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Abstract.  The discrete cocompact subgroups of the generic filiform nilpotent
Lie group with an arbitrary dimension are determined up to isomorphism. We
close this paper with two examples in which we determine explicitly the discrete
cocompact subgroups of the four dimensional and the five dimensional generic
filiform nilpotent Lie groups.
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1. Introduction

For n > 2, let L,, be the (n + 1)-dimensional real nilpotent Lie algebra with a
basis & = {Xi,..., Xn+1} and non-trivial Lie brackets

(X1, Xj] = X0, 2<j<n (1)

L, is called the generic filiform Lie algebra or threadlike nilpotent Lie algebra
(see [12]). Let L, = exp(L,) be the associated connected and simply connected
nilpotent Lie group. The group L, is a semi-product R™ x R with the pointwise
multiplication given by

((xl,...,xn),x> . <(y1,...,yn),y> = ((xl,...,xn) —|—77($)(y1,...,yn),x—l—y> (2)

for which n: R — GL(n,R) is given by n(x) = [a;;j(2)]1<i j<n where

0, ife>9
aij(%) = ot ifi< g
Gt =J

Note that Lo is the Heisenberg Lie group and L, is n-step nilpotent.

A discrete subgroup I' of G such that G/T" is compact is called a uniform
subgroup of GG. Uniform subgroups in a simply connected nilpotent Lie group G
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are not guaranteed to exist (see [2, Example 5.1.13|, [11, Remark 2.14] and [4]).
Malcev |5] has shown that a simply connected nilpotent Lie group G admits a
uniform subgroup if and only if its Lie algebra g has a basis with rational structure
constants. It follows immediately from (1) that every generic filiform group L,
admits a uniform subgroup. It is of interest to classify the uniform subgroups of
L,,. The motivation comes originally, first from [3], where the discrete cocompact
subgroup of the (2n+1)-dimensional Heisenberg group are classified. In particular,
we obtain all discrete cocompacte subgroups of Ly (see also [1]). In [8], the authors
have studied the group L3 more closely, determining the isomorphism classes of
all its discrete cocompact subgroups. These are given by three integer parameters
p1, P2, p3 that satisfy certain conditions. Furthermore, in [12] the authors have
studied, for each L, , the infinite dimensional simple quotients of the group C*-
algebra of one of its discrete cocompact subgroups (see also [9], [10] and [7]). The
aim of this paper is to determine, for each n, the discrete cocompact subgroups
of the generic filiform Lie group L,. To present the results of the paper we need

some notations. Let
_ 0 In—l
=5 %)

where I,,_; is the (n — 1) x (n — 1) identity matrix, and let

A = e® = [ay]i<ij<n

where
0 ife>9
Q5 = 1 i<
G- Bt
We denote by & the subset of M(n,Z) consisting of all matrices of the
form
D 0
GXOR (3
satisfying
[D,m] *A[D,m] € SL(n, Z) (4)
and
ged((m, @), 1 <i,j<n-—1)= (5)

where m € IN*, the block matrix D = (x;;;1 < 4,5 < n — 1) is an upper-
triangular integer invertible matrix and SL(n,Z) is the set of all integer matrices
with determinant 1. Finally, let GL(n,Z) denotes the group of integer n x n

matrices with determinant +1:

GL(n,Z) = {M € M(n,Z) : det(M) = +1}. (6)

We are now ready to formulate our main results.



HAMROUNI 3

Theorem 1.1.  Let G be the generic filiform Lie group L, such that n > 3.
(1) If [D,m] € 2, then
Lipm) = exp(Zey) - - - exp(Zen 1) (7)

where the vectors e; (1 < j < n) are the columns of [D,m] in the basis
(X1,...,Xn), and e,y = Xpi1, s a discrete uniform subgroup of G.

(2) If I is a discrete uniform subgroup of G, then there exist ® € Aut(G) and
[D,m] € Z such that ®(T") = '[p .

(3) For [Dy,mi] and [Dy,ms] in 2, Tpm, and Tp,m,) are isomorphic
groups if and only if there exists T € GL(n,R) such that TB = BT and
[[Dg,mg]]ilT[[Dl,ml]] € GL(TL,Z)

2. Notation and basic facts

The purpose of this section is to recall some facts about rational structures of
connected and simply connected nilpotent Lie groups, to be used below.

Let G be a connected and simply connected nilpotent Lie group with Lie
algebra g, then the exponential map exp : g — G is a diffeomorphism. Let
Log : G — g denote the inverse of exp.

Let X be an element of g. The linear mapping ¥ — [X, Y] of g into g is
called the adjoint linear mapping of X and is denoted by ad X. The conjugation
in GG is given by

exp (X) exp (V) exp (X) ™' = exp (e*X(Y))

forall X,Y €g.

2.1. Rational structures and uniform subgroups. Let G be a nilpotent,
connected and simply connected real Lie group and let g be its Lie algebra. We
say that g (or G) has a rational structure if there is a Lie algebra gq over @ such
that g = gg ® R. It is clear that g has a rational structure if and only if g has
an R-basis {Xj,...,X,,} with rational structure constants.

Let g have a fixed rational structure given by gqg and let h be an R-
subspace of g. Define hg = hNgg. We say that b is rational if h = R-span(hq),
and that a connected, closed subgroup H of G is rational if its Lie algebra b is
rational. The elements of gq (or G = exp (gq)) are called rational elements (or
rational points) of g (or G).

A discrete subgroup T is called uniform in G if the quotient space G/I" is
compact. The homogeneous space G/I" is called a compact nilmanifold. If G has
a uniform subgroup I, then g (hence G) has a rational structure such that gq =
Q-span(logI'). Conversely, if g has a rational structure given by some Q-algebra
gq C g, then G has a uniform subgroup I' such that logI' C gq (see [2] and [5]).
If I'y and T’y are uniform subgroups in G, then Q-span(logT';) = Q-span(logD'y)
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if and only if I'y and I's are commensurable; that is, I'y N [’y has finite index in
both I'; and I's. If we endow G with the rational structure induced by a uniform
subgroup I' and if H is a Lie subgroup of G, then H is rational if and only if
H NT is a uniform subgroup of H. Note that the notion of rational depends on
r.

Let I' be a uniform subgroup of G'. A strong Malcev (or Jordan-Hélder)
basis {X7i,...,X,} for g is said to be strongly based on T if

I'=exp(ZX,)---exp(ZX,). (8)

Such a basis always exists (see |2], [6]).

The lower central series (or the descending central series) of g is the
decreasing sequence of characteristic ideals of g defined inductively as follows

Clg)=g  C""Yg)=[9.C"9)] (p>1).

The characteristic ideal C?(g) = [g, g| is called the derived ideal of the Lie algebra
g and denoted by D(g). Let D(G) = exp (D(g)), observe that we have D(G) =
G, G].

The Lie algebra g is called k-step nilpotent Lie algebra if there is an integer
k such that

CHl(g) ={0};  CMg) # {0}
We denote the center of G by Z(G) and the center of g by 3(g). Note that if g
is k-step nilpotent, then C*(g) C 3(g).

Proposition 2.1.  [[6, Theorem 3/, [2, Corollary 5.2.2]] If g has rational struc-
ture, all the algebras in the descending central series are rational.

A proof of the next result can be found in Proposition 5.3.2 of |2].

Proposition 2.2.  Let I' be uniform subgroup in a nilpotent Lie group G,
and let Hi G Hy G --- G Hy = G be rational normal subgroups of G. Let
b1,...,bk_1, b = g be the corresponding Lie algebras. Then there exists a strong
Malcev basis {X1,...,X,} for g strongly based on T' and passing through

hly"'vhk—l'

A rational structure on g induces a rational structure on the dual space g* (for
further details, see |2, Chap. 5|). If g has a rational structure given by the
uniform subgroup I', a real linear functional f € g* is rational (f € gg,0q =

Q-span(Log(I"))) if (f,gq) C Q, or equivalently (f,Log(I")) C Q.

Let Aut(G) (respectively Aut(g)) denote the group of automorphism of G
(respectively g). If ¢ € Aut(G), ¢, will denote the derivative of ¢ at identity.
The mapping Aut(G) — Aut(g), ¢ — @, is a groups isomorphism (since G is
simply connected).
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3. Proof of Theorem 1.1

Throughout this section, let G = L,, be the generic filiform Lie group of dimension
n+1 with Lie algebra g = £,,. First, we fix some notation for the duration of this
section. Let

m = R-span{Xy,..., X, }

and
B ={X1,..., X}

It is clear that m is a one-codimensional abelian ideal of g and A, is a Jordan-
Holder basis of m. Note that

B = Mat(ad X, 1|m, Bm) and A = Mat (e, B).

Proposition 3.1.  Ifn > 3 then M = exp(m) is the unique one-codimensional
abelian normal subgroup of G. In particular, m is stable under every Lie algebra
automorphism of g.

Proof. = We suppose that there exists another abelian normal subgroup M’ =
exp (m’) of codimension one of G with Lie algebra m’ such that M # M’. Then
there exist @ € R* and v € m such that the vector aX, 1 + v belongs to m’.
On the other hand, we have dim(m Nm’) = n — 1. Then n > 3 implies that
dim(mNm’) > 2 from which it follows that mNm’ # 3(g). Consequently, we have
[aX,11 +v,mNmw']| # {0}. This contradicts the assumption that m’ is abelian.
The rest of proof is clear. [ |

Proof.  [Proof of Theorem 1.1] For the first part, we observe that the set I'fp
is a subgroup of GG if and only if for all  =1,...,n, we have

exp (en+41) exp (€;) exp (—ent1) € L pm]

and
exp (—ent1) exp () exp (€n+1) € Ipm-

Equivalently, for + = 1,...,n, we have
exp (eade"“ei) €lpm and exp (e_ ade"“ei) € L'omy-
But this is equivalent to
eMentie, € Z-span{ey,...,e;} and e e+l € Zespan{ey, ..., e;}

for every i,1 < ¢ < n. We see that the conditions boil down to the matrix
equations

A[D,m] =[D,m]B; and A“'[D,m] = [D,m]B, (9)

where By, By € M(n,7Z) and [D,m] is the matrix with column vectors ey, ..., e,
expressed via the basis #,,. Moreover, since

det([D,m] " A[D,m]) = 1,
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then the relation (9) is equivalent to
[D,m]'A[D,m] € SL(n,Z). (10)

This establishes the first part of the theorem. The proof of the second part of the
theorem will be achieved through a sequence of partial results. As a first step, we
show that if we give G the rational structure induced by a uniform subgroup T"
then the subalgebra m is rational in g.

Lemma 3.2.  Let G be the generic filiform Lie group L,. Let T" be a discrete

uniform subgroup of G. If n > 3 then the subgroup M = exp(m) is rational in
G.

Proof. ~ We will use the fact that if | € g, (gq = Q-span(Log(T'))) and € is a
rational subspace of g, then the annihilator € = {X € g: B(X,8) = ([,[X,¥]) =
{0}} of € with respect to the bilinear form B is rational, where B is the skew-
symmetric bilinear form on g defined by B)(X,Y") = ([, [X,Y]) (see [2, Proposition

5.2.7)). Let
n+1
i=1

be the layer of the generic coadjoint orbits (see [2, Chapter 3]). As gg, is dense in
g" and Q is a non-empty Zariski open set in g* then gg N Q2 # 0. Let | € gg N
(1 is called be a rational linear functional in general position). The annihilator
D(g)" of D(g) with respect to the bilinear form B, is m. In fact, since D(g) C m,
then m! C D(g)l. Or m is a maximal totally isotropic subspace for the form B,
then m’ = m. On the other hand, it is clear that D(g) ¢ g(I) (X & g(I) and since
n > 3 then X, € D(g)). Then D(g)’ # g and therefore D(g)' = m. Finally, by
Proposition 2.1, the ideal D(g) is rational and therefore m is rational too. This
completes the proof. [ |

The next example shows that the Lemma 3.2 is not true if n = 2.
Example 3.3. Let G = Ly and let
T = exp (ZX)) exp (Z(\/EX2 + X3)> exp <Z(\/§X3)> .

It is clear that ' is a uniform subgroup of G. An easy calculation shows that
M NT = exp (ZX,). This implies that M N T is not uniform in M and hence M
is not rational in G.

Lemma 3.4.  Let G be the generic filiform Lie group L, (n>3). Let T be a
discrete uniform subgroup of G. Then there exist ¥ € Aut(G) and uy,...,up1 a
linearly independent set of vectors of g such that

J
(1) U; = Ztini with t;; € R and tj; > 0;

=1

(2) W(I') = exp(Zuy) - - - exp(Zaw,—1)exp(Z.X,,)exp(Z X, 11) -
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Proof. For j = 1,...,n, the ideal a; = R-span{Xj,..., X;} is rational. In
fact, if 7 = n, then a, = m and the aim follows from Lemma 3.2. If j # n, we
observe that a; = C"/(g) and hence the rationality of a; follows from Proposition
2.1. Note also that by Proposition 5.3.2 of [2], there exists a strong Malcev basis
{Y1,...,Y,1} for g strongly based on I' and passing through a;,...,a,_; and
a, =m. We note Y, ;1 = aX, 11 +v where v € m and a € R* (since Y, ;1 € m).
The mapping ¥, : g — g defined by ¥, (Y,41) = X1, Vu(Y,) = X, and
\If*(adj Yo(Yn)) = X,—; if 1 < j <n—1,is a Lie algebra automorphism. For
j=1,....,n—1,let u; = V,(Y;). Then

U(T) = exp (Zuy) - - - exp (Zuy—1) exp (ZX,) exp (Z.X11) -
J
It remains to verify that u; = Z ti; X; such that t;; > 0. Given j =1,...,n—1.
We begin by observing that -
ad" 7 Y, 11(Y,,) € R*X; @ R-span { X1, ..., X;_1}.
From this we conclude that
Y; € R-span {ad"*i Yo(Yn): 1<i< j} .
J

Write ¥; = " t;ad" ™ Y,11(Ya) (t; € R). Then

i=1

u;j = V. (Y))

J
= Z t” \I/*(adn_z Yn+1 (Yn)>

i=1
i=1

On the other hand, since the basis {Y,...,Y,+1} passing through ay,...,a,, then
Y; € a; \ a;_; and hence t;; # 0. We can assume that ¢;; > 0, if not, we replace
uj by —u;. This finishes the proof of the lemma. ]

Lemma 3.5. With the notations of Lemma 3.4 we have t;; € Q for any j and
i (1<i<j<n-—1).

Proof. As
exp (Xn—i-l) exXp (Xn) exXp (_Xn—l—l) S \II<F)7

then there exist oy ,,...,@,—1, € Z such that
exp (Xn+1) exp (Xn) exp (_XnJrl) = exp (al,nul) ... €Xp (Oénfl,nunfﬁ €xp (Xn> )
and therefore

eaan+1 (Xn) — al,nul + e + Oén_l,nun—l + Xn (11)
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Similarly, for j = 1,...,n — 1, the element exp (X, 41)exp (u;)exp (—X,4+1) be-
longs to W(I'), this implies that there exist aq j,...,a;_1; € Z such that

exp (Xn11) exp (u;) exp (—Xp41) = exp (o1 ju1) - .. exp (oj_1 juj—1) exp (u;) .
Which implies that

ead Xn+1 (

uj) = gun £ Qg+ Uy (12)
Let us consider the following linear system in $n(n — 1) variables ¢; (1 < j <
n—1,1<i<j) and n(n — 1) equations

(ad X, _ .
e + (Xn) = 01 U1 +...+ Ap—1,nUn—1 + Xny

ad X, _ .
e (uy) = anjur + - A ooy g + g

J 13
uj = th'sz‘; (13)
i=1
1<j<n-1
The matrix notation of the linear system (13) is
tin tiz -+ tin-1 O t11 ti2 tin-1 O
0 top -+ typ—1 O 0t tom—1 0
Al 0o o0 : ol=| o o 0
0 0 tn—l,n—l 0 0 0 tn—l,n—l 0
0 O 0 1 0 O 0 1
1 agp Aip-1  Qip
0 1 a2 p—1 Qg pn
0 0 (14)
0 0 1 Oénfl,n
0 O 0 1

0, ifi<n-—1

e , then the relation
1, ife=n

If we note aj; = 1(1 < j <n) and t;, = {

(14) is equivalent to

Z Aiply; = Z ik Ok (1<i<j<n) (15)

i<k<j i<k<j

But since aj; = a;; =1 (1 < j < n), we obtain

Z Aiply; = Z ik Ok (1<i<j<n) (16)

i<k<j i<k<j

Therefore, if we consider the variables ¢;; in the following order

tl,l) s tl,n—la t2,27 s 7t2,n—17 s 7tn—1,n—17
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then the matrix 7' of the system (13) has the following form

12 0

* an—l,n

93 0

* Canl,n

Oénfl,n

We can conclude from this, that

n

det(T') = H O‘;j,j'

j=2

On the other hand, the relations (11) and (12) imply that «;_;; # 0 for all
7,1 < j <mn. It follows that det(T) # 0 and hence the system (13) is a Cramer
system with rational coefficients, then the solutions (¢;;) are all rational too. This
proves Lemma 3.5. [ ]

Lemma 3.6.  Let G be the generic filiform Lie group L, (n > 3). Let T' be
a discrete uniform subgroup of G. Then there exist ® € Aut(G), ey,...,en_1 a
linearly independent set of vectors of g and m € N* such that

J
(1) Vji=1,....,n—1: ej:Za:in,» with x;; € Z and xj; #0;

i=1
(2) ged(m,zj; 1<i<j<n-—1)=1;

(3) (") = exp(Zey) - - exp(Ze,—1) exp (MZX,,) exp (ZXp41).

Proof.  Following Lemma 3.5, let m’ be the least common denominator of t;;
(1<j<n-1,1<i<j). Wedefine zj; = m'ty; and d = ged(m/, zj;;1 < i <

j<n-—1). Let m = %/. The mapping @, : g — g defined by ¢,.(X,11) = X1
and for each 1 < j <n—1, &,(X;) = mX; is a Lie algebra automorphism. We

j

note, for j=1,...,n—1, ¢; = ®,(u;) = mu; = inin. It is clear that z;; € Z
i=1

for any i,7,1 <i < j<mn-—1and ged(m,z;;; 1 <i<j<mn-—1)=1. Then

® eq,...,e,-1 and m having properties (1), (2) and (3). [

Now we can complete the proof of 2. Let [D,m] be the matrix with column
vectors eq,...,e, expressed in the basis %, where e1,...,e,_1,m as in Lemma
3.6 and e, = mX,. By Lemma 3.6 we have [D,m] € 2 and ®(I') = I'jp,;. This
completes the proof of the second part of the theorem. Finally, we achieve with the
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proof of 3. We show both directions. Let 7" € GL(n, R) such that BT = TB and
[Dy, mo] 1T Dy, m] € GL(n,Z). Let the linear function ¢, : g — g defined by

Mat (¢, B) — < g ? ) .

We recall that B = Mat(ad X,,11|m, Zm), then the condition BT = TB implies
that ¢, € Aut(g). On the other hand, let (ey,...,e,) be the column vectors for
[D2,ms] expressed in the basis %, then the second condition

[Da,ms] ' T[Dy,m1] € GL(n,Z) implies that

Z-span{ey,...,e,} = Z-span {¢p.(e1),. .., d.(en)} -

It follows that
(b(F[[Dhml]]) = F[[Dz,mz]]'

Conversely, if I'ip, m] =~ DI'[p,m, then there exists ¢ € Aut(G) such that
S(Lpymi]) = Dpame)-  We note that it is possible to choose ¢, to satisfy
¢+(Xni1) = Xpy1- Moreover, it follows from Proposition 3.1 that ¢.(m) = m.
Then

(D, [Xnr1, Xi]) = [Xng1, (0, Xi)]; Vi=1,...,n. (17)

The description (17) can be expressed in matrix form

Mat (¢ |m, Bm)Mat(ad X, 1 1|m, Bm) X; =
Mat(ad Xp41|m, Bm)Mat(¢u|m, Bm) X;

for any ¢,1 <7 < n. Equivalently

Mat(¢s|m, Bm) B = B Mat(du|m, Bm)-

Finally, let (eq,...,e,) (resp. (€},...,el)) be the column vectors for [D;,m4]
(resp. [Do,ms]) expressed in the basis Z,. Then the vectors ¢.(eq),. .., d.(e,)
form a basis of the lattice Z-span {€e, ..., el }. It follows that there exists a matrix

T € GL(n,Z) such that [e],...,e)] = [p.(€e1),...,d.(e)]T. Therefore, we have
evidently
[[D27 m?]] == Mat((b*’m’ %m> [[D17 ml]]T7

completing the proof of our lemma. [ ]

Remark 3.7.  Theorem 2.4 of [3] shows that Theorem 1.1 remains valid if
n=2.

The next proposition presents some simple properties of the elements of Z.
Proposition 3.8.  Let [D,m] € Z where D = (z4;)1<i<j<n—1. LThen we have
(1) (n—1)! divides m;
(2) Tp-1n-1 divides m;

(3) Tii divides Li41,i+1 (Z == 1, e, — 2) .



HAMROUNI 11

Proof. = We preserve the notation of Theorem 1.1. Let I' = I'jp ). Following
Theorem 1.1, I' is a uniform subgroup of G. As

exp (Xpi1) exp (mX,) exp (—Xp41) €T,
then there exist aq,...,a,_1 € Z such that
exp (Xpq1)exp (mX,) exp (—X,411) =exp (aeq)...exp (ap_1e,-1) exp (mX,,) .
Which implies that
Xt (mX,) = ager + - F ap_1n1 + mX,,.
Hence, we obtain that

m m

mX,+mX, 1+=X, 9+..+ ——Xi=me;+ -+ a,_16p_1 + MX,
2! (n—1)!

and in particular, we have

m
=T+ ...+ 1T € 7,
(n—1)!

and

m = Qp-1Tn—1n-1-
Which shows that (n — 1)! divides m and z,,_,-1 divides m.

Similarly, for ¢ = 1,...,n—1, we have exp (X,,11) exp (e;) exp (=X, 41) € .

Hence e Xn+i(e;) € Z-span {ey,...,e;} and therefore
1
n+15 €4 o AN+, [Antl, € -Spanq€i,...,6i—1y .
[Xnt1s €] + 5[ Xnst, [Xosr, €] + ... € Z-span{ }
For which it follows that z;; € (2;_1,-1)7Z. [

4. Examples
As an application of Theorem 1.1, we have
Proposition 4.1.  Fvery uniform subgroup I' of L3 has the following form

' = exp(ZX1)exp(p1Z X2 )exp(Z(pi1p2 X5 — %Xz))eXP(ZX@

where py,p2, p3 are integers satisfying py > 0, po > 0, pips + p3 € 27 and
0 < B < p1. Furthermore, different choices for the p’s give non isomorphic
subgroups.
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Proof. Let I' be a uniform subgroup of L3, then by Theorem 1.1 we have
[ ~ exp (Zey) exp (Zes) exp (Zes)) exp (Zey)

where e; = aXi,e0 = cXo + bXy,e3 = mX3,e4 = Xy and the integers a,b,c, m
satisfying

This implies that a divides ¢, ¢ divides m and

m  bm
- — —c 7 18
2a ac ( )

Write ¢ = pya and m = pac = pipea. Then the relation (18) implies that

pip2 bpo
— - - -~ cZ. 19
5 € (19)

Next, the mapping O, : g — g given by 0,(Xy) = X,,0.(e3) = %63 _
b%Xg,@*(eg) = ;1 Xy and O,(e;) = X is a Lie algebra automorphism. It fol-
lows that

b
[ ~exp (ZX1) exp (1 ZXs) exp (Z(plngg — %Xg)) exp (ZXy) .

Let r = 21%, we deduce from the relation (19) that r is an integer and has the
same parity as p;pz. On the other hand, let r = ¢(2p;) + p3 with ¢ € Z and
0 < p3 < 2p;. It is easily verified that » and p3 have the same parity and

['~T4 =exp(ZX;)exp (pZXs)exp (Z(p1p2X3 — %X})) exp (ZX,) .
Let p},p, and p§ such that p} > 0,p, > 0,piph +ps € 2Z, 0 < %é < p} and
2
'y ~ Ty =exp(ZX,)exp (p}ZX>) exp (Z(p'lp’QXg — ng)) exp (ZX,). (20)

Let ¢ € Aut(G) which establishes the isomorphism (20) such that ¢.(X,) = X.
It is clear that ¢.(X;) = X;. On the other hand, since ¢, € Aut(g), then there
exist z,y € R such that ¢.(Xs) = Xy + 2X; and ¢.(X3) = X3+ 2 Xs + yX;.
Moreover, since D(G) is stable under ¢ then I'y N D(G) =TI's N D(G) and hence

exp (ZX1) exp (mZX3) = exp (ZX1) exp (p1Z.X5) .

Therefore, we obtain p; = p}. Similarly, replacing D(G) by M, we can show that
pipe = piphy and hence py = pf. It remains to show that p; = p4. For this, we
observe that there exist a, 3 € Z satisfy

/
O (P1p2 X3 — %Xz) = (p1p2Xs — %Xz) + ap1 Xs + BX;.

In particular, we have xp;p, — & = —%/3 + ap; and therefore %é —B =pi(a—apy).

We now use the facts that 0 < & < p; and 0 < %é < p1 we deduce that p3 = pj.
[
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The next remark gives an isomorphisms between the uniform subgroups
obtained in Proposition 4.1 and those obtained in Theorem 1 of [8].

Remark 4.2.  In [8], the generic filiform nilpotent Lie algebra £3 is spanned
by the strong Malcev basis {ej,...,es} such that

1 1
er = Xy, €2=X2+§X1, 63:X3—§X1, es = Xy.

Let I" be a uniform subgroup of Lj. It follows from [8, Theorem 1] that there exist
integers q1,q2 and g3 satisfying g2,q3 > 0 and 0 < ¢; < %gcd {q2, g3} such that

I' > Hy(q1, g2, 43) (21)

~ {exp (jex) exp ((gsh + qim)es) exp ((asm)es) exp (nes) : j,k,m,n € Z}
(see [8, page 230|)

= exp (Ze1) exp (Z(gzez)) exp (Z(g2qze3 + qre2)) exp (Zey) - (22)

Next, using the notation introduced in the proofs of Lemma 3.4, Lemma 3.6 and
Proposition 4.1, we remark that the mapping T = ¢po© o P o ¥ is an isomorphism
between

exp (Zey) exp (Z(gze2)) exp (Z(q2q3es + quez)) exp (Zey)

and
['(p1, p2, p3) = exp (ZX1) exp (p1ZX3) exp (Z(plszg — %X2)> exp (ZX,)

for some integers pi, p2, p3 as in Proposition 4.1. Finally, we compose the isomor-
phism T with the isomorphism given in [8, page 230] between (21) and (22), we
obtain an explicit isomorphism between Hy(q1, q2, q3) and IT'(p1,p2, p3)-

Proposition 4.3.  Fvery uniform subgroup I' of Ly has the following form

a
[~ exp (ZX1) exp (1 7Z.Xs) exp (Z(p1p2X3 + §X2)>

exp (Z(p1p2p3X4 + §X3 + %X2)) exp (Z.Xs5) (23)

where py, P2, p3, @, B,y are integers satisfying p; > 0,ps > 0,p3 > 0 and

a+pip2 € 27
B — aps + p1paps € 2piZ.

Furthermore, if
0<ax< 2]91
0<7v<12p (25)
0< 3 <2pips,

then different choices for pi,ps, p3, a, B and v give non isomorphic groups.
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Proof. Let I' be a uniform subgroup of L4, then by Theorem 1.1 we have
I’ ~ exp (Zey) exp (Zey) exp (Ze3)) exp (Zey) exp (Zes)

where

er = anXy

ey = apX;+anX

e3 = a13X1 + axgXo + azz X3
eq = mXy

€y — X5

and the integers m,a;; (1 <j < 3,1 <i <}j) satisfying
aj;r a2 a3 0

0 929 Q923 0

€9

This implies that, aq; divides ass, a9y divides ass, ass divides m and

(23 1 (33 (12033 c7

a1 2a11 a110a22

m maig (12023 — G22013
— +m cZ
6ai; 2a11a92 a11G22033
m masgs
— - €z

\ 2a92  agoass

A22013 — A12423

Let b= and let @, : g — g defined by
Q11022
1
O.(X) = —X,
a1
1
B(Xy) = —Xo— —2 X,
a1 Q11022
1 b
(X)) = —Xy— 22 x, L x,
a1 a11a22 a33
1 b
O(X;) = —X,— —2 x,— X,
a1 a11a22 33
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We note that it is clear that @, € Aut(g) and an easy computation shows that

Therefore, if we put

22

a33

X1
22
a X2

11
a33 (22023 — (12033
v X
11 a110a922

m a19 bm
—X4 —m X3 — —XQ
a1 a11a22 a33
X5.
= pian

= DP20G22 = P2p1011
P3a3z3z = P3pP2p1011
_ 9 <a22a23 - a12a33>

a11a22
Q12

= —2m

a110A22

b
S D
a33

where p1,po and ps belong to IN*, then

Xy
P1Xo

1
P1p2X3 + §OéX2

1 1
P1p2p3 Xy + = BXs + —vX>
2 12
Xs

and the condition (26) is equivalent to

a+pips € 27

1 6 1
=7+~ + <pip2p3 € Z

1

4 6
Qaps

st obeps — 5 € 2.

2p;

2 2])1

(27)

We deduce from (27) that a, 3 and v are integers. This proves the first part of the
proposition. By an argument similar to the proof of Proposition 4.1, we can prove
that the condition (25) proves the second part of the proposition. This completes

the proof.
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