideal of L if [Q, V ] ⊆ Q+V for every
subspace V of L .We close section 2 by showing that L has a flag of quasi-ideals
if and only if L is supersolvable or a certain algebra over a field of characteristic
two.

A chain of subalgebras of L

0 = Ln < Ln−1 < · · · < L0 = L
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is called a maximal chain of L if Li is maximal in Li−1 for every i ≥ 1.

A subalgebra U of a Lie algebra L is called

• modular in L if it is a modular element in the lattice of subalgebras of L ;
that is, if

〈U,B〉 ∩ C = 〈B, U ∩ C〉 for all subalgebras B ⊆ C,

and
〈U,B〉 ∩ C = 〈B ∩ C, U〉 for all subalgebras U ⊆ C,

(where, 〈U,B〉 denotes the subalgebra of L generated by U and B )

• upper modular in L (um in L) if, whenever B is a subalgebra of L which
covers U ∩B (that is, such that U ∩B is a maximal subalgebra of B ), then
〈U,B〉 covers U ;

• lower modular in L (lm in L) if, whenever B is a subalgebra of L such that
〈U,B〉 covers U , then B covers U ∩B ;

• semi-modular in L (sm in L) if it is both um and lm in L .

• strongly lm in L if U has codimension one in every subalgebra of L that
covers U .

In section 3 we go on to look at maximal chains in which each subalgebra is lower
modular in the next. We see that every flag of subalgebras is a maximal chain
of lower modular subalgebras, and that all such maximal chains have the same
length. Every Lie algebra L contains a smallest ideal for which the corresponding
factor algebra has a flag of subalgebras to L ; also, if there is a flag of subalgebras
from S to L then every subalgebra of L not contained in S has a subalgebra
of codimension one. Likewise every Lie algebra L contains a smallest ideal for
which the corresponding factor algebra has a maximal chain of lm subalgebras;
also, if there is a chain of lower modular subalgebras from T to L then every
subalgebra of L not contained in T has a maximal and modular subalgebra.
A consequence is that our classification of Lie algebras having a flag of quasi-
ideals from section 2 applies equally to those having a flag of upper modular
subalgebras, of semimodular subalgebras, or of modular subalgebras. Moreover, in
every Lie algebra, every descending flag terminates in the same subalgebra, and,
likewise, every descending maximal chain of lower modular subalgebras terminates
in the same subalgebra. In many situations we find that a maximal chain of lower
modular subalgebras is a flag. Finally we give a classification of the Lie algebras
over a field of characteristic zero which have a maximal chain of lower modular
subalgebras.

Throughout L will denote a finite-dimensional Lie algebra over a field F .

2. Flags.

First we collect together some elementary properties of flags.
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Lemma 2.1. If a Lie algebra L has a flag of subalgebras, then every subalgebra
of L also has a flag of subalgebras.

Proof. Let L be a minimal counter-example. Then L has a flag of subalgebras
but L has a subalgebra S which does not have a flag of subalgebras. Clearly
dim L > 2. Also, we see that L has a maximal subalgebra M of codimension
one in L which has a flag of subalgebras. The minimality of L implies that
every subalgebra of M has a flag of subalgebras, whence M ∩ S has a flag of
subalgebras. On the other hand, since S 6= M and dim L/M = 1, we have that
dim S/S ∩M = 1. It follows that S does have a flag of subalgebras, which is a
contradiction.

Lemma 2.2. If a Lie algebra L has a flag of subalgebras, then every epimo-
morphic image of L also has a flag of subalgebras.

Proof. Let L be a minimal counter-example. We have that L has a flag of
subalgebras of L , 0 = Ln < Ln−1 < · · · < L0 = L . Moreover, L has a proper
ideal N such that L/N does not have a flag of subalgebras. Suppose first that
N 6⊆ L1 . Then we have L = L1 +N , whence L/N ∼= L1/L1∩N . As L1 has a flag
of subalgebras, it follows from the minimality of L that L1/L1 ∩ N , and hence
L/N , has a flag of subalgebras, which is a contradiction. Thus N ⊆ L1 . Using
the minimality of L again, we obtain that L1/N has a flag of subalgebras. Since
dimL/L1 = 1, it follows that L/N has a flag of subalgebras. This contradiction
completes the proof.

Lemma 2.3. Let L be a Lie algebra and let N be an ideal of L. If N and
L/N have flags of subalgebras, then L has a flag of subalgebras.

We shall denote the core of S in L (that is, the largest ideal of L contained
in S ) by SL . Next we seek the simple Lie algebras containing a flag of subalgebras.
We recall the algebras Lm(Γ) constructed by Amayo in [2, page 46] as examples
of Lie algebras L containing a core-free subalgebra of codimension one in L .

Proposition 2.4. Let L be a simple Lie algebra (over any field). Then the
following are equivalent

(i) L has a flag of subalgebras;

(ii) L has a core-free maximal subalgebra of codimension one in L; and

(iii) L ∼= Lm(Γ), where m is odd.

Proof. (i) ⇒ (ii): This is clear.

(ii) ⇒ (iii): Let L have a core-free maximal subalgebra of codimension one
in L . By Theorem 3.1 of [2] we have that L ∼= Lm(Γ). Moreover, since L is
simple, it follows from Theorem 3.2(b),(c) of [2] that m is odd.

(iii) ⇒ (i): Suppose now that L ∼= Lm(Γ). Then L = Fv−1+Fv0+. . .+Fvm

and Hm,i = Fvi + . . . + Fvm for i ≥ 0 is a subalgebra of Lm (see [2, page 46]).
Thus Lm has a flag of subalgebras.
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Corollary 2.5. Let L be a simple Lie algebra over a perfect field of character-
istic different from two. Then L has a flag of subalgebras if and only if either L
is three-dimensional split simple or else a Zassenhaus algebra.

Proof. This follows from Proposition 2.4 and Corollary 2.3 of [8].

We can now classify the Lie algebras over a field of characteristic zero which
have a flag of subalgebras.

Proposition 2.6. Let F have characteristic zero. Then a semisimple Lie
algebra L has a flag of subalgebras if and only if it is a direct sum of copies
of sl(2).

Proof. Let L = S1 ⊕ · · · ⊕ Sr be the decomposition of L into its simple
components, and suppose that L has a flag of subalgebras. By Lemma 2.1, each
Si has a flag of subalgebras and so is isomorphic to sl(2) by [2]. The converse is
clear.

We shall denote the solvable radical of L by R(L).

Theorem 2.7. Let F have characteristic zero. Then a Lie algebra L has a
flag of subalgebras if and only if either L is solvable or else L/R(L) is a direct
sum of copies of sl(2).

Proof. Let L have a flag of subalgebras and suppose that L is not solvable.
Then L/R(L) is semisimple and has a flag of subalgebras by Lemma 2.2. It follows
from Proposition 2.6 that L/R(L) is a direct sum of copies of sl(2). The converse
follows from the fact that sl(2) has a flag of subalgebras and Lemma 2.3.

The best that we can do over a general field is the following.

Theorem 2.8. Let L be over any field F . Then L has a flag of subalgebras if
and only if L has a composition series 0 = Ik < Ik−1 < · · · < I1 = L where Ij/Ij+1

is one dimensional or else isomorphic to Lm(Γ) where m is odd, for 1 ≤ j ≤ k−1.
(Note that different factors may be isomorphic to different Lm(Γ)).

Proof. Suppose that 0 = Sn < · · · < S0 = L is a flag of subalgebras for L .
Choose the smallest j with 1 ≤ j ≤ n such that Sj+1 is NOT an ideal of Sj . If
no such j exists then our flag is a composition series in which all of the factors
are one dimensional. Put Kj+1 = (Sj+1)Sj

. Clearly Kj+1 is contained in but not
equal to Sj+1 . Now by Lemmas 2.1, 2.2 we have that Kj+1 , Sj/Kj+1 both have
flags of subalgebras. Moreover Sj/Kj+1 contains a core-free maximal subalgebra
of codimension one and dimSj/Kj+1 ≥ 2. Thus, by Theorem 3.1 of [2], either
Sj/Kj+1 is the two-dimensional non-abelian algebra or else it is equal to some
Lm(Γ). In the former case we can form a composition series for Sj/Kj+1 where
each factor is one dimensional. So suppose that the latter case holds.

If m is odd then Lm(Γ) is simple, by Theorem 3.2(b) of [2], and Kj+1 < Sj

can be included in the required composition series. If m is even then a series of
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subalgebras for Lm(Γ) is 0 < (Lm(Γ))2 < Lm(Γ). This is a composition series,
since the derived algebra has codimension one in Lm(Γ) and is a simple ideal of
Lm(Γ), by Theorem 3.2(c) of [2]. Using Lemma 2.1 again, we have that the derived
algebra has a flag of subalgebras, and so (Lm(Γ))2 ∼= Lm

′ (Γ), by Proposition 2.4.
Since m is even we have that dim(Lm(Γ))2 ≥ 3 and odd, whence m

′
is odd, by

Theorem 3.2(c) of [2]. Hence Kj+1 < S2
j < Sj can be included in the required

composition series. Continuing in this manner, by the finite dimensionality of L ,
we get the required composition series for L .

Conversely suppose that L has such a composition series. Then the result
follows from Proposition 2.4 and the proof is now complete.

Finally, when the subalgebras in a flag are quasi-ideals we have the following
result.

Theorem 2.9. Let L be a Lie algebra over any field F . Then L has a flag of
quasi-ideals of L if and only if either

(i) L is supersolvable, or

(ii) F has characteristic two and L = U ⊕K , where U is a supersolvable ideal
of L and K is a three-dimensional split simple ideal of L.

Proof. Let 0 = Ln < Ln−1 < · · · < L0 = L be a flag of subalgebras of L
such that Li is a quasi-ideal of L for every 0 ≤ i ≤ n . Assume that L is not
supersolvable. As dim (L/L3) = 3 it follows from Theorem 3.6 of [1] that L3 is
an ideal of L . But then Lj is an ideal of L for every 3 ≤ j ≤ n , by Lemma 2.2
of [6] for instance, and so L3 is supersolvable. Moreover, L2 is not an ideal of L
because L is not supersolvable. This implies that F has characteristic two and
L/L3 is three-dimensional split simple, by [1] again. Now, by using Lemma 1.4 of
[9] we obtain that L = L3⊕L(∞) . This completes the proof in one direction. The
converse is clear.

3. Maximal chains of lower modular subalgebras.

Lemma 3.1. Let U ≤ B ≤ L.

(i) If U is lm in B and B is sm in L, then U is lm in L.

(ii) If U is strongly lm in B and B is um and strongly lm in L, then U is
strongly lm in L.

Proof. (i) Suppose that U is lm in B and B is sm in L . Let S ≤ L such that U
is maximal in 〈U, S〉 . We need to show that U ∩S is maximal in S . If S ≤ B this
is clear, as U is lm in B , so assume that S 6≤ B . Then B ∩〈U, S〉 = U . It follows
that B is maximal in 〈B, U, S〉 = 〈B, S〉 , because B is um in L . This yields that
B ∩ S is maximal in S , since B is lm in L . But now B ∩ S ≤ B ∩ 〈U, S〉 = U
and so B ∩ S = U ∩ S , completing the proof of our first claim.
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(ii) Now suppose that U is strongly lm in B and that B is um and strongly
lm in L . Let C be a subalgebra of L covering U . If C ≤ B , then dim (C/U) = 1,
because U is strongly lm in B , so suppose that C 6≤ B . Then U = C∩B , so B is
covered by 〈C, B〉 , since B is um in L . It follows from the fact that B is strongly
lm in L that B has codimension one in 〈C, B〉 = C + B . But now dim (C/U) =
dim (C/C ∩B) = dim ((C + B)/B) = 1, as required.

Notice that the above lemma shows that every subideal of L is lm in L .

Proposition 3.2. For a maximal chain 0 = Ln < Ln−1 < · · · < L0 = L of L
the following are equivalent:

(i) Li is lm in Li−1 for all i ≥ 1; and

(ii) Li is lm in L for all i ≥ 1.

Proof. Simply note that each member of such a chain is maximal, and so um,
in the next.

A maximal chain satisfying conditions (i) and (ii) will be called a maximal
chain of lm subalgebras of L . The above result has a number of consequences.

Corollary 3.3. Every flag of subalgebras of L is a maximal chain of lm subalge-
bras of L. Furthermore, whenever L has a flag of subalgebras, every lm subalgebra
of L is strongly lm in L.

Proof. Every flag is a maximal chain and each term has codimension one in the
next, and so is lm in the next. The first assertion therefore follows from Proposition
3.2.

Suppose now that L has a flag of subalgebras 0 = Ln < Ln−1 < · · · < L0 =
L , and let U be a lm subalgebra of L . To prove the second assertion it suffices to
show that if U is maximal in L then it has codimension one in L . So suppose that
U is maximal in L . There is a k with n ≥ k ≥ 1 such that Lk ≤ U but Lk−1 6≤ U .
Suppose that U ∩ Li ≤ Li+1 for some 0 ≤ i ≤ k − 2. If U ≤ Li , then U = L1

and we have finished. Otherwise, U is covered by 〈U,Li〉 = L and so U ∩ Li is
covered by Li , because U is lm in L . But then U ∩Li = Li+1 , whence Li+1 ≤ U ,
a contradiction. Hence U ∩ Li 6≤ Li+1 for all 0 ≤ i ≤ k − 2. This yields that
Li = Li+1 + U ∩ Li , from which 1 = dim (Li/Li+1) = dim ((U ∩ Li)/(U ∩ Li+1))
for all 0 ≤ i ≤ k − 2. But then

k + 1 = dim (L/Lk) = dim (L/U) +
k−1∑
i=−1

dim ((U ∩ Li)/(U ∩ Li+1))

= dim (L/U) + k,

which gives dim (L/U) = 1, as required.
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Corollary 3.4. If L has a flag of subalgebras then every maximal chain of lm
subalgebras is a flag of L.

We shall denote by X the class of Lie algebras L in which every maximal
subalgebra has codimension one in L , and by sX the class of all subalgebras of X -
algebras The Lie algebra L is called completely lower modular if every subalgebra
is lm in L .

Corollary 3.5. (i) Every subalgebra of L lies in a flag of subalgebras of L if
and only if L ∈ sX .

(ii) Every subalgebra of L lies in a maximal chain of lm subalgebras if and only
if L is completely lower modular.

Lemma 3.6. If a Lie algebra L has a maximal chain of lm subalgebras, then
every subalgebra of L also has a maximal chain of lm subalgebras.

Proof. Let L be a minimal counter-example. Then L has a maximal chain of
lm subalgebras but L has a subalgebra S which does not have such a maximal
chain. Clearly dim L > 2. Also, we see that L has a maximal subalgebra M which
is lm in L and which has a maximal chain of lm subalgebras. The minimality of
L implies that every subalgebra of M has a maximal chain of lm subalgebras,
whence M ∩ S has such a maximal chain. Now S 6= M so 〈M, S〉 = L which
covers M , so S covers M ∩ S by the lower modularity of M in L . We show that
M ∩ S is lm in S by using Theorem 2.3 of [7]. Let B be a subalgebra of S such
that B 6⊂ M ∩ S . Then M ∩ S ∩ B = M ∩ B . Since B 6⊂ M and M is lm in L ,
we have that M ∩B is covered by B . It follows that M ∩S is lm in S and hence
that S does have a maximal chain of lm subalgebras, which is a contradiction.

Lemma 3.7. If a Lie algebra L has a maximal chain of lm subalgebras, then
every epimomorphic image of L also has a maximal chain of lm subalgebras.

Proof. Let L be a minimal counter-example. We have that L has a maximal
chain of lm subalgebras of L , 0 = Ln < Ln−1 < · · · < L0 = L . Moreover, L has a
proper ideal N such that L/N does not have a maximal chain of lm subalgebras.
Suppose first that N 6⊆ L1 . Then we have L = L1+N , whence L/N ∼= L1/L1∩N .
As L1 has a maximal chain of lm subalgebras, it follows from the minimality of L
that L1/L1∩N , and hence L/N , has a maximal chain of lm subalgebras, which is
a contradiction. Thus N ⊆ L1 . Using the minimality of L again, we obtain that
L1/N has a maximal chain of lm subalgebras. Since L1 is maximal and lm in L ,
it follows from Lemma 2.2 of [7] that L/N has a maximal chain of lm subalgebras.
This contradiction completes the proof.

Lemma 3.8. Let L be a Lie algebra and let N be an ideal of L. If N and
L/N have maximal chains of lm subalgebras, then L has a maximal chain of lm
subalgebras.

We shall show next that every maximal chain of lm subalgebras has the
same length.
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Lemma 3.9. Let H, K be distinct lm maximal subalgebras of L. Then H ∩K
is a lm maximal subalgebra of both H and K .

Proof. It suffices to show that H ∩K is a lm maximal subalgebra of K . We
have that 〈H, K〉 = L , so H is maximal in 〈H, K〉 . The lower modularity of H
in L implies that H ∩K is maximal in K .

Now let B be a subalgebra of K with H ∩K maximal in 〈H ∩K, B〉 = K .
Clearly B 6⊆ H , and so 〈H, B〉 = L . ¿From the lower modularity of H in L we
now have that H ∩ B is maximal in B . But H ∩ B = (H ∩K) ∩ B , giving that
H ∩K is lm in K .

Theorem 3.10. If A, B are subalgebras of the Lie algebra L, and there is a
maximal chain of lm subalgebras of length n from A to B , then all such maximal
chains have length n.

Proof. We use induction on n . The result is clear if n = 1. So assume the
result holds for n− 1. Let

A = A0 < · · · < An = B,

A = B0 < · · · < Bm = B

be maximal chains of lm subalgebras from A to B . If An−1 = Bm−1 , then
n− 1 = m− 1 by the inductive hypothesis and we are done.

So assume that An−1 6= Bm−1 and let C = An−1 ∩Bm−1 . Then, by Lemma
3.9, C is lm and maximal in both An−1 and Bm−1 . Now we can create a maximal
chain of lm subalgebras from A to C (by considering C ∩ Ai for 0 ≤ i ≤ n − 2
for instance). By the inductive hypothesis, this chain must have length n− 2:

A = C0 < · · ·Cn−2 = C,

say, as it can be extended to a chain from A to An−1 . But then

A = C0 < · · · < Cn−2 < Bm−1

is a chain of length n− 1 from A to Bm−1 . It follows that n− 1 = m− 1 and the
result holds.

Let F denote the class of Lie algebras having a flag of subalgebras, and let
Ch lm be the class of Lie algebras having a maximal chain of lm subalgebras. Recall
that a class H of Lie algebras is called a homomorph if it contains, along with an
algebra L , all epimorphic images of L . A homomorph H is called a formation if
L/M,L/N ∈ H , where M, N are ideals of L , implies that L/M ∩N ∈ H . We say
that the formation H is extensible if it is closed under extensions; that is if L ∈ H
whenever M, L/M ∈ H . Then we have

Proposition 3.11. The classes F and Ch lm are extensible formations and are
subalgebra-closed .
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Proof. This follows from Lemmas 2.1, 2.2, 2.3, 3.6, 3.7 and 3.8.

As F and Ch lm are formations, every Lie algebra L contains smallest ideals
LF and LCh lm such that L/LF ∈ F and L/LCh lm ∈ Ch lm . We have that from LF

to L there is a “flag of subalgebras”, and that from LCh lm to L there is a “maximal
chain of lm subalgebras”.

Proposition 3.12. Let S ≤ L be such that there is a “flag of subalgebras” from
S to L, and let T ≤ L be such that there is a “maximal chain of lm subalgebras”
from T to L. Then

(i) every subalgebra of L not contained in S has a subalgebra of codimension one;
and

(ii) every subalgebra of L not contained in T has a maximal and modular subal-
gebra.

Proof. (i) Let S = Sn < Sn−1 < · · · < S0 = L be a flag from S to L and let
U be a subalgebra of L such that U 6≤ S . There is a k with 1 ≤ k ≤ n
such that U ≤ Sk−1 but U 6≤ Sk . Then we have Sk−1 = U + Sk and so dim
(U/U ∩ Sk) = dim(Sk−1/Sk) = 1 and so U ∩ Sk has codimension one in U .

(ii) Let T = Tn < Tn−1 < · · · < T0 = L be a maximal chain of lm subalgebras
from T to L and let U be a subalgebra of L such that U 6≤ T . There is a
k with 1 ≤ k ≤ n such that U ≤ Tk−1 but U 6≤ Tk . Then 〈U, Tk〉 = Tk−1 ,
so Tk is covered by 〈U, Tk〉 . As Tk is lm in Tk−1 it follows that U ∩ Tk is
maximal in U . Similarly, if W ≤ U with W 6≤ U ∩ Tk , then W ∩ Tk is
maximal in W , from which it follows that U ∩ Tk is modular in U .

Corollary 3.13. If U is a um subalgebra of L and there is a flag of subalgebras
from U to L, then U is a quasi-ideal of L.

Proof. Let x 6∈ U and put C = 〈U, x〉 . Then, as in the above result, C has a
subalgebra M = Uk ∩C of codimension one in C . Now, U is covered by C , since
U is um in L , and U ≤ M < C , so U = M . It follows that C = U + Fx and U
is a quasi-ideal of L .

Corollary 3.14. Let F be a flag of subalgebras of L. Then the following are
equivalent:

(i) F is a flag of um subalgebras of L;

(ii) F is a flag of sm subalgebras of L;

(iii) F is a flag of modular subalgebras of L; and

(iv) F is a flag of quasi-ideals of L.
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Corollary 3.15. (i) All descending flags from L stop in the same subalgebra
of L.

(ii) All descending maximal chains of lm subalgebras of L stop in the same sub-
algebra of L.

We will denote by L̂F and by L̂Ch lm the subalgebras referred to in (i) and
(ii) of Corollary 3.15 above. Then we have

L̂Ch lm ≤ LCh lm ∩ L̂F and LCh lm + L̂F ≤ LF .

Moreover,

L̂Ch lm ≤
⋂
{M ≤ L : M maximal and modular in L}

and L̂F ≤
⋂
{M ≤ L : dim(L/M) = 1}.

For fields of characteristic zero we have that L̂Ch lm and L̂F are ideals of L ,
by Corollary 3.3 of [5], and hence that LCh lm = L̂Ch lm and LF = L̂F .

Corollary 3.16. Let L be a Lie algebra in which every modular subalgebra of
L is a quasi-ideal of L. Then every maximal chain of lm subalgebras of L is a
flag in L.

Proof. Let 0 = Ln < Ln−1 < · · ·L0 = L be a maximal chain of lm subalgebras
of L . Putting U = Lk−1 , T = 0, Ti = Li (0 ≤ i ≤ n) in the proof of Proposition
3.12 shows that Lk is maximal and modular in Lk−1 for 1 ≤ k ≤ n . It follows that
Lk is a quasi-ideal of Lk−1 , and hence has codimension one in Lk−1 for 1 ≤ k ≤ n ,
yielding that our chain is a flag.

Corollary 3.17. Let L be a Lie algebra over an algebraically closed field of
characteristic zero or a restricted Lie algebra over an algebraically closed field of
characteristic p > 7. Then every maximal chain of lm subalgebras of L is a flag
in L.

Proof. This follows from Corollary 3.16, Corollary 2.6 of [3] and Theorem 2.2
of [10].

Few examples of modular subalgebras that are not quasi-ideals are known.
The obvious ones are the one-dimensional subalgebras of a three-dimensional non-
split simple Lie algebra. Apart from these the only known example is the standard
maximal subalgebra H0 in the non-restricted simple Lie algebra of Cartan type
H = H(2 : 1 : Φ(γ))(1) over an algebraically closed field of characteristic p > 7
(see section 3 of [10]). Also, H0/H1

∼= sl(2) and H1 is nilpotent (see section 2 of
[4]), so H has a maximal chain of lower modular subalgebras. However, it has no
flag of subalgebras by Corollary 2.5.
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Proposition 3.18. (i) From
⋂{M ≤ L : M maximal and modular in L} to

L there is a maximal series of lm subalgebras of L.

(ii)
⋂{M ≤ L : M maximal and modular in L} is lm in L.

(iii) From
⋂{M ≤ L : dim(L/M) = 1} to L there is a flag of subalgebras to L

whenever
⋂{M ≤ L : dim(L/M) = 1} 6= L.

(iv)
⋂{M ≤ L : dim(L/M) = 1} is strongly lm in L.

Proof. (i) Pick a maximal and modular subalgebra M of L . The result is
clear if M =

⋂{M ≤ L : M maximal and modular in L} , so assume that
M <

⋂{M ≤ L : M maximal and modular in L} . Then there is a modular
maximal subalgebra K of L with K 6= L . The subalgebra M∩K is modular
and maximal in M . Continuing in this way we get a maximal chain of lm
subalgebras of L from

⋂{M ≤ L : M maximal and modular in L} to L .

(ii) This follows from (i) and Lemma 3.1(i).

(iii) This is similar to (i).

(iv) This follows from (iii) and Lemma 3.1(ii).

Over fields of characteristic zero, each of the above intersections is an ideal
of L , by Corollary 3.2 of [5], but this is not necessarily the case over more general
fields. Finally we can classify the algebras in Ch lm over a field of characteristic
zero.

Theorem 3.19. Let L be a Lie algebra over a field F of characteristic zero.
Then L has a maximal chain of lm subalgebras if and only if either L is solvable, or
L/R(L) ∼= P1 ⊕ · · · ⊕ Pr where Pi is three-dimensional simple for each 1 ≤ i ≤ r .

Proof. Suppose that L has a maximal chain of lm subalgebras and that L is
not solvable. By Proposition 3.11, L/R(L) has a maximal chain of lm subalgebras.
Decompose L/R(L) as P1 ⊕ · · · ⊕ Pr where Pi is simple for each 1 ≤ i ≤ r . It
follows from Proposition 3.12 that each Pi has a maximal and modular subalgebra,
and so is three dimensional, by [3].

The converse is straightforward.
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