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Abstract. In this paper we consider the analytic continuation of the weighted
Bergman spaces on the Lie ball D = SO(2, n)/S(O(2) × O(n)) and the corre-
sponding holomorphic unitary (projective) representations of SO(2, n) on these
spaces. These representations are known to be irreducible. Our aim is to de-
compose them under the subgroup SO(1, n) which acts as the isometry group
of a totally real submanifold X of D . We give a proof of a general decom-
position theorem for certain unitary representations of semisimple Lie groups.
In the particular case we are concerned with, we find an explicit formula for
the Plancherel measure of the decomposition as the orthogonalising measure for
certain hypergeometric polynomials. Moreover, we construct an explicit gener-
alised Fourier transform that plays the role of the intertwining operator for the
decomposition. We prove an inversion formula and a Plancherel formula for this
transform. Finally we construct explicit realisations of the discrete part appear-
ing in the decomposition and also for the minimal representation in this family.
Mathematics Subject Index 2000: 32M15, 22E46, 22E43, 43A90, 32A36.
Keywords and phrases: Bounded symmetric domain, Lie group, Lie algebra,
unitary representation, spherical function, hypergeometric function, intertwin-
ing operator.

Introduction

One of the main problems in the representation theory of Lie groups and harmonic
analysis on Lie groups is to decompose some interesting representations of a Lie
group G under a subgroup H ⊂ G . This decomposition is also called the branch-
ing rule. Among other things, this has led to the discovery of new interesting
representations. An exposition of the general theory for compact connected Lie
groups, including the classical results for U(n) and SO(n) (by Weyl and Mur-
naghan respectively), can be found in [12].

Since the work by R. Howe [7] and M. Kashiwara and M. Vergne (cf [10]),
it has turned out to be fruitful to study the branching of singular and minimal
holomorphic representations of a Lie group acting on a function space of holo-
morphic functions on a bounded symmetric domain. In [9], Jakobsen and Vergne
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study the restriction of the tensor product of two holomorphic representations to
the diagonal subgroup.

In this paper we will study the branching of the analytic continuation of the
scalar holomorphic discrete series of SO(2, n) under the subgroup H = SO0(1, n).
The subgroup H here is realised as the isometry group of a totally real submanifold
of the Lie ball SO(2, n)/S(O(2) × O(n)). The branching for a general Lie group
G of Hermitian type under a symmetric subgroup H has been studied recently by
Neretin ([19], [18]), Zhang ([28],[30],[29]) and by van Dijk and Pevzner [25]. In [14],
Kobayashi and Ørsted studied the branching for some minimal representations.
The branching rule for regular parameter and for some minimal representations
is now well understood. However, the problem of finding the branching rule for
non-discrete, non-regular parameter is a difficult one, and there is still no complete
theory for the general case.

We find the branching rule for arbitrary scalar parameter ν in the Wallach
set of SO(2, n). It turns out that for small parameters ν there appears a discrete
part in the decomposition. We discover here an intertwining operator realising the
corresponding representation. It should be mentioned that for large parameter (in
this case ν > n − 1) the corresponding branching problem has been solved by
Zhang in [28] for arbitrary bounded symmetric domains.

The paper is organised as follows. In Section 1 we describe the geometry of
the Lie ball. In Section 2 we recall some facts about general bounded symmetric
domains and Jordan triple systems. In Section 3 we establish some facts about the
real part of the Lie ball. In Section 4 we consider a family of function spaces and
corresponding unitary representations. Section 5 is devoted to branching theorems
and to finding the Plancherel measure. In Sections 6 and 7 we find realisations of
the representations corresponding to the discrete part in the decomposition and
to the minimal point in the Wallach set respectively.

Acknowledgement. I would like to thank Prof. Genkai Zhang for his guidance
and support during the preparation of this paper and for all the discussions we
have had on related topics. It is also my pleasure to thank Prof. Andreas Juhl for
having read an earlier version of this manuscript and for having provided valuable
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1. The Lie ball as a symmetric space SO0(2, n)/SO(2)× SO(n)

In this paper we study representations on function spaces on the domain

D = {z ∈ Cn|1− 2〈z, z〉+ |zzt|2 > 0, |z| < 1}. (1)

We will only be concerned with the case n > 2. (If n = 1 it is the unit disk,
U , and if n = 2, D ∼= U × U ). In this section we describe D as the quotient of
SO0(2, n) by SO(2)×SO(n)) by studying a holomorphically equivalent model on
which we have a natural group action induced by the linear action on a submanifold
of a Grassmanian manifold. Consider Rn+2 ∼= R2 ⊕ Rn equipped with the non-
degenerate bilinear form

(x|y) := x1y1 + x2y2 − x3y3 − . . .− xn+2yn+2,
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where the coordinates are with respect to the standard basis e1, · · · , en+2 . Let
SO(2, n) be the group of all linear transformations on Rn+2 that preserve this
form and have determinant 1, i.e.,

SO(2, n) = {g ∈ GL(2 + n, R)|(gx|gy) = (x|y), x, y ∈ R2+n, det g = 1} (2)

Let G+
(2,n) denote the set of all two-dimensional subspaces of R2 ⊕ Rn on which

(·|·) is positive definite. Clearly R2 ⊕ {0} is one of these subspaces. It will be the
reference point in G+

(2,n) and we will denote it by V0 . The group SO(2, n) acts
naturally on this set and the action is transitive. In fact, the connected component
of the identity, SO0(2, n) acts transitively. We will let G denote this group.

We denote by K the stabilizer subroup of V0 , i.e.,

K = {g ∈ G|g(V0) = V0}. (3)

Any element g ∈ G can be identified with a (2 + n)× (2 + n)- matrix of the form(
A B
C D

)
, (4)

where A is a 2× 2-matrix. With this identification, K clearly corresponds to the
matrices (

A 0
0 D

)
,

where A and D are orthogonal 2 × 2- and n × n-matrices with deerminant one
respectively, i.e., K ∼= SO(2)×SO(n). The space G+

(2,n) can be realised as the unit

ball in Mn2(R) with the operator norm. Indeed, let V ∈ G+
(2,n) . If v = v1+v2 ∈ V ,

then v1 = 0 implies that v2 = 0, i.e., the projection v 7→ v1 is an injective mapping.
This means that there is a real n× 2 matrix Z with ZtZ < I2 , such that

V = {(v ⊕ Zv)|v ∈ R2}. (5)

Conversely, if Z ∈ Mn2(R) satisfies ZtZ < I2 , then (5) defines an element in
G+

(2,n) .

Using (4) to identify g with a matrix and letting V correspond to the
matrix Z , then clearly

gV = {(Av + BZv ⊕ Cv + DZv)|v ∈ R2)}
= {v ⊕ (C + DZ)(A + BZ)−1v)|v ∈ R2)}.

In other words, we have a G-action on the set

M = {Z ∈ Mn2(R)|ZtZ < I2}

given by

Z 7→ (C + DZ)(A + BZ)−1.

This exhibits M as a symmetric space.

M ∼= G/K.

Moreover, we identify the matrix Z = (XY ) with the vector X + iY in Cn

in order to obtain an almost complex structure on M . With respect to this almost
complex structure, the action of G is in fact holomorphic. Moreover we have the
following result by Hua (see [8]).
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Theorem 1. The mapping

H : z 7→ Z = 2

((
zzt + 1 i(zzt − 1)
zzt + 1 −i(zzt − 1)

)−1(
z
z

))t

,

where zzt = z2
1 + · · ·+z2

n , is a holomorphic diffeomorphism of the bounded domain

D = {z ∈ Cn|1− 2〈z, z〉+ |zzt|2 > 0, |z| < 1}

onto M .

We will call this mapping the Hua transform. It allows us to describe D as
a symmetric space

D ∼= M ∼= G/K.

2. Bounded symmetric domains and Jordan pairs

In this section we review briefly some general theory on bounded symmetric
domains and Jordan pairs. All proofs are omitted. For a more detailed account
we refer to Loos ([15]) and to Faraut-Koranyi ([2]).

Let D be a bounded open domain in Cn and H2(D) be the Hilbert space
of all square integrable holomorphic functions on D ,

H2(D) = {f, f holomorphic on D |
∫
D
|f(z)|2dm(z) < ∞},

where m is the 2n-dimensional Lebesgue measure. It is a closed subspace of
L2(D). For every w ∈ D , the evaluation functional f 7→ f(w) is continuous, hence
H2(D) has a reproducing kernel K(z, w), holomorphic in z and antiholomorphic
in w such that

f(w) =

∫
D

f(z)K(z, w)dm(z).

K(z, w) is called the Bergman kernel. It has the transformation property

K(ϕ(z), ϕ(w)) = Jϕ(z)−1K(z, w)Jϕ(w)
−1

, (6)

for any biholomorphic mapping ϕ on D with complex Jacobian Jϕ(z) = det dϕ(z).
Hereafter biholomorphic mappings will be referred to as automorphisms. The
formula

hz(u, v) = ∂u∂v log K(z, z) (7)

defines a Hermitian metric, called the Bergman metric. It is invariant under
automorphisms and its real part is a Riemannian metric on D .

A bounded domain D is called symmetric if, for each z ∈ D there is an
involutive automorphism sz with z as an isolated fixed point. Since the group
of automorphisms, Aut(D) preserves the Bergman metric, sz coincides with the
local geodesic symmetry around z . Hence D is a Hermitian symmetric space.
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A domain D is called circled (with respect to 0) if 0 ∈ D and eitz ∈ D for
every z ∈ D and real t .

Every bounded symmetric domain is holomorphically isomorphic with a
bounded symmetric and circled domain. It is unique up to linear isomorphisms.

From now on D denotes a circled bounded symmetric domain. G is the
identity component of Aut(D), K is the isotropy group of 0 in G . The Lie
algebra g will be considered as a Lie algebra of holomorphic vector fields on D ,
i.e., vector fields X on D such that Xf is holomorphic if f is. The symmetry
s, z 7→ −z around the origin induces an invoulution on G by g 7→ sgs−1 and, by
differentiating, an involution Ad(s) of g . We have the Cartan decomposition

g = k⊕ p

into the ±1-eigenspaces.

For every v ∈ Cn , let ξv be the unique vector field in p that takes the value
v at the origin. Then

ξv(z) = v −Q(z)v (8)

where Q(z) : V → V is a complex linear mapping and Q : V → Hom(V , V ) is a
homogeneous quadratic polynomial. Hence Q(x, z) = Q(x + z) − Q(x) − Q(z) :
V → V is bilinear and symmetric in x and z . For x, y, z ∈ V , we define

{xyz} = D(x, y)z = Q(x, z)y (9)

Thus {xyz} is complex bilinear and symmetric in x and z and complex antilinear
in y , and D(x, y) is the endomorphism z 7→ {xyz} of V .

The pair (V, { }) is called a Jordan triple system. This Jordan triple system
is positive in the sense that if v ∈ V, v 6= 0 and Q(v)v = λv for some λ ∈ C , then
λ is positive. We introduce the endomorphisms

B(x, y) = I −D(x, y) + Q(x)Q(y) (10)

of V for x, y ∈ V , where Q(y)x = Q(y)x̄ . We summarise some results in the
following proposition.

Proposition 2. a) The Lie algebra g satisfies the relations

[ξu, ξv] = D(u, v)−D(v, u) (11)

[l, ξu] = ξlu (12)

for u, v ∈ V and l ∈ k

b) The Bergman kernel k(x, y) of D is

m(D)−1 det B(x, y)−1 (13)

c) The Bergman metric at 0 is

h0(u, v) = trD(u, v), (14)

and at an arbitrary point z ∈ D

hz(u, v) = h0(B(z, z)−1u, v) (15)

d) The triple product { } is given by

h0({uvw}, y) = ∂u∂v∂x∂y log K(z, z)|z=0 (16)
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We define odd powers of an element x ∈ V by

x1 = x, x3 = Q(x)x, · · · , x2n+1 = Q(x)x2n−1.

An element x ∈ V is said to be tripotent if x3 = x , i.e., if {xxx} = 2x .
Two tripotents c and e are called orthogonal if D(c, e) = 0. In this case D(c, c)
and D(e, e) commute and e + c is a tripotent.

Every x ∈ V can be written uniquely

x = λ1c1 + · · ·+ λncn,

where the ci are pairwise orthogonal nonzero tripotents which are real linear
combinations of odd powers of x , and the λi satisfy

0 < λ1 < · · · < λn.

This expression for x is called its spectral decomposition and the λi the eigenvalues
of x . Moreover, the domain D can be realised as the unit ball in V with the
spectral norm

‖x‖ = max |λi|,

where the λi are the eigenvalues of x , i.e.,

D = {x ∈ V |‖x‖ < 1}.

Let f(t) be an odd complex valued function of the real variable t , defined for
|t| < ρ . For every x ∈ V with |x| < ρ we define f(x) ∈ V by

f(x) = f(λ1)c1 + · · ·+ f(λn)cn, (17)

where x = λ1c1+· · ·+λncn is the spectral resolution of x . This functional calculus
is used in expressing the action on D of the elements exp ξv in G :

exp ξv(z) = u + B(u, u)1/2B(z,−u)−1(z + Q(z)u) (18)

and

d(exp ξv)(z) = B(u, u)1/2B(z,−u)−1, (19)

where u = tanh v , for v ∈ Cn and z ∈ D .

3. The real part of the Lie ball

We consider the non-degenerate quadratic form

q(z) = z2
1 + · · ·+ z2

n (20)

on V = Cn . In the following we will often denote q(z, w) by (z, w). Defining
Q(x)y = q(x, y)x− q(x)y , where q(x, y) = q(x + y)− q(x)− q(y), we get a Jordan
triple system. The Lie ball D = {z ∈ Cn|1 − 2〈z, z〉 + |zzt|2 > 0, |z| < 1} is
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the open unit ball in this Jordan triple system. An easy computation shows the
following identity.

D(x, y)z = 2(
n∑

k=1

xkyk)z + 2(
n∑

k=1

zkyk)x− 2(
n∑

k=1

xkzk)y

Recalling that B(x, y) = I −D(x, y) + Q(x)Q(y). The Bergman kernel of D is

K(z, w) = (1− 2〈z, w〉+ (zzt)(wwt))−n. (21)

We will hereafter denote it by h(z, w)−n . Consider the real form Rn in Cn .
Observe that

X := D
⋂

Rn

is the unit ball of Rn . On X we have a simple expression for the Bergman metric:

B(x, x) = (1− |x|2)−2I, x ∈ X . (22)

The submanifold X is a totally real form of D in the sense that

Tx(X ) + iTx(X ) = Tx(D), Tx(X )
⋂

iTx(X ) = {0}

This implies that every holomorphic function on D that vanishes on X is iden-
tically zero. We define the subgroup H as the identity component of

{h ∈ G|h(x) ∈ X if x ∈ X }

We will denote H
⋂

K by L .

Using the fact that the real form Rn is a sub-triple system of Cn , one can
show that X is a totally geodesic submanifold of D (cf Loos [15]). Hence we can
describe X as a symmetric space

X ∼= H/L.

We now study the image of X in the Mn2(R)- model of the Lie ball. For
computational convenience, we now work with the transposes of these matrices.
The defining equation of the Hua-transform can be written as

1

2

(
zzt + 1 i(zzt − 1)
zzt + 1 −i(zzt − 1)

)
Z =

(
z
z

)
(23)

In the coordinates (z1, . . . , zn) of z , this identity takes the form

zk =
1

2
( (zzt + 1)xk + i(zzt − 1)yk). (24)

This gives

4zzt = (zzt)2(X + iY )(X + iY )t + 2(XX t + Y X t)zzt (25)

+(X − iY )(X − iY )t, (26)
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which is a quadratic equation in zzt with unique solution

zzt =
2− (XX t + Y Y t)− 2

√
(1−XX t)(1− Y Y t)− (Y X t)2

(X + iY )(X + iY )t
. (27)

From (24) we see that if z is real, then yk = 0 for all k . On the other hand, if
Y = 0, then (27) shows that zzt is real and therefore z is real by (24). Hence the
image of the real part X ⊂ D under the Hua-transform is the set

H(X ) = {Z = (X 0) |X ∈ Mn1(R), |X| < 1}, (28)

since for an element Z = (X 0), the condition that ZtZ < I2 is clearly equivalent
with |X| < 1.

Recall that the real n-dimensional unit ball can be described as a symmetric
space SO0(1, n)/SO(n) by a procedure analogous to the one in the first section.
One first considers all lines in R1+n on which the quadratic form x2

1−x2
2−· · ·−x2

n+1

is positive definite and identifies these lines with all real n×1-matrices with norm
less than one. If we write elements g ∈ SO(1, n) as matrices of the form

g =


a − b −
|
c D
|

 , (29)

the action is given by

X 7→ (c + DX)(a + bX)−1. (30)

The group SO(1, n) can be embedded into SO(2, n). Indeed, the equality
a 0 − b −
0 1 − 0 −
| |
c 0 D
| |




a′ 0 − b′ −
0 1 − 0 −
| |
c′ 0 D′

| |



=


aa′ + bc′ 0 − ab′ + bD′ −

0 1 − 0 −
| |

ca′ + Dc′ 0 cb′ + DD′

| |


shows that we can define an injective homomorphism θ : SO(1, n) → SO(2, n) by

θ :


a − b −
|
c D
|

 7→


a 0 − b −
0 1 − 0 −
| |
c 0 D
| |

 .
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This subgroup acts on H(X ) as

(X 0) 7→
(
(c + DX)(a + bX)−1 0

)
and the action is transitive. Suppose now that h ∈ SO(2, n) preserves H(X ).
Let p = h(0). We can choose a g ∈ SO0(1, n) such that g(0) = p (here we identify
g with θ(g)). Then g−1h(0) = 0 and hence we can write it in block form as

g−1h =

(
I2 0
0 D

)
,

with D ∈ SO(n). This is an element in θ(SO(1, n)) and hence h ∈ θ(SO(1, n)).
We have now proved the following theorem.

Theorem 3. The Hua transform H : D → M maps the real part X diffeo-
morphically onto

H(X ) = {Z = (X 0) |X ∈ Mn1(R), |X| < 1} (31)

by x 7→ 2x
1+|x|2 . Moreover, the induced group homomorphism h 7→ H hH−1 is an

isomorphism between the groups H and SO0(1, n)

Remark 3.1. The model H(X ) of SO0(1, n)/SO(n) is the real part of the
complex n-dimensional unit ball SU(1, n)/SU(n) with fractional- linear group
action. It is therefore equipped with a Riemannian metric given by the restriction
of the Bergman metric of the complex unit ball. If x ∈ H(X ), x 6= 0, we
decompose Rn = Rx ⊕ (Rx)⊥ . We let v = vx + vx⊥ be the corresponding
decomposition of a tangent vector v at x . In this model, the Riemannian metric
at x is (cf [21])

gx(v, v) =
|vx|2

(1− |x|2)2
+

|vx⊥|2

(1− |x|2)
.

We recall from equation (22) that if x ∈ X , then the Riemannian metric at x is

hx(v, v) =
1

2n

|v|2

(1− |x|2)2
.

The Hua transform thus induces an isometry (up to a constant) of the real n-
dimensional unit ball equipped with two different Riemannian structures.

3.1. Iwasawa decomposition of h. The Cartan decomposition g = k ⊕ p

induces a decomposition h = l⊕ q . We let

a = Rξe

be the one-dimensional subspace of q , where e = e1 denotes the first standard
basis vector and the corresponding vector field ξe is defined in (8).
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Proposition 4. The Lie algebra h has rank one, and the roots with respect to
the abelian subalgebra a of q are {α,−α}, where α(ξe) = 2. The corresponding
posive root space is

qα = {ξv +
1

2
(D(e, v)−D(v, e))|v ∈ Re2 ⊕ · · · ⊕ Ren}

Proof. This is known in a general context, but we give here an elementary
proof.

Take u and v in Rn and assume that [ξu, ξv] = 0. Then, for any x ∈ Rn

we have

D(u, v)x = D(v, u)x.

A simple calculation shows that this amounts to

(u, x)v = (v, x)u,

which can only hold for all real x if u = v .

Thus a is a maximal abelian subalgebra in q . The vector e is a maximal
tripotent in the Jordan triple system corresponding to D . Suppose that
[ξe, ξv + l] = α(ξe)(ξv + l). Identifying the q - and l -components yields

D(e, v)−D(v, e) = α(ξe)l (32)

−ξle = α(ξe)ξv (33)

From (33) it follows that le = −α(ξe)v and, thus, applying both sides of (32) to
e gives

D(e, v)e−D(v, e)e = −α(ξe)
2v,

i.e.,

D(e, e)v −D(e, v)e = α(ξe)
2v,

An easy computation gives

4v − 4(e, v)e = α(ξe)
2v.

Hence e is orthogonal to v and α(ξe)
2 = 4. The rest follows immediately.

We shall fix the positive root α . Elements in a∗C are of the form λα and will
hereafter be identified with the complex numbers λ . In particular, the half sum
of the positive roots (with multiplicities), ρ , will be identified with the number
(n− 1)/2.

3.2. The Cayley transform. The Cayley transform is a biholomorphic map-
ping from a bounded symmetric domain onto a Siegel domain. We describe it for
the domain D and use it to express the spherical functions on X in terms of the
spherical functions on the unbounded domain. We fix the maximal tripotent e .
Then Cn equipped with the bilininear mapping

(z, w) 7→ z ◦ w =
1

2
{zew} (34)

is a complex Jordan algebra. Observe that since e is a tripotent, it is a unity for
this multiplication. The Cayley transform is the mapping c : Cn → Cn defined by

c(z) = (e + z) ◦ (e− z)−1, (35)

where (e− z)−1 denotes the inverse of (e− z) with respect to the Jordan product.
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Proposition 5. The Cayley transform is given by the formula

c(z) =
1− zzt

1− 2z1 + (zzt)2
e +

2z′

1− 2z1 + (zzt)2
, (36)

for z = (z1, z
′) = z1e + z′ ∈ D . Moreover, it maps X onto the halfspace

{(x1, . . . , xn} ∈ Rn|x1 > 0}.

Proof. We first find the inverse for an element x . Suppose therefore that
e = 1

2
{xez} = 1

2
D(x, e)z , i.e.,

e = (x, e)z + (z, e)x− (x, z)e = x1z + z1x− (x, z)e

Identifying coordinates gives

1 = 2x1z1 − (x, z)

0 = x1z
′ + z1x

′

These equations have the solution

z1 = x1/(x, x)

z′ = −x′/(x, x).

If we apply this to the expression (e− z)−1 in the definition of c , we get

(e− z)−1 =
1− z1

(1− z1)2 + (z′, z′)
e +

z′

(1− z1)2 + (z′, z′)
.

Now the formula (36) follows by an easy computation. Moreover, we observe that
the inverse transform is given by

w 7→ (w − e) ◦ (w + e)−1 = −c(−w).

Hence both c and c−1 preserve Rn and therefore

c(X ) = c(D)
⋂

Rn.

We now determine c(X ).

From ([15]) we know that (since e is a maximal tripotent)

c(D) = {u + iv|u ∈ A+, v ∈ A}, (37)

where A is the real Jordan algebra

{z ∈ V |Q(e)z = z}

and A+ is the positive cone {z ◦ z|z ∈ A} in A . By a simple computation we see
that

A = Re⊕ Rie2 ⊕ · · · ⊕ Rien.

Since we have the identities
z + Q(e)z = 2u,
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z −Q(e)z = 2iv

and

Q(e)z = 2z1 − z,

we get expressions for u and v :

2u = (z1 + z1, z2 − z2, . . . , zn − zn)

2iv = (z1 − z1, z2 + z2, . . . , zn + zn)

The condition that x = u + iv be in the image of X thus implies that

u = (x1, 0, . . . , 0),

iv = (0, x2, . . . , xn).

Moreover we require that

u = w ◦ w = 2w1w − (w,w)e,

for some

w = c1e + c2ie2 + · · ·+ cnien.

This yields

(x1, . . . , 0) = (c2
1 + · · ·+ c2

n, ic1c2, . . . , ic1cn).

Hence

c2
1 = x1, c2 = · · · = cn = 0,

and thus

u + iv = (c2
1, x2, . . . , xn).

This proves the claim.

Recall the expression for the spherical functions on a symmetric space of
noncompact type (cf [6] Thm 4.3)

ϕλ(h) =

∫
L

e(iλ+ρ)A(lh)dl,

where A(lh) is the (logarithm) of the A part of lh in the Iwasawa decomposition
H = NAL . The integrand in this formula is called the Harish-Chandra e-function.
For the above Siegel domain it has the form eλ(w) = (w1)

iλ+ρ (cf [24]). Hence we
have the following corollary.

Corollary 6. The spherical function ϕλ on X = H/L is

ϕλ(x) =

∫
Sn−1

(
1− |x|2

1− 2(x, ζ) + xxt

)iλ+ρ

dσ(ζ). (38)

where σ is the O(n)-invariant probability measure on Sn−1 .
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4. A family of unitary representations of G

4.1. The function spaces Hν . The Bergman space H2(D) has the reproducing
kernel h(z, w)−n . This means in particular that the function h(z, w)−n is positive
definite in the sense that

m∑
i,j=1

αiαjh(zi, zj)
−n ≥ 0,

for all z1, . . . , zn ∈ D and α1, . . . , αn ∈ C. It has been proved by Wallach ([26])
and Rossi-Vergne ([20]) that h(z, w)−ν is positive definite precisely when ν in the
set

{0, (n− 2)/2}
⋃

((n− 2)/2,∞)

This set will also be referred as the Wallach set (cf [3]). For ν in the Wallach
set above, h(z, w)−ν is the reproducing kernel of a Hilbert space of holomorphic
functions on D . We will call this space Hν and the reproducing kernel Kν(z, w).
The mapping g 7→ πν(g), where

πν(g)f(z) = Jg−1(z)
ν
n f(g−1z)

defines a unitary projective representation of G on Hν . Indeed, comparison
with the Bergman kernel shows that h(z, w)−ν transforms under automorphisms
according to the rule

h(gz, gw)−ν = Jg(z)−
ν
n h(z, w)−νJg(w)

− ν
n . (39)

Recall that for functions f1 and f2 of the form

f1(z) =
l∑

k=1

αkKν(z, wk), f2(z) =
m∑

k=1

βkKν(z, w
′
k),

the inner product is defined as

〈f1, f2〉ν =
∑
i,j

αiβjKν(wi, w
′
j) (40)

Equation (39) implies that

Kν(g
−1z, w) = Jg−1(z)−

ν
n Kν(z, gw)Jg−1(w)

− ν
n . (41)

Hence we have the following two equalities

πν(g)f1(z) =
l∑

k=1

αkJg−1(wk)
− ν

n Kν(z, gwk)

πν(g)f2(z) =
m∑

k=1

βkJg−1(w′
k)
− ν

n Kν(z, gw′
k).
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The unitarity

〈πν(g)f1, πν(g)f2〉ν = 〈f1, f2〉ν

now follows by an application of the transformation rule (39) in the definition
(40). Since functions of the form above are dense in Hν , it follows that each
πν(g) is a unitary operator and it is easy to see that g 7→ πν(g) is a projective
homomorphism of groups. In fact, πν is an irreducible projective representation,
cf [2].

4.2. Fock-Fischer spaces. It can be shown that for ν > (n − 2)/2 all holo-
morphic polynomials are in Hν and that polynomials of different homogeneous
degree are orthogonal. In this context, the spaces Hν are closely linked with
the Fock-Fischer space, F , which we will now describe. The basis vector e1

is a maximal tripotent which is decomposed into minimal tripotents as e1 =
1
2
(1, i, 0, . . . , 0) + 1

2
(1,−i, 0, . . . , 0). (We omit the easy computations.) In order

to expand the reproducing kernel Kν into a power series consistent with the treat-
ment in [2], we need to introduce a new norm on Cn so that the minimal tripotents
have norm 1, i.e., the Euclidean norm multiplied with

√
2. Then

{f1, . . . , fn} :=

{
1√
2
e1, . . . ,

1√
2
en

}
is an orthonormal basis with respect to this new norm. We write points z ∈ D as
z = w1f1 + · · ·+ wnfn . For polynomials p(w) =

∑
α aαwα , we define

p∗(w) =
∑

α

aαwα.

The Fock-Fischer inner product is now defined as

〈p, q〉F = p(∂)(q∗)|w=0,

where p(∂) is the differential operator
∑

α aα
∂α

∂wα , for p as above. The Fock-Fischer
space, F , is the completion of the space of polynomials. It is easy to see that
polynomials of different homogeneous degree are orthogonal in F . Moreover, the
representation of SO(n) on Pm , the polynomials of homogeneous degree m , can
be decomposed into irreducible subspaces as

Pm =
⊕

m−2k≥0

Em−2k ⊗ C(wwt)k, (42)

where Ei are the spherical harmonic polynomials of degree i (cf [23]). This is
a special case of the general Hua-Schmid decomposition (cf [2]).The following
relation holds between the Fock-Fischer norm and the Hν -norm on the space
Em−2k ⊗ C(wwt)k (cf [2]).

‖p‖2
ν =

‖p‖2
F

(ν)m−k(ν − n−2
2

)k

, (43)

for p ∈ Em−2k ⊗C(wwt)k . We have the following decomposition of Hν under K :
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Proposition 7. (Faraut-Korànyi, [2]) a) If ν > n−2
2

, then

Hν |K =
⊕ ∑

m−2k≥0

Em−2k ⊗ C(zzt)k, (44)

where Em−2k is the space of spherical harmonic polynomials of degree m − 2k .
Moreover, we have the following expansion of the kernel function:

h(z, w)−ν =
∑

m−2k≥0

(ν)m−k

(
ν − n− 2

2

)
k

K(m−k,k)(z, w), (45)

where K(m−k,k) is the reproducing kernel for the subspace Em−2k ⊗ C(zzt)k with
the Fock-Fischer norm. The series converges in norm and uniformly on compact
sets of D ×D .
b) If ν = n−2

2
, then

Hν |K =
⊕∑

m

Em (46)

We will later need the norm of (zzt)k in Hν .

Proposition 8.

‖(zzt)k‖2
ν =

k!
(

n
2

)
k

(ν)k

(
ν − n−2

2

)
k

(47)

Proof. A straightforward computation shows that

(
∂2

∂z2
1

+ · · ·+ ∂2

∂z2
n

)(z2
1 + · · ·+ z2

n)k = (22k(k − 1) + n2k)(z2
1 + · · ·+ z2

n)k−1

Proceeding inductively, we obtain(
∂2

∂z2
1

+ · · ·+ ∂2

∂z2
n

)k

(z2
1 + · · ·+ z2

n)k =
k∏

j=1

2j(2(j − 1) + n)

= 4kk!
(n

2

)
k

The Fock-Fischer norm is computed in the w -coordinates wi =
√

2zi , so

(zzt)k = 2−k(wwt)k

and (
∂2

∂z2
1

+ · · ·+ ∂2

∂z2
n

)k

= 2−k

(
∂2

∂w2
1

+ · · ·+ ∂2

∂w2
n

)k

.

Hence

‖(zzt)k‖2
F = k!

(n

2

)
k

and an application of Prop. 7 gives the result.
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5. Branching of πν under the subgroup H

5.1. A decomposition theorem. Recall the irreducible (projective) represen-
tations πν from the previous section. Our main objective is to decompose these
into irreducible representations under the subgroup H . The fact that X is a
totally real form is reflected in the restrictions of the representations πν to H .

Proposition 9. The constant function 1 is in Hν and is an L-invariant cyclic
vector for the representation πν : H → U (Hν).

Proof. First note that

Kν(z, h0) = Jh(h
−1z)−ν/nKν(h

−1z, 0)Jh(0)−ν/n

= Jh(0)−ν/nJh−1(z)ν/nKν(h
−1z, 0)

= Jh(0)−ν/nπν(h)1(z)

Suppose now that the function f ∈ Hν is orthogonal to the linear span of the
elements πν(h)1, h ∈ H . By the above identity we have

f(h0) = 〈f, Kν(·, h0)〉ν
= 0.

Since H acts transitively on X , f is zero on X . Hence it is identically zero.

We want decompose the representation of H into a direct integral of irre-
ducible representations. For the definition of a direct integral over a measurable
field of Hilbert spaces we refer to Naimark ([17]). The following general decom-
position theorem is stated in several references (e.g. [19]), but the author has not
been able to find a proof of it in the literature. A proof for abelian groups can
be found in [17]. The proof we present below is based on the Gelfand-Naimark
representation theory for C∗ -algebras.

Theorem 10. Let π be a unitary representation of the semisimple Lie group H
on a Hilbert space, H . Suppose further that L is a maximal compact subgroup and
that the representation has a cyclic L-invariant vector. Then π can be decomposed
as a multiplicity-free direct integral of irreducible representations,

π ∼=
∫

Λ

πλ dµ(λ), (48)

where Λ is a subset of the set of positive definite spherical functions on H and for
λ ∈ Λ, πλ is the corresponding unitary spherical representation.

Proof. We consider the Banach space L1(H). This is a Banach ∗-algebra with
multiplication defined as the convolution

(f ∗ g)(x) =

∫
H

f(y)g(y−1x)dy

and involution defined by
f ∗(x) = f(x−1).
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Recall that the representation π extends to a representation of the Banach algebra
L1(H) by

f 7→
∫

H

f(x)π(x)dx.

We will also denote this mapping of L1(H) into B(H ) (the set of bounded linear
operators on H ) by π . This representation will also be cyclic as the following
argument shows. Denote by ξ the L-invariant cyclic unit vector for H . Vectors
of the form

π(fε)(π(h1)ξ + · · ·+ π(hn)ξ),

where {fε} is an approximate identity on H , will then be dense in H . Moreover
the identity

π(f)(π(h1)ξ + · · ·+ π(hn)ξ) = π((Rh−1
1

+ · · ·+ Rh−1
n

)f)ξ,

holds for f ∈ L1(H) and h1, . . . , hn ∈ H . (Here Rhf denotes the right-translation
of the argument of f ; f 7→ f(·h). We similarly define Lhf .) Hence vectors of the
form π(f)ξ , where f ∈ L1(H), form a dense subset in H .

The function Φ defined as

Φ : π(f) 7→ 〈π(f)ξ, ξ〉 (49)

extends to a state on the C∗ -algebra C generated by π(L1(H)) and the identity
operator. It is a well-known fact from the theory of C∗ -algebras that the norm-
decreasing positive functionals form a convex and weak*-compact set (cf [16]).
For a C∗ -algebra with identity, the extreme points of this set are the pure states.
Therefore, Φ can be expressed as

Φ =

∫
X

ϕxdµ, (50)

where X is the set of pure states and µ is a regular Borel measure on X (cf
[22], Thm. 3.28). We recall the Gelfand-Naimark-Segal construction of a cyclic
representation of a C∗ -algebra associated with a given state (cf [16]). In this
duality, the irreducible representations correspond to the pure states. So each ϕx

in (50) parametrises an irreducible representation of π(L1(H)) on some Hilbert
space Hx with a π(L1(H))-cyclic unit vector ξx .

Herafter we will, by an abuse of notation, write Φ(f) for Φ(π(f)) and
correspondingly for the functionals ϕx .

We define a unitary operator T : H →
∫

X
Hxdµ that intertwines the

actions of C by

T : π(f)ξ 7→ {πx(f)ξx}, f ∈ L1(H). (51)

To see that this is well-defined, suppose that π(f)ξ = 0. Then we have

〈π(f)ξ, π(f)ξ〉 = 〈π(f ∗ ∗ f)ξ, ξ〉 = 0 (52)
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i.e.,

Φ(f ∗ ∗ f) = 0 (53)

By (50) we have

Φ(f ∗ ∗ f) =

∫
H

〈πx(f
∗ ∗ f)ξx, ξx〉xdµ = 0. (54)

Therefore πx(f)ξx = 0 for almost every x and hence T is well defined on a dense
set of vectors. Note that (54) also shows that T is isometric on this set and it
therefore extends to an isometry of H into

∫
X

Hxdµ .

Consider now the subalgebra, L1(H)# , consisting of all L1 -functions that
are left- and right L-invariant, i.e.,

Llf = Rlf = f,

for all l in L . This is a commutative Banach *-algebra (cf [6], Ch. IV). We know
that ϕx ◦ π : L1(H)# → C is a homomorphism of algebras and is therefore of the
form (cf [6], Ch. IV)

ϕx(f) =

∫
H

f(h)φx(h)dh, f ∈ L1(H)#, (55)

where φx is a bounded spherical function. In fact, this formula holds for all L1 -
functions on H , as the following argument shows.

Since ξ is L-invariant, the identity

π(f)ξ = π(Rlf)ξ

holds for all L1 -functions f and l ∈ L . Applying T to both sides of this equality
(and using the fact that both L1(H) and L are separable), we see that

πx(f)ξx = πx(Rlf)ξx (56)

holds for all f ∈ L1(H) and l ∈ L outside some set of measure zero with respect to
µ . We now choose an approximation of the identity {ηε} on H , and by replacing
it with {

∫
L

ηε(l · l−1)dl} if necessary, we may assume that it is invariant under the
conjugate action of L .

Consider now Φε defined by

ϕε(f) = 〈π(f)π(ηε)ξ, π(ηε)ξ〉.

We define the functionals ϕx,ε analogously for all x ∈ X . Clearly Φε(f) → Φ(f)
as ε → 0 and therefore

lim
ε→0

ϕx,ε(f) = ϕx(f)

holds for all L1 -functions f outside some set of measure zero with respect to µ .
(Again we use the separability of L1(H).) Using the L-conjugacy invariance of ηε

and (56), a simple calculation shows that

ϕx,ε(f) = ϕx,ε(f
#),
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where

f(h) =

∫
L

∫
L

f(l1hl2)dl1dl2,

and by letting ε tend to zero we get

ϕx(f) = ϕx(f
#)

for almost every x . Hence

ϕx(f) =

∫
H

f(h)φx(h)dh,

for f ∈ L1(H).

Since ϕx also preserves the involution ∗ , it is a positive linear functional,
i.e., ∫

H

f(h)φx(h)dh ≥ 0, (57)

for every f ∈ L1(H), such that f = g ∗ g∗ , for some g ∈ L1(H). The proof of the
following lemma can be found in [4], p.85.

Lemma 5.1. Suppose that ϕ is a bounded spherical function such that∫
H

f(h)ϕ(h)dh ≥ 0 for all f ∈ L1(H) of the form f = g ∗g∗ for some g ∈ L1(H).
Then ϕ is positive definite.

Since every positive definite spherical function defines an irreducible, uni-
tary, spherical representation of H , it also gives rise to a representation L1(H).
Its restriction to the subspace of L-invariant vectors, Ex will be L1(H)# -invariant
and one-dimensional (cf [6], Ch. IV). If the state ϕx corresponds to the spherical
function φx , we denote by (πx, Hx) both the representations of H and of L1(H)
that it induces. Corresponding to this cyclic representation of L1(H) with cyclic
unit vector φx , we have that the state f 7→ 〈πx(f)φx, φx〉x is

〈πx(f)φx, φx〉x =

∫
H

f(h)〈πx(h)φx, φx〉xdh

=

∫
H

f(h)〈Lhφx, φx〉xdh

=

∫
H

f(h)φx(h
−1)dh

=

∫
H

f(h)φx(h)dh.

Therefore this representation of L1(H) is unitarily equivalent to the one given by
the Gelfand-Naimark-Segal correspondence, i.e., we can regard the representation
as coming from a representation of the group H .

The operator T clearly intertwines the group representations π and
∫

X
πxdµ .

The only thing that remains is to prove that T is surjective.

Suppose that c = {cx} is orthogonal to T (π(L1(H)), i.e.,∫
X

〈πx(f)ξx, cx〉xdµ = 0.



210 Seppänen

We observe that the restriction of T to the space H L of L-invariant vectors
intertwines the representations of π(L1(H)#) on H L and

∫
x
Exdµ . The mapping

π(f) 7→ (x 7→ ϕx(f))

is the Gelfand transform that realises the commutative C∗ -algebra generated by
π(L1(H)#) and the identity operator as the algebra, C(X), of continuous functions
on X . Continuous functions of the form Ψ(x) = ϕx(f

Ψ), where fΨ ∈ L1(H)# are
dense in C(X). For such Ψ we have∫

X

〈πx(f)ξx, cx〉xΨ(x)dµ =

∫
X

〈πx(f ∗ fΨ)ξx, cx〉xdµ

= 0

From this we can conclude that (using once more the separability of L1(H)# ) for
all x outside a set of µ-measure zero, the equality

〈πx(f)ξx, cx〉x = 0

holds for all f ∈ L1(H)# . Since the vectors ξx are L1(H)# -cyclic, we can conclude
that c = 0 and this finishes the proof.

Remark 5.2. The measure µ in the above theorem is called the Plancherel
measure for the representation π .

5.2. Extension and expansion of the spherical functions. Consider the
mapping R : Hν → C∞(X ) defined by

(Rf)(x) = h(x, x)ν/2f(x), x ∈ X

(see [28]). When ν > n− 1, R is in fact an H -intertwining operator onto a dense
subspace of L2(X , dι) (where dι is the H -invariant measure on X ) and the prin-
cipal series representation gives the desired decomposition of πν into irreducible
spherical representations. This is a heuristic motivation for studying the functions
R−1ϕλ , where ϕλ is a spherical function on X .

Theorem 11. Let ν > (n − 2)/2. The function R−1ϕλ(z) is holomorphic on
D and has the power series expansion

R−1ϕλ(z) =
∑

k

pk(λ)ek(z),

where ek(z) is the normalisation of the function z 7→ (zzt)k in the Hν -norm, and
the coefficients pk(λ) are polynomials of degree 2k of λ and satisfy the orthogo-
nality relation a) If ν ≥ n−1

2
, then

1

2π

∫ ∞

0

∣∣∣∣Γ(1
2

+ iλ)Γ(n−1
2

+ iλ)Γ(ν − n−1
2

+ iλ)

Γ(2iλ)

∣∣∣∣2 pν,k(λ)pν,l(λ)dλ

= Γ
(n

2

)
Γ

(
ν − n− 2

2

)
Γ(ν)δkl
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b) If ν < n−1
2

, then

1

2π

∫ ∞

0

∣∣∣∣Γ(1
2

+ iλ)Γ(n−1
2

+ iλ)Γ(ν − n−1
2

+ iλ)

Γ(2iλ)

∣∣∣∣2 pν,k(λ)pν,l(λ)dλ

+
Γ(ν)Γ(ν − n−2

2
)Γ(n− 1− ν)Γ(n

2
− ν)

Γ(n− 1− 2ν)

×pν,k

(
i

(
ν − n− 1

2

))
pν,l

(
i

(
ν − n− 1

2

))
= Γ

(n

2

)
Γ

(
ν − n− 2

2

)
Γ(ν)δkl

Proof. Recall the root space decomposition for h . Let 〈 , 〉 denote the inner
product on aC that is dual to the restriction of the Killing form to a . Let α0

denote α/〈α, α〉 .
In this setting the spherical function ϕλ is determined by the formula (cf [6], Ch.
IV, exercise 8)

ϕλ(exp(tξe)0) = 2F1(a
′, b′, c′;− sinh(α(tξe))

2), (58)

where

a′ =
1

2

(
1

2
mα + m2α + 〈iλ, α0〉

)
=

1

2

(
n− 1

2
+ iλ

)
,

b′ =
1

2

(
1

2
mα + m2α − 〈iλ, α0〉

)
=

1

2

(
n− 1

2
− iλ

)
,

c′ =
1

2

(
1

2
mα + m2α + 1

)
=

1

2

(
n + 1

2

)
.

Letting x = exp(tξe)0 = tanh t , (58) takes the form

ϕλ(x) = 2F1(a
′, b′, c′;

xxt

1− xxt
) (59)

By Euler’s formula (cf [5]) we have

ϕλ(x) = 2F1(a
′, b′, c′;

xxt

1− xxt
) = (1− xxt)a′

2F1(a
′, c′ − b′, c′; xxt) (60)

For the function R−1ϕλ we thus get the expression

R−1ϕλ(z) = (1− zzt)−ν+a′
2F1(a

′, c′ − b′, c; zzt) (61)

Expanding (61) into a power series yields

R−1ϕλ(z) =
∞∑

m=0

m∑
l=0

(ν − a′)m−l(a
′)l(c

′ − b′)l

(m− l)!l!(c′)l

(zzt)m, (62)

noticing that |zzt| < 1 for z ∈ D . Next, we use the following simple identities:

(ν − a′)m−l =
(ν − a′)m

(ν − a′ + (m− l))l

=
(ν − a′)m

(−1)l(−(ν − a′ + m− 1))l

(63)

(m− l)! =
m!

(m− l + 1)l

. (64)
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Substitution of these in (62) yields

R−1ϕλ(z) =
∞∑

m=0

(ν − a′)m

m!

m∑
l=0

(a′)l(c
′ − b′)l(−m)l

(c′)l(−(ν − a′ + m− 1))l

(zzt)m. (65)

The inner sum in (65) can be recognised as a hypergeometric function, i.e., we
have

m∑
l=0

(a′)l(c
′ − b′)l(−m)l

(c′)l(−(ν − a′ + m− 1))l

= 3F2(a
′, c′ − b′,−m; c′,−(ν − a′ + m− 1); 1).

Now we use Thomae’s transformation rule (cf [5]) for the function 3F2 :

3F2(a
′, c′ − b′,−m; c′,−(ν − a′ + m− 1); 1)

=
(−(ν − a′ + m− 1)− (c′ − b′))m

(−(ν − a′ + m− 1))m

× 3F2(c
′ − a′, c′ − b′,−m; 1 + (c′ − b′) + (ν − a′ + m− 1)−m; 1)

We finally obtain the following expression:

R−1ϕλ(z) =
∞∑

k=0

cn,ν,k(λ)(zzt)k,

where

cn,ν,k(λ) =
(ν − n−2

2
)k

k!
3F2(−k,

1 + iλ

2
,
1− iλ

2
;
n

2
, ν − n− 2

2
; 1)

Recall the continuous dual Hahn polynomials (cf [27])

Sk(x
2; a, b, c) = (a + b)k(a + c)k (66)

×3F2(−k, a + ix, a− ix; a + b, a + c; 1)

We can thus write

R−1ϕλ(z) =
∞∑

k=0

(ν − n−2
2

)k

(n
2
)k(ν − n−2

2
)kk!

Sk

(
(
λ

2
)2;

1

2
,
n− 1

2
, ν − n− 2

2

)
(zzt)k

=
∞∑

k=0

pν,k(λ)
(zzt)k

‖(zzt)k‖ν

.

For the orthogonality relation in the claim, we refer to [27].

5.3. Principal and complementary series representations. In this section
we let µ (=µν ) be the finite measure on the real line that orthogonalises the
coefficients pk(λ) in (58). Let Λν be its support. As we saw above, µ can,
depending on the value of ν , either be absolutely continuous with respect to
Lebesgue measure or have a point mass at λ = i(ν − (n − 1)/2), i.e., we either
have

Λν = (0,∞)
⋃
{i(ν − (n− 1)/2)}, ν ∈ ((n− 2)/2, (n− 1)/2)
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or
Λν = (0,∞), ν ≥ (n− 1)/2.

We will now construct explicit realisations for the spherical representations πλ

corresponding to the points λ ∈ Λν on Hilbert spaces Hλ . For λ in the continuous
part in Λ, the underlying space Hλ will be L2(Sn−1) and for the discrete point
i(ν − (n− 1)/2), Hλ will be a Sobolev space.
We will hereafter suppress the index ν and simply denote the support of µ by Λ.

Lemma 5.3. If g ∈ H , then g transforms the surface measure, σ , on Sn−1 as

dσ(gζ) = Jg(ζ)
n−1

n dσ(η).

Proof. Clearly it suffices to prove the statement for automorphisms of the form

g = exp ξv, v ∈ Rn.

Moreover we can assume that ζ = e1 , since any ζ ∈ Sn−1 can be written as le1 ,
where l ∈ L , and

exp ξv(le1) = (exp ξvl)(e1) = (ll−1 exp ξvl)(e1) = (lσl−1(exp ξv))(e1)

= l exp (Ad(l−1)ξv)(e1) = l exp ξ l−1v(e1).

Consider now the tangent space of Rn at e1 . We have an orthogonal decomposition

Te1(Rn) = Te1(S
n−1)⊕ Re1.

At ge1 we have the corresponding decomposition

Tge1(Rn) = Tge1(S
n−1)⊕ Rge1.

Since H preserves Sn−1 ,

dg(e1) Te1(S
n−1) = Tge1(S

n−1),

and by completing e1 and ge1 to orthonormal bases for their respective tangent
spaces, dg(e1) corresponds to a matrix of the form

c 0
| ∗ ∗ ∗
v ∗ ∗ ∗
| ∗ ∗ ∗


Hence

Jg(e1) = cJg|Sn−1 (e1), (67)

where

c = (dg(e1)e1, ge1). (68)

We next determine this constant c .
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We have

c = (dg(e1)e1, ge1) = lim
r→1

(dg(re1)re1, gre1).

For fixed r < 1 we have

exp ξv(re1) = u + B(u, u)1/2B(re1,−u)−1(re1 + Q(re1)u)

= u + dg(re1)(re1 + Q(re1)u),

and

Jg(re1) =

(
h(re1,−u)

h(u, u)1/2

)−n

, (69)

where u = tanh v . Since Q(re1)u = 2(u, re1)re1 − u , we get

(dg(re1)re1, g(re1)) (70)

= (1 + 2(u, re1))|dg(re1)re1|2 + (dg(re1)re1, u− dg(re1)u)

For any z ∈ D
⋂

Rn and v, w ∈ Rn , the identity

(dg(z)v, w) =
h(gz, gz)

h(z, z)
(v, dg(z)−1w) (71)

can be established using the transformation properties of the function h and the
operator B . Applying (71) in the cases z = re1 , v = re1 , and w = dg(re1)re1

and
w = u− dg(re1)u , repectively, yields

(dg(re1)re1, dg(re1)re1) =
h(g(re1), g(re1))

h(re1, re1)
r2 (72)

and

(dg(re1)re1, u− dg(re1)u) =
h(g(re1), g(re1))

h(re1, re1)
(re1, dg(re1)

−1u− u). (73)

The expressions above and an elementary computation shows that (70) can be
written as

(dg(re1)re1, g(re1)) =
h(g(re1), g(re1))

h(re1, re1)
r2 1 + 2(u, re1) + |u|2

1− |u|2
(74)

By the transformation rule for the Bergman kernel

h(g(re1), g(re1)) = |Jg(re1)|2/nh(re1, re1).

So,

c = lim
r→1

|Jg(re1)|2/nr2 1 + 2(u, re1) + |u|2

1− |u|2

= |Jg(e1)|2/n h(e1,−u)

h(u, u)1/2
.

Comparing with the expression (69), we have determined the constant

c = Jg(e1)
1/n,

and this finishes the proof.
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For λ in the continuous part of Λ, the corresponding representation is a
principal series representation described by the following proposition. (We will
hereafter follow Helgason and in this context denote Sn−1 by B . The measure σ
will be denoted by db .)

Proposition 12. For any real number λ, the map h 7→ τλ(h), where

τλ(h)f(b) = Jh−1(b)
iλ+ρ

n f(h−1b)

defines a unitary representation of H on L2(B).

Proof. We have∫
B

|Jh−1(b)
iλ+ρ

n |2|f(h−1b)|2db =

∫
B

Jh−1(hb)
2ρ
n |f(b)|2d(hb)

=

∫
B

Jh(b)
− 2ρ

n |f(b)|2Jh(b)
n−1

n db

=

∫
B

|f(b)|2db,

where the last equality follows by lemma 5.3.

It is well known that the representations τλ above are unitarily equiva-
lent to the canonical spherical representations associated with the corresponding
functionals λ on aC (cf [11], ch. 7).

In order to realise the representation τλ for λ = i(ν−(n−1)/2), we consider
the following Hilbert spaces.

Definition 13. For n−2
2n

≤ α < n−1
2n

, let Cα be the Hilbert space completion of
the C∞ -functions on Sn−1 with respect to the norm

‖f‖Cα =

∫
Sn−1

∫
Sn−1

f(ζ)f(η)K(ζ, η)αdσ(ζ)dσ(η)

Using the action of H on Sn−1 , we can define a unitary representation of H on
Cα of the form

σα : f 7→ Jh−1(·)βf(h−1·), h ∈ H,

where β = −α + (n− 1)/n . The unitarity follows from∫
Sn−1

∫
Sn−1

Jh−1(ζ)βf(h−1ζ)Jh−1(η)βf(h−1η)K(ζ, η)αdσ(ζ)dσ(η)

=

∫
Sn−1

∫
Sn−1

Jh(ζ)−βf(ζ)Jh(η)−βf(η)K(hζ, hη)αJh(ζ)
n−1

n Jh(η)
n−1

n dσ(ζ)dσ(η)

=

∫
Sn−1

∫
Sn−1

Jh(ζ)−β−α+n−1
n Jh(η)−β−α+n−1

n f(ζ)f(η)K(ζ, η)αdσ(ζ)dσ(η).

In fact, this representation is irreducible (cf [1]). We denote this representation
by σα . One can prove that for α = ν/n and λ = ν − (n − 1)/2, σα and τλ are
unitarily equivalent.
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Recall the expression in Cor. 6 for the spherical functions. In this setting
we write it as

ϕλ(x) =

∫
B

eλ,b(x)db,

where

eλ,b(x) =

(
h(x, x)1/2

h(x, b)

)iλ+ρ

by Cor. 6. For fixed z ∈ D and λ ∈ Λ, R−1eλ,b(z) is a function in L2(B). More-
over, πν(H) makes sense as a group of mappings on O(D), the set of holomorphic
functions on D . We have a relationship between these representations.

Lemma 5.4. For every g ∈ H and λ ∈ Λ,

πν(g)τλ(g)R−1eλ,b(z) = R−1eλ,b(z). (75)

Correspondingly, for X ∈ h, we have the relation

πν(X)R−1eλ,b(z) = −τλ(X)R−1eλ,b(z). (76)

The proof is straightforward by applying the transformation rules for the function
h(z, w).

5.4. The Fourier-Helgason transform. The purpose of this section is to
construct an H -intertwining unitary operator between the Hilbert spaces Hν and∫

Λ
Hλdµ .

Any holomorphic function, f , on D has a power series expansion

f(z) =
∑

α

fαzα, (77)

where fα = ∂αf
α!∂zα (0). We can collect the powers of equal homogeneous degree

together and write

f(z) =
∑

k

fk(z), (78)

where fk is of homogeneous degree k . We now consider the mapping

(·, ·)ν : P ×O(D) → C

defined as

(f, g)ν =
∑

k

〈f, gk〉ν . (79)

Observe that the definition makes sense since every polynomial is orthogonal to
all but finitely many gk .
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Definition 14. If f is a polynomial in Hν , its generalised Fourier-Helgason
transform is the function f̃ on Λ×B defined by

f̃(λ, b) = (f, R−1eλ,b)ν (80)

Proposition 15. (i) If the polynomial f is in H L
ν , then f̃ is L-invariant and

‖f‖2
ν =

∫
Λ

‖f̃‖2
λdµ,

where ‖ · ‖λ is the norm on Hλ , and the Fourier-Helgason transform extends to
an isometry from H L

ν onto L2(Λ, dµ).
(ii) The inversion formula for L-invariant polynomials

f(z) =

∫
Λ

f̃(λ)R−1ϕλ(z)dµ(λ) (81)

holds. Moreover, the above formula holds for arbitrary L-invariant functions, when
restricted to the submanifold X .

Proof. Writing

R−1eλ,b =
∑

α

cα(λ, b)zα =
∑

k

eλ,b,k

and

R−1ϕλ(z) =
∑

α

cα(λ)zα =
∑

k

pk(λ)ek(z),

we see that the coefficients and polynomials of homogeneous degree k are related
by

cα(λ) =

∫
B

cα(λ, b)db (82)

and

pk(λ)ek(z) =

∫
B

eλ,b,k(z)db (83)

respectively. Therefore we have

f̃(λ, b) =
∑

k

〈f, eλ,b,k〉ν

=
∑

k

〈
∫

L

πν(l)fdl, eλ,b,k〉ν

=
∑

k

〈f,

∫
L

πν(l
−1)eλ,b,kdl〉ν

=
∑

k

〈f,

∫
L

πλ(l)eλ,b,kdl〉ν

= (f, R−1ϕλ)ν .
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This proves the L-invariance. Moreover, we have

(f, R−1ϕλ)ν =
∑

k

pk(λ)〈f, ek〉ν .

Hence ∫
Λ

‖f̃‖2
λdµ =

∑
k

|〈f, ek〉ν |2 = ‖f‖2
ν .

This proves the first part of the claim.

To prove the inversion formula, we now let f be an L-invariant polynomial
and x be a point in D

⋂
Rn . Since we have an estimate of the form

|R−1ϕλ(x)| ≤ (1− |x|2)−
ν
2 C(x), (84)

where C is some function of x , independently of λ , the integral∫
Λ

f̃(λ)R−1ϕλ(x)dµ(λ)

makes sense for real x . We then have∫
Λ

f̃(λ)R−1ϕλ(x)dµ(λ) =
∑

k

∫
Λ

〈f, ek〉νpk(λ)R−1ϕλ(x)dµ(λ)

=
∑

k

〈f, ek〉ν
∫

Λ

∑
j

pk(λ)pj(λ)ej(x)dµ(λ)

= f(x).

Now let f ∈ H L
ν be arbitrary. We choose a sequence of polynomials fn ∈ H L

ν

such that

f = lim fn.

Since the evaluation functionals are continuous, we have

f(x) = lim
n→∞

fn(x) = lim
n→∞

∫
Λ

f̃n(λ)R−1ϕλ(x)dµ(λ)

for every real point x . By Jensen’s inequality and (84)∣∣∣∣∫
Λ

(f̃(λ)− f̃n(λ))R−1ϕλ(x)dµ(λ)

∣∣∣∣2 ≤ µ(Λ)

∫
Λ

|f̃(λ)− f̃n(λ)|2C(x)(1− |x|2)−νdµ(λ).

Hence

f(x) =

∫
Λ

f̃(λ)R−1ϕλ(x)dµ(λ).

Thus the inversion formula holds for real points, x . To see that the formula holds
for arbitrary points when f is a polynomial, we note that both the left hand- and
the right hand side of the formula define holomorphic functions on D . Since they
agree on the totally real form X , they are equal.
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Theorem 16. The Plancherel Theorem For ν > (n−2)/2, the Fourier-Helgason
transform is a unitary isomorphism from the H -modules Hν onto the H -module∫

Λ
Hλdµ, i.e.,

(πν(h)f )̃(λ, b) = τλ(h)f̃(λ, b),

for h ∈ H , and

‖f‖2
ν =

∫
Λ

‖f̃‖2
λdµ.

Proof. We divide the proof into three steps:
(i) We prove that the Fourier-Helgason transform intertwines the action of the Lie
algebra of H .
(ii) We use (i) to prove that the norm is preserved.
(iii) We conclude that the group actions are intertwined from (i) and (ii).

We will see that these properties actually imply that the Fourier-Helgason
transform is surjective.

Consider now the corresponding representations of the Lie algebra h . These
will also be denoted by πν and τλ respectively. Moreover they extend naturally
to representations of the universal enveloping algebra, U(h), of h .
Let X ∈ h . If f is a polynomial in Hν , then differentiation of the mapping

t 7→ Jexp tX(z)ν/nf((exp tX)z)

at t = 0 shows that πν(X)f is also a polynomial, and

π̃ν(X)f(λ, b) =
∑

k

〈πν(X)f, eλ,b,k〉ν

=
∑

k

〈f,−πν(X)eλ,b,k〉ν

=
∑

k

〈f, τλ(X)eλ,b,k〉ν

= (f, τλ(X)R−1eλ,b)ν

= τλ(X)(f, R−1eλ,b)ν ,

which proves (i).

To prove the second step, we recall that the adjoint representation of L
on h extends to an action on U(h) as homomorphisms of an associative algebra.
The L-invariant elements in U(h) form a subalgebra, U(h)L . We let p denote the
projection

X 7→
∫

L

Ad(l)Xdl

of U(h) onto U(h)L . This action of L connects the representations of H and U(h)
according to the following identity:

πν(l)πν(X)πν(l
−1) = πν(Ad(l)X),

for l ∈ L and X ∈ U(h).

Since the vector 1 ∈ Hν is cyclic for the representation of H , it is also
cyclic for the representation of U(h). Hence it suffices to prove that the norm is
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preserved for elements of the form πν(X)1, where X ∈ U(h). In the following
equalities, we temporarily let τ denote the direct integral of the representations
τλ , and analogously we let 〈, 〉 denote the direct integral of the corresponding inner
products.

〈πν(X)1, πν(X)1〉ν = 〈πν(X)∗πν(X)1, 1〉ν
= 〈−πν(X

2)1, 1〉ν

Since the vector 1 is L-invariant, the last expression equals 〈−πν(p(X2))1, 1〉ν ,
and by proposition (15), we have

〈−πν(p(X2))1, 1〉ν = 〈− ˜πν(p(X2))1, 1̃〉.

By (i), the expression on the right-hand side equals 〈−τ(p(X2))1̃, 1̃〉 , and since 1̃
is L-invariant, we have

〈−τ(p(X2))1̃, 1̃〉 = 〈−τ(X2)1̃, 1̃〉.

Thus (ii) is proved.

To prove (iii), we recall the following equalities (on the respective dense
spaces of analytic vectors):

πν(exp(X)) = eπν(X)

τλ(exp(X)) = eτλ(X).

From this and the facts that H is connected and that the Fourier-Helgason trans-
form is bounded operator, we immediately see that (iii) holds.

To see that the operator is surjective, note that by (ii) and (iii)

〈πν(f)1, 1〉ν =

∫
Λ

〈τλ1̃(λ, ·), 1̃(λ, ·)〉λdµ,

for f ∈ L1(H)# , i.e., we can write the positive functional

f 7→ 〈πν(f)1, 1〉ν

as an integral of pure states with respect to some measure. By uniqueness, it is
the measure in Theorem 10. Since the Fourier-Helgason transform intertwines the
group action, it is the intertwining operator constructed in Theorem 10. Thus it
is surjective.

Theorem 17. (The Inversion Formula) If f is a polynomial in Hν , then

f(z) =

∫
Λ

∫
B

f̃(λ, b)R−1eλ,b(z)dbdµ(λ). (85)

Proof. Take h ∈ H . Define

f1(z) =

∫
L

πν(l)πν(h)f(z)dl



Seppänen 221

This is a radial function, and we have that

f1(0) = Jh−1(0)
ν
n f(h−10). (86)

Prop. 15 gives

f1(0) =

∫
Λ

f̃1(λ)R−1ϕλ(z)dµ(λ). (87)

Moreover

f̃1(λ) = (f1, R
−1ϕλ)ν = (

∫
L

πν(l)πν(h)fdl, R−1ϕλ)ν

= (πν(h)f, R−1ϕλ)ν .

(88)

By Thm. 16 we have

(πν(h)f, R−1ϕλ)ν = (f, πν(h
−1)R−1ϕλ)ν

= (f,

∫
B

πν(h
−1)R−1eλ,b db)ν

= (f,

∫
B

πν(h
−1)R−1eλ,b db)ν

= (f,

∫
B

τλ(h)R−1eλ,b db)ν

= (f,

∫
B

Jh−1(b)
iλ+ρ

n R−1eλ,h−1b db)ν .

The integrand above has a power series expansion where the coefficients are func-
tions of b . If we integrate, we obtain a holomorphic functions for which the coeffi-
cients in the power series expansion are obtained by integrating the aforementioned
coefficients over B . Hence we can proceed as follows.

(f,

∫
B

Jh−1(b)
iλ+ρ

n R−1eλ,h−1b db)ν =

∫
B

Jh−1(b)
−iλ+ρ

n (f, R−1eλ,h−1b)νdb

=

∫
B

Jh−1(b)
−iλ+ρ

n f̃(λ, h−1b)db

=

∫
B

Jh−1(hb)
−iλ+ρ

n f̃(λ, b)Jh(b)
n−1

n db

=

∫
B

f̃(λ, b)Jh(b)
iλ+ρ

n db. (89)

It is easy to see that

Jh(b)
iλ+ρ

n = Jh−1(0)
ν
n R−1eλ,b(h

−10), (90)

and so combining (86), (87) and (89) finally yields

f(h−10) =

∫
Λ

∫
B

f̃(λ, b)R−1eλ,b(h
−10)db dµ. (91)

Thus the inversion formula holds for real points, hence for all points by the same
argument as in the proof of Prop. 15.



222 Seppänen

6. Realisation of the discrete part of the decomposition

We recall the earlier defined complementary series representations. The
following theorem states that σν/n is the representation corresponding to the
singular point in the decomposition theorem.

Theorem 18. The operator Tν defined by the formula

(Tνf)(z) =

∫
Sn−1

f(ζ)Kν(z, ζ)dσ(ζ)

is a unitary H -intertwining operator from Cν/n onto an irreducible H -submodule
of Hν .

Proof. First of all we note that Tν maps functions in Cν/n to holomorphic
functions on D and thus πν has a meaning on the range of Tν . We start by
showing that Tν is formally intertwining. We have

Tν(σν/n)f(z) =

∫
Sn−1

Jh−1(ζ)−ν/n+n−1
n f(h−1ζ)Kν(z, ζ)dσ(ζ)

=

∫
Sn−1

Jh(ζ)ν/n−n−1
n f(ζ)Kν(z, hζ)Jh(ζ)

n−1
n dσ(ζ)

=

∫
Sn−1

Jh(ζ)ν/nf(ζ)Kν(h
−1z, ζ)Jh(h

−1z)−
ν
n Jh(ζ)−

ν
n dσ(ζ)

= Jh−1(z)
ν
n

∫
Sn−1

f(ζ)Kν(h
−1z, ζ)dσ(ζ),

i.e.,

Tνσν/n = πνTν .

The next step is to prove that the constant function 1 is mapped into Hν and
that its norm is preserved. Note that for α = ν/n, K(z, ζ)α = Kν(z, ζ), and by
Prop. 7 we have an expansion

Kν(ζ, e1) =
∑

m−2k≥0

cm,k(ν)K(m−k,k)(ζ, e1),

where the coefficients cm,k(ν) are given explicitly. Now, since Kν(ζ, e1) is SO(n−
1)-invariant and the action of SO(n− 1) is linear, each K(m,k)(ζ, e1) must also be
SO(n − 1)-invariant. Hence, K(m,k)(ζ, e1) can be assumed to be φm−2k(ζ)(ζζt)k ,
where φm−2k is the unique element in Em−2k that assumes the value 1 in e1 .
Therefore∫

Sn−1

K(ζ, η)αdσ(ζ) =

∫
L

Kν(ζ, le1)dl

∫
L

Kν(l
−1ζ, e1)dl (92)

=
∑

m−2k≥0

cm,k(ν)

∫
L

(l−1ζ(l−1ζ)t)kφm−2k(l
−1ζ)dl (93)

=
∑

m−2k≥0

cm,k(ν)(ζζt)k

∫
L

φm−2k(l
−1ζ)dl (94)
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Since SO(n) acts irreducibly on Em−2k and the function
∫

L
φm−2k(l

−1z)dl is an
SO(n)-invariant element in Em−2k it must be identically zero unless m− 2k = 0.
Since

‖1‖2
C ν

n

=

∫
Sn−1

∫
Sn−1

Kν(ζ, η)dσ(ζ)dσ(η),

the computation above implies that

‖1‖2
C ν

n

=

∫
Sn−1

∞∑
k=0

c2k,k(ν)(ζζt)kdσ(ζ)

=
∞∑

k=0

c2k,k(ν) =
∞∑

k=0

(ν)k(ν − n−2
2

)k

‖(zzt)k‖2
F

=
∞∑

k=0

(ν)k(ν − n−2
2

)k

k!(n
2
)k

(95)

On the other hand, the equalities (92)-(94) also show that

Tν1(z) =
∞∑

k=0

(ν)k(ν − n−2
2

)k

k!(n
2
)k

(zzt)k

=
∞∑

k=0

((ν)k(ν − n−2
2

)k)
1/2

(k!(n
2
)k)1/2

(zzt)k

‖(zzt)k‖ν

. (96)

If we compare (95) and (96), we see that Tν1 ∈ Hν and that ‖1‖Cν/n
= ‖1‖ν .

Recall that

Cν/n =
⊕
m

Em(Sn−1)

and that the representation of h on the algebraic sum
⊕

m Em(Sn−1) is irreducible.
Hence⊕

m

Em(Sn−1) = SpanC{σν/n(X1) . . . σν/n(Xk)1|Xi ∈ h, 1 ≤ i ≤ k}.

Since Tν interwines the representations of h , we have that πν is an irreducible
representation of h on the space Tν(

⊕
m Em(Sn−1)) ⊆ Hν . By Schur’s lemma

([13], ch.4)

〈Tνf, Tνg〉ν = c〈f, g〉Cν/n
,

for some real constant c . Putting, f and g equal to the constant function 1 and
applying, we see that c = 1. Therefore, Tν extends to a unitary operator

Tν : Cν/n → Tν(
⊕
m

Em(Sn−1))

and we have proved the theorem.
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7. Realisation of the minimal representation π(n−2)/2

In this section we show that the representation π(n−2)/2 of H is irreducible
by realising it as a complementary series representation.

We recall the space Cν/n from the previous section and the corresponding
operator Tν .

Theorem 19. T(n−2)/2 is a unitary H -intertwining operator from C(n−2)/2n

onto H(n−2)/2 .

Proof. Recall that

C(n−2)/n =
⊕
m

Em(Sn−1) (97)

and that the sum is a decomposition into SO(n)-irreducible subspaces. If we let
P(n−2)/n denote the set of all finite sums in (97), σ(n−2)/n defines a representation
of l on P(n−2)/n . The polynomial (ζ1 + iζ2)

m is a highest weight vector in Em

for this representation. Moreover, the power series expansion of K(n−2)/n shows
that T(n−2)/2 is a polynomial in Em . Since T(n−2)/2 intertwines the l-actions,
T(n−2)/2((ζ1 + iζ2)

m) is a highest weight vector space for π(n−2)/2(l), i.e.,

(T(n−2)/2(ζ1 + iζ2)
m)(z) = Cm(z + iz)m, (98)

for some constant Cm . We now determine Cm . Choose z = w 1
2
(1,−i, 0, . . . , 0),

where w is a complex number with |w| < 1. In this case zzt = 0, (z + iz)m = wm .
We now compute (T(n−2)/2((ζ1 + iζ2)

m)(z).∫
Sn−1

K(n−2)/n(z, ζ)(ζ1 + iζ2)
m

=

∫
Sn−1

(1− w(ζ1 − iζ2))
−(n−2)/n(ζ1 + iζ2)

mdσ(ζ)

This integral only depends on the first two coordinates and can hence be converted
to an integral over the unit disk, U (cf [21] Prop 1.4.4).∫

Sn−1

(1− w(ζ1 − iζ2))
−(n−2)/n(ζ1 + iζ2)

mdσ(ζ)

=
Γ
(

n−2
2

)
πΓ
(

n
2

) ∫
U

(1− wζ)−(n−2)/nζm(1− |ζ|2)(n−4)/2dm(ζ).

We have the power series expansion

(1− wζ)−(n−2)/2 =
∞∑

k=0

(
n− 2

2

)
k

(zζ)k.

Recall that (1−wζ)−n/2 is the reproducing kernel for the weighted Bergman space
Hn/2(U), defined as

Hn/2(U) = {f ∈ O(U) |
Γ
(

n
2

)
πΓ
(

n−2
2

) ∫
U

|f(ζ)|2(1− |ζ|2)(n−4)/2dm(ζ) < ∞},
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Polynomials of different degree are orthogonal in Hn/2(U) and hence we have∫
U

(1− wζ)−(n−2)/nζm(1− |ζ|2)(n−4)/2dm(ζ)

=

∫
U

∞∑
k=0

(
n− 2

2

)
k

(zζ)kζm(1− |ζ|2)(n−4)/2dm(ζ)

=

∫
U

∞∑
k=0

(
n− 2

2

)(n

2

)
m

(zζ)mζm(1− |ζ|2)(n−4)/2dm(ζ)

= πwm,

where the last equality follows from the reproducing property in Hn/2(U). Sum-
ming up, we have

(T(n−2)/2(ζ1 + iζ2)
m)(z) =

n− 2

2π2
(z1 + iz2)

m (99)

From this and the intertwining of the l-action, it follows that

T(n−2)/2

(⊕
m

Em(Sn−1)

)
⊆
⊕
m

Em (100)

To compute the norm of T(n−2)/2(p) where p ∈ Ek(S
n−1), we first fix r < 1 and

consider the polynomial T(n−2)/2(p(rz)). By definition

T(n−2)/2(p)(rz) =

∫
Sn−1

Kν(rz, ζ)p(ζ)dσ(ζ)

=

∫
Sn−1

Kν(z, rζ)p(ζ)dσ(ζ). (101)

The norm is given by

‖T(n−2)/2(p)(r ·)‖2
ν =

∫
Sn−1

∫
Sn−1

p(ζ)p(η)Kν(rζ, rη)dσ(ζ)dσ(η).

Finally, we let r → 1 and obtain

‖T(n−2)/2(p)‖2
ν =

∫
Sn−1

∫
Sn−1

p(ζ)p(η)Kν(ζ, η)dσ(ζ)dσ(η).

From this and the orthogonality of the spaces Ek , it follows that T(n−2)/2 maps
(
⊕

m Em(Sn−1) isometrically onto (
⊕

m Em). Hence it extends to a unitary oper-
ator from C(n−2)/2n onto H(n−2)/2 .
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