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Abstract.  We obtain an explicit irreducible decomposition for the quasireg-
ular representation 7 of a connected algebraic solvable Lie group induced from a
co-normal Levi factor. In the case where the multiplicity function is unbounded,
we show that 7 is a finite direct sum of subrepresentations 7. where for each ¢,
Te is either infinite or has finite but unbounded multiplicity. We obtain a crite-
rion by which the cases of bounded multiplicity, finite unbounded multiplicity,
and infinite multiplicity are distinguished.

Mathematics Subject Classification 2000: Primary 22E45, 22E25, Secondary
43A25..

Key Words and Phrases: Quasiregular representation, coadjoint orbit, Plancherel
formula, multiplicity function..

0. Introduction

Let N be a connected, simply connected nilpotent Lie group, and let H be a
connected abelian group acting on n by automorphisms in such a way that ad(h)
is completely reducible. The resulting semi-direct product G = N x H is solvable,
and if it is also exponential, then the irreducible decomposition of monomial
unitary representations of G can be understood precisely in terms of co-adjoint
orbit parameters [8, 10]. In the case where 7 = ind%(1) and G is algebraic
and exponential, then a number of precise results regarding the decomposition
of 7 have been obtained [11, 6]. In particular, the question of the existence of
admissible vectors in the case where H has trivial stabilizers is settled in [4] by
means of an explicit decomposition for 7. We are concerned in this paper with
the following situation where G is not exponential. Let U be a torus in Aut(nc)
that is defined over R; we assume that H = U(R), is the connected component
of the set of real points of U. The group G is not exponential here, but it is Type
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1 and acts regularly on N. Again for 7 = ind%(1), the decomposition of 7 is
obtained in [9] (where the context is more general) in terms of parameters for G
that constitute a fiber space over the base N /H . Motivated in part by the question
of admissibility in this context, the aim of the present work is two-fold. First, to
give a natural construction for this decomposition in terms of an explicit manifold
that parametrizes (a.c.) N/H, an explicit measure fi on this manifold, and an
explicit intertwining operator ®. Second, to describe the multiplicity function for
T in precise terms, and in particular to obtain a criterion for the case where it is
finite but unbounded.

Since 7 is naturally realized in L?(N) so that its restriction to N is the
regular representation, a starting point for this analysis is a concrete Plancherel
formula for L?(N). Originally this is obtained in [13], where N is explicitly
parametrized by a cross-section for coadjoint orbits in n*. Since we are ultimately
interested in an explicit parametrization for N /H , we then consider the natural
action of H on n*/N ~ N, with the hope of describing this action in terms of the
cross-section. However, the cross-section used in [13] is not H -invariant in general.
In order to construct an explicit cross-section for coadjoint orbits in n* that is H -
invariant, we apply a method of stratification and parametrization of coadjoint
orbits first developed in [7] for the case of exponential groups, and then slightly
but significantly generalized in [1]. As a result of the work in [1], one obtains
a cross-section for each stratum (or “layer”) in n* that is simply described and
well-behaved under certain projection maps. As usual, the construction depends
only upon a certain choice of Jordan-Holder basis for the complexification of the
Lie algebra. In the present work we show that by making this choice of basis so
as to consist of eigenvectors for ad (H), the resulting orbital cross-section in each
layer is indeed H -invariant. In particular, specializing to the minimal Zariski-open
layer, we obtain an H-invariant cross-section A that parametrizes almost all of
N , and thus the action of H on N is understood in explicit terms as the action
of H on A. Moreover, there is a closed subgroup K of H that coincides exactly
with the stabilizer Hy in H for all A € A. The preceding constructions are carried
out in Section 1.

In Section 2, we specialize to the class of G that are algebraic in the sense
described above. Then the quotient space A/H is described by means of an explicit
algebraic submanifold > of A, and a finite subgroup F' of H acting on X, so that
the map H\ — HANX is a homeomorphism of A/H onto ¥/F. For each H-orbit
O C A, a natural semi-invariant measure w is defined on O and an explicit

measure i on Y is defined so that for any fundamental domain ¢ for 3/F,

Jorv = [ ) den) dito)

Here i is explicitly described in terms of the usual Pfaffian and a Lebesgue measure
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on Yg. The stage is then set for an explicit decomposition of the quasi-regular
representation 7, which is taken up in Section 3, and as in [11] this depends upon
an understanding of the action of K on each n/n(\), A € ¥5. We write A as
a finite disjoint union A = A® where ¢ € {1, —1}" are “sign indices” measuring
the positivity (or lack thereof) of the Vergne polarizations p(\) associated to
A € A.. Setting e(\) = (p(A) +p(N\)) Nn and d(\) = p(A) Np(A) Nn, we construct
irreducible representations m, associated with A by inducing from a Bargmann-
Fock representation of F(A\). For A € A€, the actions of K in n/n(\) (or on
n/0(\)) are isomorphic, and hence the Weil representations ~y, are isomorphic.
Using methods borrowed from [9], an intertwining operator is defined that obtains

a finite decomposition 7 ~ @, 7. where
® r® B
=[] w6} du di).
¢ JK

Here m.(n) is the multiplicity of € K in the decomposition of ~,, and pl is the
irreducible representation of G induced from an extension 7, ®  of m\ to NK
corresponding to 77. Since the K -actions on n/9(\) are constant on each A€, the
multiplicity functions depend only upon the index e.

In Section 5 we turn to the analysis of the multiplicity functions. The
irreducible representation 7y of N is realized in an L?-space where v, is simply
described, and we show that the real issue is the multiplicities for the characters
of the identity component K! in the anisotropic subgroup K” of K; note that
K! ~ T for some s. By evaluating a (convenient) basis for the Lie algebra &’
at the roots of £’ in n/d(\), we codify this action in an “action matrix” P. For
h € K" = Z*, the value m(h) is the number of integer solutions to the diophantine
system Pn = h that lie in a convex cone E° determined by e. This number is
finite if and only if the intersection of the real solution set S(P,h) for Pz = h
with E€ is bounded. In particular, if K acts with full rank on n/9(\) (in other
words, if the image of K in Sp(n¢/n(\)c) is Cartan), then P is invertable and
m. is bounded (with value 2" a.e., given by the rank of the split subgroup K’ of
K, see also [11, Lemma 3.3]). In the case where K does not act with full rank,
then m, is unbounded but not necessarily infinite: see for example [9, Section 8,
example (vii)]. When P is not invertable but S(P,h) N E€ is bounded for all h,
then m, is finite everywhere, and this condition depends only upon P and the sign
index €. We prove a precise criterion for unbounded finite multiplicity in terms of
the relationship between the action of € on n/9(A) and the cone E°. We obtain
the following result, which is stated more precisely in Section 5 as Theorem 5.4.
Theorem 0.1. Let G = N x H be a real algebraic solvable Lie group with N
simply connected nilpotent and H a connected Levi factor, and let T = mdg Let

K be the generic stabilizer in H. Then one of the following obtains.
(1) If K acts with full rank on n/o(\), then T has uniform multiplicity 2", where
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r s the split rank of K .
(2) If K does not act with full rank on n/e(\), then 7 is infinite.

(3) If K acts with full rank on n/e(\), but not with full rank on n/o(\), then T
18 a finite direct sum of subrepresentations 7., such that for each €, either . has
finite unbounded multiplicity, or 1. is infinite.

We conclude in Section 6 with four examples to illustrate both methods

and notations.

1. An H-invariant Orbital Cross-section

Let N be a real, connected, simply connected nilpotent Lie group with Lie algebra
n. Let [ be the complexification of n, and for Z € [ let ®Z and IZ denote the
elements in n for which Z = RZ +i3Z (we apply the same notation to complex
numbers also.) Choose an ordered basis {Z;,...,7Z,} for [ with the properties
that

(i) For each 1 < j <n, [; = C-span{Zy, Z, ..., Z;} is an ideal in [.
(11) If [j 7& E then [j+1 = F and Zj+1 = Z
(iii) if [; =; and I;_; = [;_;, then Z; € n.

We shall find the following notation useful. Define I = {1 < j <n|[; =
I'={jel|j—1el},and I" =1—1. Foreach 1 < j < n set j
max{k € [ | k <j} and j” = min{k € I |k > j}.

An element X € n can be written as X = 217, + 2229+ -+ -+ 2,7, and can
be identified with the element © = (21, z2,...,2,) of R™ setting z; = z; if j € I',

[j}7
/ p—

and z; = Rz, ;41 = Sz;, if 7 ¢ I. Let n have the Lebesgue measure obtained
by this identification.

Let n* be the linear dual of n; elements of n* are extended to [ in the
natural way. For ¢ € n*, write {; = ((Z;), and { = ({1,05,...,¢,). Note that
if j ¢ I,then ¢;;; = {;. Thus ¢ is identified with an element of C* and is
in turn identified with an element & of R"™ by setting & = ¢; if j € I’, and
& =N, & = if j ¢ 1. Let n* have the corresponding Lebesgue measure
via this identification.

Let H be a closed, abelian subgroup of Aut(/N) with Lie algebra b; H
acts linearly on n and n* as usual, and we denote all actions multiplicatively. We
assume that for each a € H, the basis elements Z; are eigenvectors of a,. For
each a € H we set

aZ; =0;(a)Z;, 1 <j<mn,

and we denote the differential dd; by ;. Let D(n,C) be the torus of all diagonal
elements in GL(n,C), and for a € H put
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d(a) = diag(d1(a), d2(a), ..., o,(a)) € D(n,C).
We assume that the action of H on n is effective, and so we can identify H
with its image §(H) C D(n,C). Let G be the semi-direct product of N by H,
and g = n+ b its Lie algebra. The inverse of the modular function of G is
|0] := |0102---0,|. Note that [; is an ideal in g¢, 1 < j < n. We denote the
actions of G on n and n* multiplicatively as well.

For any subset t of [, if f is a linear functional defined on [[,t], then set
t/ ={Z cg| flZ T] =0 holds for every T € t}.

If t is an ideal in [, then t/ is a subalgebra of [. Recall that for any ¢ € n*, the
Lie algebra g(¢) of its stabilizer G(¢) in G is n’, and the Lie algebra n(¢) of its
stabilizer N(¢) in N is n®Nn. We apply the stratification procedure as described
in [7] to the Lie algebra n; in [1], it is observed that this procedure does not require
that the chosen basis of n¢ be real (as is the assumption in [7]). Thus we have the

following.

(1) To each ¢ € n* there is associated a set e(¢) C {1,2,...,n} defined by
() ={1<j<n|l¢l+0}

Note that since I = [*, then for each index j, j” € e(¢) implies j € e(¢). Note also
that the number of elements in the index set e(¢) is even since it is the dimension
of the coadjoint orbit of N through ¢. For a subset e of {1,2,...,n}, the set
Qe = {0 € n* | e({) = e} is N-invariant. The non-empty e are determined
by polynomials as follows: to each index set e one associates the skew-symmetric
matrix

Me(g) = [K[Zh Zjumee'
Setting

Qe(() = det Me(0),

one has a total ordering < on the set £ = {e | Qe # (0} such that

Qe={leg | Qu(l) =0 for all & < e, and Qe(¢) # 0}.

(2) Set d = |e|/2. To each ¢ there is associated a “polarizing sequence” of
subalgebras

[=po(€) D pi(6) D -+ D pall) = p(0),
and an index sequence pair i(€) = {iy < iy < --- <iq} and j(0) = {j1, 72, -, Ja}s
having values in e(¢), defined recursively for 1 < k < d by

ip =min{l <j <n | GNp1() & prr(0)},

pr(€) = (Pe—1(0) N 1) N pr_a(0),
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and
Jr=min{l <j<n|LNpri(l) ¢ pp(l)}.

For each k, iy < ji, and e(¢) is the disjoint union of the values of i(¢) and j(¢).
The subalgebra p(¢) is the complex Vergne polarization associated to ¢ and to the
given Jordan- Holder sequence for [. Note that m does not necessarily coincide
with p(?).

Since i(¢) must be increasing, it is determined by e(¢) and j(¢). For any
such splitting of e into such a sequence pair (i,j) we have the N-invariant set
Qej = {0 € Qe | j(¢) = j}. We refer to these sets as “fine layers”, and to the
collection of non-empty {2e; as the fine stratification of n*. For 1 < £k < d, if we
set

Mex(0) = [([Z;, Z}]]

4,7€{11,51,92,525--+0k 0k }

let Pfex(¢) denote the Pfaffian of M, (¢), and let
Peo;j(0) =Pt 1(0)Pfeo(l) - - Pfe 4(0).
Then there is a total ordering << on the pairs e,j such that
Qej={l€g" | Pey(l)=0forall (¢,j) << (e,j) and Pe;(¢) # 0}.

Lemma 1.1. Forae€ H and 1 <k <d, one has

Pf.(a- () (ﬁ 5 ( >Pfek(€)

=1

In particular, the fine layers are H -invariant.

Proof. Let a € H and set s, = span{Z;,,Z,,,... Zj.}. Let o,(W,0)

denote the pro jection of W into the subspace s parallel to S. It is easily seen that

zka

a-st = (a-5;)*" and since our basis consists of eigenvectors for a, then a-s;, = s,
and we have a - st = 5¢¢. Now it follows that aooy(- ,a- ) oa™t = o4(-,¢) and
hence for any W €[, a0, (W,a - ) = op(a™' - W, (), 1 <k < d. In particular,

we have

a'ﬁ[ak,l(Z a - g) O'kfl(ij,CL‘é)] :E[O'k 1( Z,L

if s

0),0r(a - Z,, 0)]

Ik

:5ik-( ) 15]k(a) 16[016 1(Zlk’€) Ok— 1(ij’€)]

k7

But Pfe1(¢) =([Z;,, Z;] and

i1

Pfe’k(£> = Pfe’k_l(f) g[O'k_l(Z 6) O'k_l(Z 6)] k= 2, 3, .o.d.

(278 Ik

The desired formula follows. n
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Now suppose that Z; € n holds for 1 < j < n, and fix a fine layer
2. Then it is well-known that a cross-section for the coadjoint orbits in  is
QN{l|¢; =0,Vj € e}, but it is clear that such a cross-section is not necessarily
H -invariant if H has non-real roots. However, if each Z; is an eigenvector for the
elements a € H, then we shall see that the methods of [1, 7] obtain an H -invariant
cross-section.

We begin by describing the construction of [7, Lemma 1.3] (see also [5,
Lemma 1.2.1]), which proceeds by means of a case-by-case analysis. To this end,
and following the notation of [7, page 248], we define subsets of K = {1,2,...d}
as follows. Weset Ko = {1 < k <d|ix—1¢€ Tandip € I}, K; = {1 <
k< dl|ix ¢ Tandip +1 ¢ e}, Ko = {1 < k < d| i —-1¢€j\ I},
Ky={1<k<d|ir¢landig+1e€j}, Ky={1<k<d|ix¢Iandir+1 € i},
and K5 = {1 <k <d|ix—1¢€1i\ I}. One observes that if & € Ky, then
ir —1 = jn where 1 < h < k. Second, it is shown in [7, page 252] that if k € K3
then 7, +1 = j. Third, note that the fact that i is an increasing sequence implies
that if £ € Ky, then iy +1 = 4341, and K5 = Ky + 1. It follows from these
observations that K = U}_oKy as a disjoint union. We have the following.

Lemma 1.2.  ([1, Lemma 3.1], [7, Lemma 1.3]) Let n be a nilpotent Lie algebra
over R, and choose an adaptable basis for [ = n.. Let = Qej be a fine layer
with 2d the dimension of the G-orbits in ). Assume d > 0. Then one has a
construction for rational functions Vi, : Q — L and U, : Q@ — [, 1 < k < d, that

satisfy the following conditions.

(i) For each £ € Q, Uy(€) € Ly — Uy and Vi({) € Ly — [y
(11) L{UL(0), Up(0)] = L[Vh (), Vi(0)] = 0,1 < h,k < d.

(111) L[UL(0), Vi,(€)] =0 if and only if h #k, 1 < h,k <d.

(iv) There is a covering C of Q0 by finitely many Zariski-open subsets and for each
O €C and 1 <k <d, a continuous function ¢¢ : O — T, such that for each
(€ O, the elements {¢Q ()" Ux(€) and ¢ (€)"1Vi.(£) are real (i.e., they belong to
n.)

(v) For 1 <k <d, if k € KoUK, UKy, then h({) = br_1(0) N{Vi(£)}* holds for
each £ € Q. If k € Ky, then by 1(0) = br_1(0) N {Vi(£), Vi1 (£)}* holds for each
e

Set my(¢) = (0), and for each 1 < k < d, set
mk(g) = C_Span{‘/l(g)a %(E)a s 7Vk(€)7 Ul(g)a U2(€)7 R Uk(g)}

so that for each £ € Q, [ = m(f) @ mp(£)". For Z € [,£ € Q, let pi(-,£) be the
projection of [ onto my(¢)¢ parallel to my(¢), with po(-,¢) the identity mapping.
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It follows easily from the preceding that pi(-,¢) has the following properties (for
each 1 <k <d (e€Q).

(a) For each Z €[, pp(Z,0) = pr(Z,1).
(b) pr satisfies the recursion formula

Upr—1(Z,0), Up(0)]
(Vi(€), U (0)]

Upe-1(2,0), Vi(0)]
C([U(£), Vi (0)]

pi(Z, ) = pr—1(Z,0) — Vi(0) — Uk(0).

(c) pr(l,0) C [f;cﬂ, holds for 1 < k < d—1 and pu([,¢) C [(£). Also, py(l;,¢) C
[j//, 1 S] <n.
(d) For any W, Z € L, L{pp(W, ), pi(Z,£)] = lIW, pr(Z, £)] = Llpr(W, £), Z]

There are two more properties of the function p, that emerge from the above and
that we shall need later.

Lemma 1.3. [1, Lemma 3.2] One has each of the following.

(a) If k & Ky, then my(0)* C pi(€), and hence (by definition) pi(-,€) maps | into
pi ().

(b) For each 1 <k < d, pr_1(-,£) maps Ly into [

An implicit part of the proof of [7, Lemma 1.3] is the construction of rational
functions Z;, : @ — C-span{Y;,Ys} and Z;, : @ — C-span{X;, Xy} such that
Vi(l) = pr-1(Z;, (£),£)) and Ug(€) = pr—1(Z;,(£),¢)). An important insight of [1]
is the utility of these functions in describing coadjoint orbit cross-sections. They

are defined case by case, as follows.
k € Ky. We have Z;, ({) = Z;, . (Note that Z;, is real in this case.)

k € K;. We have

1 _ _
Zik (6) - 5 (f[pk—l(zjm E)v Zlk]Zlk + E[pk—1<ij7€)7 Zlk]Zlk)

k € K5. Here we have iy — 1 = j, for some 1 <r < k and we have

2,(0) = 5 (U2, V012, — 12, V(017 ).

k € K3. Here we can take Z;, ({) = 3Z,, .

= Zj,, but it is true that
Jra1 > Ji'. Accordingly this case splits into two subcases.

k € K4. It is not necessarily true here that Z;

Jk+1

Subcase (a). Zj,,, = Z;,. Here Z;, ({) = RZ;, and Z;,,,({) = SZ;,.
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Subcase (b): Zj,., # Z;,. In this case one has ji1 > ji ([7, page 250]). For the
index 14y, this case is the same as k € K;: one has

1 — _ _
Zi (6) - §(£[pk—1(zjk7£)7 Zlk]Zlk +€[pk—1<ij7 )7 Zlk]Zlk)

As for the index ix1, we define

1

Zik+1 (E) - E(E[pk—l(zjk7 )7?21@]2% - E[pk—l(?jm )7 Zlk]Elk)

Note that in this subcase because jii1 > 7y, it follows that pi(Z;, ,, (¢),() =
pkfl(ZikJrl (g),g), that iS, that Vk+1(€) = pkfl(Zi g),ﬁ)

e (

For future reference we write Ky = Ky,UKy, and K5 = K5,U K5, according
to the subcases (a) and (b) above. The covering sets referenced in Proposition 1.2
are formed by writing

Zi,(0) = Bi(ORZ;,, + B2(0)SZ;,

for each k € K; U Ky,. For each such k, select t, =1 or t, = 2. Then a covering
set O=0yisaset O, ={0e€ Q| [, () #0,ke K1 UKy}.

Now that we have defined Z;, (¢), and hence Vi (¢), for all possible cases, it
is shown in [5] that one definition for Z;, (¢) will suffice. Thus in each case above
we can take ]

23u(0) = 5 (07, Vi) 23, + 01230, VA0 Z3, ).

The following three results are proved in [1].

Lemma 1.4.  Let p = py(¢) be the complex Vergne polarization associated with
the chosen adaptable basis. Then

p=pNp+ span {pp-1(Z;,,0) | k € Ks}.

Lemma 1.5. [1, Lemma 3.3] Let Q be a fine layer whose orbits have dimension
2d > 0. Let k,1 <k <d be a subindex such that k ¢ K5, let X € Ly =1, Y €
Ly — Ly, and set B(0) = ([X, pr—1(Y, ()], £ € Q. Then (3 is N -invariant on .
In particular, the functions Z;(€),j € e defined above are N -invariant, and the
functions € w— 0[Z;,Vi,(£)] are N -invariant. Moreover, each covering set O is

N -invariant, and the continuous functions ¢¢ are N -invariant.
Theorem 1.1. [1, Theorem 4.5 (specialized to the nilpotent case)|] The subset
A={leQ|UZ;) =0, foralljec e}

1S a cross-section for the coadjoint orbits in €.
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Note that even in the generic layer, the above cross-section need not be
flat; see Section 6, Example 6.2. The following consequence of our cross-section
description shall be useful later.

Corollary 1.2. For each Z €1, { € A, we have ((py(Z,0)) = ((Z),0 < k < d.

Proof. The result is true for k£ = 0 by definition of py. Assume that the result
is true for k—1. Then ((Uy(¢)) = £(pr-1(Z;,(£),)) = £(Z;,(¢)) = 0 and similarly
((Vi(€)) =0 . Hence

U(pe(2,0)) = £<Pk—1(zv 0) = c(O)Ux(() — d(@%(@) = U(pe1(Z,0)) = (Z).

We have seen in Lemma 1.1 that the fine layers () are invariant under that
action of H. We claim that the cross-sections A are H -invariant also. This claim
will follow from the next result.

Lemma 1.6. Let Q be a fine layer with d > 0. For { € ), we have the
following.

(1) If k> 1 and k ¢ K3U K4, U K5, , then we have homomorphisms v;, : H — C*
and v;, : H — C* such that for any a € H, a 'Z; (al) = v;(a)Z; (¢) and
a'Z; (al) = v (a)Z;, (¢). Moreover, the functions v;, and v;, are defined as
follows. One has v;, (a) = 10;,(a)|"2v;, (a) in all cases, while v;, is defined casewise

by

(i) vi(a) = 05 (a)™", if k € Ko,

(ii) vy (a) = |0, (a)| 728, (a) ™", if k € K1 U Ky,

(111) v;, (a) =v;,_,(a), if k € K5 (whence k —1¢€ Ky,), and

(iv) vi, (a) = |9;.(a)|26;.(a), if k € Ky (where r < k is defined by ix—1 =74, ¢ I.)
(2) If k ¢ Ky, then

(a) my(al) = amy({),

(b) mi(al)* = a(m(0)"), and

(c) pr(a™ W, 0) = a=tpi.(W, al) holds for each W € I.

Proof. We begin by establishing that for each k, the statements (2b) and
(2¢) follow from (2a). Suppose that for some 0 < k < d, a € H, we have
my(al) = amp(€). Then W € m(al)® iff al|W,aZ] = 0 holds for all Z € my((),

iff ([a=*W,Z] = 0 holds for all Z € my(f), iff a='W € my(£)*. Now set P =
a"'opi(-,al) oa; then P is a projection, and the preceding shows that the image
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of P is my(0)f. If W € my(£), then aWW € my(al) and so by definition of py(-, al)
we have pip(aW,al) = 0. Hence P(W) = a 'pip(aW,al) = 0 and it follows that
P = pi(-,£). The identity (2c) follows.

Secondly, we show that in (1), if one assumes that (2c¢) holds for £ — 1 and
that a='Z; (al) = v; (a)Z; (£) holds, then the identities a~'Vi(al) = v;, (a)Vi(0),
a*Z; (al) = v, (a)Z;, (), and a 'Ux(al) = v;, (a)Ug(¢) follow.

Suppose that for some 1 < k < d,k ¢ K3 U Ky, U K5,, a € H, we have

a'Z; (al) = v;, (a)Z;, (£) and that py_1(a W, £) = a ' p_1(W, al) holds for each

W € [. We then have a ' py_1(Z;,,al) = 6, (a)pr—1(Zj,,¢), and

a Wi, (al) = a ' pp_1(Z;, (al), al) = pr_1(a"'Z;, (al), ()
= pk—l(Vik (a)Zlk (6), E)
= iy (a)Vi(0).

Using the formula for Z;,(¢) given above, we have
a2, (al) = a- {1<a€[ij,Vk(a€)]Z +allz, Vi(a)|Z,) }
= > (taZj,a Vil 25, + o™ Zy 0 Viad)]a ' Z,,)
= - (U05(0) " Z5 v, (Vi 0))65, () 2,
+U005,(0) 7 2y, v, (Vi (0) 17,
= 0;.(a)| w1, (@) Z;, (0).

Now just as the identity for Vi (¢), the identity a 'U(al) = v;, (a)Ux(¢) follows.

Having established these preliminary relations between the above identities,

l\')l?—‘[\')IH

we proceed by induction on k, 0 < k < d. The statements (1) and (2) are trivially
true when £ = 0. Suppose then that k£ > 1 and that the lemma holds for smaller
k. Observe that if k ¢ K3 U Ky, U K5,, then k — 1 ¢ Kj,, and hence we have the
identity (2c¢) for k£ — 1.

Therefore, in light of the relations established above, it remains to prove

the following statements for k:

(a) if k ¢ K3 U Ky, UKs,, then for a € H, a™'Z; (al) = v;, (a)Z;

i (0) where v;, is

as claimed, and
(b) if k ¢ K4,, then my(al) = amy(¢) holds for a € H.
We consider several cases.

Case 0. Suppose that k € Ky. In this case Z;, ({) = Z;,, so (a) is clear. As
for (b), in this case we have my(¢) = my_1(¢) + (Vi(¢),Ux(¢)). By induction
and the above observations we have my(al) = my_1(al) + (Vi(al),Ug(al)) =

amy,_1(€) + a(v;, (a)Vi(0), v, (a)Uk(€)) = amy(£), so (b) is proved.
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Case 1. Suppose that k£ € K. Here again k — 1 ¢ K,,, so we have the identity
(2¢) for k —1.

1 — _
a 17, (al) = 5(ae[zjk, per(Zs al)la™*Z, + al]Z;,, per(Zi,, af)]a_lZik>

1 — —
=3 <€[a’1ij, a 'pe1(Zi,al)a Zy +lla” Z5, a7 pra (2, (zé)]a’lZik)
1 — —
= 5 (f[a_Iij, pk_l(a_lZik,E)]a_lZik + K[CL_IZJ‘IC, pk_l(a_lZik, é)]a_lZik>

= 164, @) 03,@) 5 (0250 96 1(Zos O, + 1125, p61(Zi, 017,
= vy (a)Z;, (0)

where v;, (a) = |6;,(a)|720;,(a)"*. Thus (a) is proved. As for (b), we have
my(0) = my_1(0) + (Vi(£),Uk(¢)) just as in Case 0, and the proof of (b) is the
same as that case.

Case 2. Suppose that k € Ky. Let 1, — 1 = j, where r < k. Observe that in this
case 7 ¢ K3 U Ky, U Ks,, and hence we have the identity a=V,(af) = v; (a)V,({).
In a similar way as Case 1 we find

0 Zifat) = o (0™ Zy Vi)™ 2, — o™ 2,07 Vo a0 7,

1

= v, (a)Zy, ()

where in this case v;, (¢) = |0, (a)|720;,(a)~". The proof of the identity (b) is the
same as the preceding cases.

Case 3. Suppose that k € K3, so that Z; = Z; . Here we need only prove that
(b) holds, and the point here (as in the cases where k € Ky, and k € Kj, also) is
that my(¢) can be rewritten in a more convenient form. Indeed, since

1
Vi(l) = Z(Pk—l(zikag) - Pk—l(%»@)
and
1
Uult) = 5 (prer(Zins 0 + pra (23,0))
then we have
my,(€) = my_1(€) + (pe-1(Ziy, 0), pe-1(Z;,., 0))-

Now as in prior cases, k — 1 ¢ Ky, so we have the identity (2c) for £ — 1. Hence

a™ pr-1(Ziy, al) = 65, (a) " px-1(Ziy, £) and a™' pr—1(Z,, al) = 8, (a) " pre—1(Zj,, )

and
a'mg(al) = a 'my_y(al) + (e pr_1(Zi,, al), s pe_1(Z;,, al))

=my_1(0) + (05, (@) (Zi,., 0), 05, (a) " pr—1(Z;,, 0))
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Case 4. Suppose that k € Ky,. We have k — 1 ¢ K, and since the formulae for
Z;, (£) and my(¢) are the same as Case 1, the proof in this case is identical to that
of Case 1 as well.

Case 5. Suppose that k£ € K5. Note that in this case we have k — 2 ¢ K,,. We
consider two subcases.

Subcase 5(a). Suppose that k € Ks,. By construction, the complex span of
the elements Vj_1(£), Vi(€),Uk_1(¢),Ux(¢)} coincides with the complex span of
{Iok—2(Zik,17€>7pk—2<ij717£)7pk—Q(Zikag)apk—Q(ijg))}v and hence

my,(0) = my_o(0) + (pr—2(Zi_,, £), pr—2(Zj, 1 0), pr—2(Ziy, 0), pr—2(Z;,, L))

Now an argument similar to that of Case 3 shows that my(af) = smy ().

Subcase 5(b). Suppose that k € K5,. Here we have

1 — _
Zi (E) - 2_Z <€[ij71 ) pk—2<Zik~71 ) g)]Zikq - E[ijfl ) pk—Q(Zikq ) g)]Zik—1>

and an argument similar to that of Case 2 shows that a™'Z;, (af) = v, (a)Z;, (¢)
and mg(al) = amy(0). ]

The following is almost immediate.
Proposition 1.3. The cross-sections Aej are H -invariant.

Proof. An examination of the definitions of the functions Z;(¢),j € e, shows
that if £ € K3, then the statement

(Z,,(0)) = 0 amd €(Z,,(0)) = 0

is equivalent to

while if k € K,,, then

E(ZZ (Z)) = Z(ij (E)) - E(Zik+1 (f)) - E(ijﬂ (@) =0

and /4,

o1 - 1t follows from

is equivalent to the vanishing of each of ¢;,,¢; ,¢;, .,
this and from Lemma 1.6 that for each 7 € e, we have a non-zero, semi-invariant
function p; on €2 such that A = {£ € Q | p;(¢) =0, € e}, and the proposition

follows. ]

Next we examine the restrictions of the preceding characters to stabilizer
subgroups.
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Lemma 1.7.  Suppose that a belongs to the stabilizer Hy in H for some { € ().
Then we have the following.

(a) For each 1 < k <d, §;,(a) = &, (a)™*.
(b) If k € K3 then |0, (a)| = 1.
(c) If k€ KoUK, UKyUKyU Ky, then v, (a) and vj, (a) are both real.

(d) If k € KoUK, UKyUKyUKsy, then 6;, (a) = v, (a)™! and §;,(a) = v, (a) .
Proof.  First of all, we observe that by the preceding lemma, for any 1 < j <n

api(Z;, ) = 6;(a) pr(Z;, 0).

Suppose that k ¢ K;. Using the definition of i and j, and the properties of the
functions py, we have

g[pk71<ij ) ﬁ), pkfl(Zik ) 6)] 7£ 0,
and hence

0 # Lpr-1(Zi,,, 0), pr—1(Z;,, 0)] = allpr—1(Zs,, al), pe—1(Z;,, al)]
03, ()0, ()l pe-1(Ziy,, £), pr—1(Zj,, 0))-

If k € K5, then replace k — 1 by k— 2 and repeat the preceding. Part (a) follows.

Now k € K3 means that Z;, = Z; , so 6;, = ¢&;, and part (b) follows.
As for (c), suppose that k& € Ky U K; U Ky U Ky, U Ky; the point here is that

in this case Z;, (¢) and Z;, (¢) are "almost real”: they belong to Cn. It follows

immediately from the definitions of v;, and v;, and the fact that a/ = ¢ that v;, (a)
and v;, (a) belong to R. Thus part (c) holds, and now the proof is completed by
an examination of the formulae for v;, and v, in each case, and using parts (a)
and (c). The cases where k € KoU K; U Ky, U Ky, are straightforward. If k € K,
then let r < k such that ¢, — 1 = j,.. We have r € Ko U K; U Ko U Ky U K3y,
so by induction we may assume that the result holds for r (Note that 1 ¢ K, by
definition of K5.) Hence §; (a) is real and

vi,(a) = |05, (a)|70;, (a) " = 8j,(a) ™" = d;,(a)".
Then using part (a) (the following calculation works for all cases),
v, (a) =10, (a)| *vi (a) = 8;,(a) 7?0, (a) " = &, (a) ™"
]

From now on we let © = Qe ; be the minimal (and hence Zariski-open) fine
layer in n*, with A its orbital cross-section. From Theorem 1.1 we have rational
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functions Z; : @ — [,j € e such that A is a Zariski open subset of the algebraic
set V={len" | (Z;({)) =0,j € e}. We shall now define real coordinates for A
and equip A with a Lebesgue measure. Recalling the index operations j — j' and
j — 7" defined at the beginning of this section, we have already observed that (see
the definition of e above) that if j” € e, then j € e also. If the basis of [ = n,
consists entirely of elements in n — or more generally, if ;7 € e implies j” € e —
then V is just a subspace of n*, that is, the cross-section is flat. However, it may
happen that j € e while j” ¢ e. It is the presence of this case which results in a
cross-section which is not so simple.

First we identify the indices j for which the coordinate ¢; does not vanish
on A. Define the index sequence u by

u={u <uy <---<uf={1<j<n|j—1€landj” ¢e}

The indices u identify the directions where there is a “non-jump index”; in fact,

in terms of the index operation j +— j’, we have
u= ({1,2,...n}\e)/—|—1.

Note also une={jce|j¢ 1,77 ¢ e} consists of the indices referred to in the
preceding paragraph.

For each 1 < a < ¢, set K, =R if u, € I and K, = C if u, ¢ I. Set
Ao = U(Zy,),1 < a<c. Weshall find it convenient to identify elements of A by
their mixed real and complex coordinates, writing A = (A, Ay, ..., A.) € A where
A € Kyl < a < c¢. We point out that in the simpler case where none of the
indices u, belong to e, this notation identifies A with an open subset of [[_, K,
(this is the case in [4]). We shall also find it convenient in what follows to adopt
a notation for the characters of the action of H on A: set x, = 0,".

For each 1 < a < ¢, write \* = (A1, Aa, ..., \s), and set

AT ={\"| A€ A}

Now if u, ¢ e, then for each A € A set L,(\) = K,. Suppose that u, € e. For
J = Uq, recall that we have defined the element Z;(\) = G1(A)RZ; + F2(N)SZ;.
Since j € e but j” ¢ e, it follows (see [7]) that I(B1(A)B2(N)) = 0. For each
A€ A let L,(\) be the real subspace of C defined by

La(\) = {2 € C | IRz + (V)2 = 0}.

It is shown in [5] that for each ¢ € Q, (i(¢) and [((¢) depend only upon
ly,...,0;_y. Taking £ = XA € A we see that §;(\) and (2()\), and hence L,(\),
depend only upon A*~'. Combining Theorem 1.1 with [5, Proposition 2.2.1], we
have
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Proposition 1.4. [5, Proposition 2.2.1] For each 1 < a < ¢, there is a dense open
subset Uy(\) = Uy(N1) of Lo(N\) depending only upon A\~ such that

A= {0 = (A1, doy o A) | A€ A and N, € U, (N}

Set
u={uculueloruce}={u, €ul dimL,()\) =1}

and
w={uculu¢landud¢e}={u, €ul| dimL,()\) = 2}.

We define a Lebesgue measure dA* on A% 1 < a < c¢ iteratively. Since n is
nilpotent, u; = 1 ¢ e and we take d\' to be Lebesgue measure on L! = K;.
Assume that 1 < a < ¢ and that d\*"! is defined. If u, € u', denote by d), the
one-dimensional Lebesgue measure on L,(A\*™!), while if u, € u?, denote also by
d), the two dimensional Lebesgue measure on L,(A\*"!) = C. For non-negative

measurable functions f on A® define

pomax = [ [ dh du (),
Ae A=t JU, (A1)

We denote the measure on A so obtained by d\. Now let Pf = Pf, ;; we have
the following [5].

Proposition 1.5. [5, Corollary 2.2.6] The Plancherel measure on N is given (up
to a constant) by |Pf(\)|dA.

In the final portion of this section, we observe that the almost all elements

of A have a common stabilizer in H. Set

K = ﬂ ker(dy);

ucu
since d;n = &;, we have K = (¢ ker(d;). Observe also that the Lie algebra € of

K is
£ = ﬂ ker 7,

ueu

and is contained in n* for every £ € A.

Lemma 1.8.  Let A € A such that \y, #0,1 <a<c¢. Then K = H).

Proof. It is clear that K C stabgy () holds for all A € A. On the other hand,
if h € H but h ¢ K, then for some 1 < a < ¢, we have x,(h) # 1 and hence
(h\)w # Ao "
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From now we denote by A those elements A of our cross-section for which
Ao # 0,1 < a < c¢. The natural inclusion of K in Sp(n/n(A), A € A is associated
with the characters ¢;,j € e, and hence the following is expected.

Lemma 1.9.  One has K C ker|d].

Proof. Let a € K; by Lemma 1.7, we have §; (a) = 4;, (a)~'. Now suppose
that j ¢ e; then pq(Z;, \) belongs to n(\). By Corollary 1.2 we have r;(\) =
Apa(Z;,\)) = A; and it is clear from the description of A that r; is non-vanishing
on A when j ¢ e. From part (c) of Lemma 1.6, we find that r(s\) = §;(s)r(}\),
and hence §;(s) = 1. [

2. The Connected Algebraic Case

For the remainder of this paper we assume that G is connected and algebraic, that
is, that H satisfies the following. We suppose that h = ' @ h”, with

(i) H = H'H" where H' = exp(h’) and H" = exp(h”)

(ii) for each A € b’ we have 7;(4) e R,1 < j <mn,

(iii) for each B € h” we have v;(B) € iR,1 < j <n,

(iv) for each B € ", v;(B)/v(B) is rational, 1 < j < k < n.

Of course G is not exponential; we have the following.

Lemma 2.1.  One has
ker(exp) = {B € b | v;(B) € 2miZ,1 < j < n}.
In particular, H' is exponential.

Proof. It follows from the fact that N is exponential that ker(exp) C h. If
A€ b, then e = exp A implies 1 = §;(exp A) = %) 50 ~;(A) = 0. Hence for all
1<j<nandanyteR, j(exptA) =1. But recall that we have assumed that
H acts effectively on n so we have Ni<j<,ker(d;) = (1). Hence exp(RA) = {e}
and A= 0.

Let B € h”. If e = exp B, then as above 1 = §;(expB) = %8 so
v;(B) € 2miZ, while if v;(B) € 2miZ,1 < j < n, then d(expB) = 1 so
expB =e. [ |

For each subindex a, 1 < a < ¢, put x, = 61:&1, and let «, be its differential.
Set H, = N{kerx, | 1 < b < a}; the Lie algebra of H, is b, = Ni<p<q ker .
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Define d, = (d,,d!),1 < a < ¢ by

d, = rank(?R(Oéa) ’ha,l)

and
d! = rank (3 (aa) |ha71)

Let a={a1 <ar < - <at={1<a<c|d, # (0,00}, a ={a} <d <

<af={1<a<c|d =1} and a" = {af < ay < -+ <ay} = {1 <
a<c|dl =1}. Let {4y, As,..., Ay} C b be a subset of ' that is dual to the
roots (s, ..., Qg in the sense that aa;(Ak) =1if j=Fkand 0if j # k. Let
S; =exp(RA;),1 <j<pandset S=55---5,CH.

We shall say that an element B € h” is integral if v;(B) € iZ holds
for 1 < j < n. We select integral elements {Bi, Bs,...,B,} C h” as follows.
Let {By, B, ... ,Bq} be a set of elements of h” dual to the independent roots
Qay, ..., Qg in the sense that aa;/(ék) =4 if 7 = k and 0 if j # k. Choose
B, € RB; such that the kernel of the map ¢ — exp(tBy) is 2nZ. Our choice
of By means that 27ZBj, C ker(exp), so by Lemma 2.1, v;(27By) € 2miZ and
v;(Bg) € iZ for 1 < j < n. Thus By is integral. Set T}, = exp(RBy),1 < k < g,
and put T = TY1y---T, C H”. We shall write elements of S and T as s =
51898y and t = tyty---t, where s; € S; and ¢, € Tj.

We have

h = R—span{Al,Az, c. ,Ap, Bl,BQ, c. Bq} D E,

and exponentiating,

H=S5 T K,

as a direct product, where K, = exp(£) is the connected component of the identity
in K. Put  =¢np', ¥ =enbh”; by definition of b’ and h” we have ¢t =€ H ¢’.
We also have h’ = R-span{A;, As,..., A,} + ¥, and since H’ is exponential, then
K =KNH =exp¥) and H' =5 - K'.

Put K” = K N H”; note that K” is not necessarily connected. Put
K = exp(t'), Fy = kerxay NTj, 1 < k < g and let F' the finite subgroup of
T defined by

F=FRF--F,

Lemma 2.2. Onehas K"NF=KNF=KNT and K"=(KNF)-K/.

Proof. Since F' C T C H”, it is clear that K" N F = K N F', and we have
KNF c KNT; on the other hand if ¢t = #1ty...t, € K NT, then for each
1 <k < g, by the definition of K and 713,75, ...T,, we have that

1 = 5“a/’ (t)il = Xajc’ (t) = Xa% (tk)
k
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sotpel,andte F. Thus KNT=KNF.
Now let b € K", then b € H” so b= exp(B) with B € h”. Write

B=rBi+ -+ 1,8, + By

where By € €. Then b = t1ty...t,by where ¢, = exp(ryBy) € Ty and by € K.
Now for each 1 < k < ¢,

1= 5uag (b)_l = Xa”(b) Xa" (tk)

SOthFkThHStltgthKQF |

Let S denote the multiplicative group of positive real numbers, and T the
multiplicative group of complex numbers of modulus one. For each 1 < j <p, we
have the canonical isomorphism ¢} : S; — S defined by /}(exp(y4;)) = ¥,y € R,
and from now on we identify S; with S in this way. Similarly, for each 1 <k <g¢q
identify Tj, with T by ({(exp(0By)) = €?,60 € R. Thus the subgroup S is
identified with the direct product SP and T with the g¢-torus T?. Note that
for s = s159,---5, € S, we have Xa;.(S) =5;,1<j<p. Foreach 1 <k <gq, we
have o,y (Bg) = imy where my € Z, so that

Xay (1) = ;"

holds for all ¢t = t1t5---t, € T'. Thus Fj is identified with the subgroup F(my) of
my-th roots of unity in T.

The Haar measure on S will be given by

dSldSQ -ds Sp

§1852+S5p

dVS( )

The Haar measure vy on 1" will be the product of the usual Lebesgue probability
measure on 1), when identified with T as above; thus

/f (t)dvr(t) @y / / / fe e .. e?)df,db, - - db,.
7T

For simplicity we use the notation dv(s) for dvg(s) and dt for dvr(t).
The action of H on A is given by the actions of S and T'; with this in
mind we define a cross-section in A for this action. Set

{AeA||X]=11ifd, =(1,0),\, > 0if d, = (0,1),
and \, =1, if d, = (1,1)}.

Using the iterative method by which A is described above, we describe X
explicitly as follows.



576 CURREY

Proposition 2.1. For 1 <a < c let
SP={(A1, Ay, A) | A€ XS

and define a subset Vy(\) = V(A1) of U,(\) by

Ua(>‘)7 Zf da = (0,0),
%()\) _ {>‘a € Ua()‘> | |>‘a’ = 1}7 Z:fda = (170)7
{Aa €U, (M) | Ay > 0}, if d, = (0, 1),
{1}, if dy = (1,1).
Then for each a,
Y =LA, Az, A) | AT e XN, e V(). (2.1)

In the case where d, = (1,0) and dim(L4(\)) = 1, then V,(\) is the two-point set
TNL,(A). If dy = (1,0) and dim(L,(\)) = 2 then V, () is a full-measure subset
of T, while if d, = (0,1) and dim(L4(\)) = 2 then V,()\) is a full-measure subset
of S.

Proof. The equality 2.1 follows easily by induction on a,1 < a < ¢, using the
definition of ¥ and Proposition 1.4.

Suppose that d, = (1,0); observe that U,()\) is invariant under the real
dilations D, since A is invariant under H. Hence if L,()\) is one-dimensional
(this occurs if u, € I orif u, ¢ I but u, € e), then U,(\) = L,(A\) \ {0} and
Va(A) consists of the two points in U,(A) that have unit modulus. If instead
L,(A) = C, then since U,()) is dilation-invariant and has full measure in C it
follows that V,(A) has full measure in T. Suppose next that d, = (0,1). Again
U.()) is an open, full-measure subset of C which is now invariant under rotations.

Hence V,(A) is an open full-measure subset of the positive reals. n

Now it is easily seen that X is F'-invariant. Indeed, let t € F', t = {1ty - - - t,,
and let A\ € ¥. If a € a” then (t- ), = xa(t)\s = A, while if d, = (1,0),
then [(t - Ao = [xa(t)Aa] = 1. The set ¥/F of F-orbits in ¥ will be our
parameter set for H-orbits in A. For each A € A, define P(\) C A as follows.
Fix A € A. For each 1 < j < p, define s;(A) € S; by s;(A) = 1/|Ay| and set
s(A) = s1(N)sa(A) -+ - s,(A). For each 1 < k < g, let Fj(\) be the finite subset of
T} defined by

Fi(A) = (1/sign(Ag) "™

and set F(A) = Fy(A\) X Fo(X) x -+ x Fy(\) C T'. (Here sign(z) = z/|z| for z # 0
and for z € T, z'/™ denotes the set of m~ roots of z in T.) Define

P = {s(VtA) - A | t(A) € F(V)}
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Lemma 2.3.  Foreach A € A, P()) is an element of ¥/ F, and P(\) = HANYX.

Proof.  Fix A € A. We begin by showing that P(A) C ¥. Let X = s(A)t(A\)-\ €
P(\); we check the coordinates X, for which d, # (0,0). Suppose that d, = (1,0),
say a = aj. Then xq(s;(A)) = s;(A) = 1/[Az], s0

Ao = Xa(s(AM)HA)Aa = Xa(55(A))Xa(t(A) A = Xa(t(A))sign(Aa).

If d, = (0,1), say a = aj, then tx(\) € (1/sgn(Xa))™, and so xa(tr(N)) =
tr(N)™ = 1/sgn()\,). Hence

Pa(A) = Xa(s(A)EHA) A = Xa(s(A))Xa(tr (X)) Aa = Xa(s(A))(1/580(Aa)) Aa
= Xa<8<)‘))|)‘a|'

Finally if d, = (1,1), say a = a; = aj, then

Xa(s(ME(A)) = Xa(s;(MEr(X) = (1/]Xa]) (1/5gn(Aa)) = 1/ A

s0 AL = Xa(s(A)t(A\))Ag = 1. Thus X € X.

Next, we show that in fact P(\) is an F-orbit in X. let X and )\’ be
elements of P(A): X = s(A)t/(A) - A and X = s(A\)t"(N\) - A. For each 1 <k <gq,
t.(A) and t/(\) both belong to (l/sgn()\ag))l/mk and hence t, = t,.(N)/th(\) €
Fi.(my). Thus

A= s(N" (NN = s(NETA) - tI(NXN =t tgs(ME (AN =ty -t N

q q

On the other hand if A € P(\) and \" € FX', then we have t =t;---t, € I such
that A" = tX'. Writing \' = s(\)t(A) - A, we have #4t,(A) € (1/sgn(Agy)) "™ 1 <
k <gq,so

N =tXN = s(N)trti(Ntata(A) - - tyt,(N) - A € P(N).

Thus the set P(\) belongs to ¥/F'.
Since by definition P(A\) C HA, we have P(A\) C HAN Y. To finish the
proof, it is enough to show that P()) is an H -invariant function. Let A € A and

set A = bA where b € H. We may assume that b = st, where s € S and t € T'.
Observe that for each 1 < j < p, since Xa;.(S) = s;, then

si(N) = 1/|1xg | = 1/s5]Aa | = s s ().

Hence s(\') = s7!s()\). Similarly, for each 1 < k < ¢, we have the equality of the
finite subsets of T

1/m m _ m
(1/5em000) ™ = (1m0 = 7 (1m0
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Hence for each t(\') € F()X), we have t(\) € F()\) such that ¢(\) = t71¢(\). Tt
follows that
P(X) = {s(\)t(X) - A" [ 1(X) € F(X)}
= {s s\t (N - N | () € F(\)}
={s(AN)t(A)- A | t(\) € F(N)} = P(N).

This completes the proof. [ ]

The following is almost immediate from the preceding and the definition of
P(A).
Proposition 2.2. The map n : A/JH — X/F defined by n(H\) = P(\) is a
bijection; indeed, n is a homeomorphism of quotient topologies.

Proof.  That 7 is injective follows from Lemma 2.3. To see that n is surjective,
let A € ¥. Then the definition of ¥ shows that s;(A) = 1,1 < j < p, and
Fr(\) = Fj,. Hence P(\) = FA\ by definition of P. It is clear that n is

bicontinuous. n

For m € N set T(m) = {¢? | 0 < 0 < 2r/m}. For each 1 < k < ¢ define
I, C Ty to be the set of elements in 7T}, that are identified with T(my), and set
I = 1LiI,---1, C T. Note that I is a fundamental domain for the action of F
on T, and that the map S x I x ¥ — A given by (s,t,0) — st - o is a Borel
isomorphism.

We define a Lebesgue measure do® on %% 1 < a < ¢ by the iterative
method used in the definition of dA:

flo®) do® = / / f(o" ™t 0,)do,do®?
Xa Ya=1 JVy (o)

where do, is the natural measure on V,(0): if d, = (0,0) then do, = d\,. If
d, = (1,0) and L,(0) is one-dimensional, then do, is point mass measure on the
two-point set V, (o), while if d, = (1,0) and L,()) is two-dimensional, then do,
is the counterclockwise line integral over V(o). If d, = (0,1) then do, is just
Lebesgue measure on the positive reals, while if d, = (1,1) then do, is just point
mass measure on {1}. Thus we have the Lebesgue measure do on X.

We shall write the integral on A as an iterated integral over ¥, S, and
I. For s € S define J,(s) = xa(s) if u, € u' and J,(s) = |xa(s)]?* if u, € u?,
and set J(s) = Ji(s)Ja(s) -+ Je(s). We use the notation " = o4y0,y - 04 and

m=mimsa:---Myg.

Lemma 2.4.  For any non-negative Borel-measurable function f on A, one has

/A FO) ) =m /Z /S /1 F(st- o) dt J(s)dv(s) o”do.



CURREY 579

Proof. Using the notation ©O(s,t,0) = st - o, we examine the coordinate
functions ©,,1 <a <c. Fix 1 <a <candlet jla) = max{1 <j <p|ad} <a},
k(a) = max{l < k <q | a} <a}. We have

Xa(8152 - Sj@tits - tea))0a, if do = (0,0)
Sj(a)0a if da = (1, 0)
@a(87t7 O-) - tmk<a) f d o 1
k(a) Oa, 1L Gq = (07 )
tcey Si(a); if d, = (1,1)

Set S* = {s* = (51,52,...5j(), 1,1,...,1) | s; € S;} and similarly define 7. De-
note the natural Haar measures on S® and T by dv(s®) and dt*, respectively. Set
I* =1INT* Set J%(s) = Ji(s) - Ja(s). Let m® = mimg---my(e), and (0”)* =
TayOay " Oalt - Set ©% = (01,0,,...,0,); note that O = ©%s,t,0) depends
only upon s% t* and o®. Also for simplicity, we denote U,(\) = U,, Vo(A) = V,.
We now proceed iteratively as in the definitions of d\ and do. Assume that

/ f()\a—l) d)\a—l _
Aa—1
! /Z /S /I £ (01 (s,1,0)) di*J* (s)dw (521 (o) Lo,

To show that the same formula holds for a, we consider several cases.
Case 0. Suppose that d, = (0,0). Then j(a — 1) = j(a),k(a — 1) = k(a),
So = gao-t Je =]l V. =U,, and do, = d)\,. Moreover, we have

flo,) dog, = y f(©u(s,t,0))J4(s) dog

Va

Hence

sy = [ ([ oo do) axe

/Ea 1 /Sa 1 /Ia 1 ( vaf (67 (s,1,0), Ouls, 1, ) Ja(s)d%)

dte IJa l(S)dV(Sa 1)(0_//)a—1do_a—1

=m* /a /a . f(©%s,t,0)) dt* J(s)dv(s®) (o")*dc®

Ac

Case 1. Suppose next that d, = (1,0), so that a = @} with j = j(a). Then
T =T*" and (0”)* ! = (¢”), but S* ~ S ! x S; and J(s) = J*(s)Ju(s).
We have

dA_/a/f (5:1,0)) Ju(s) dv(s;) doa,

Ua
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and hence

< FO N dA ) A\
Aa—1

/E/S/IU / F(O74(5,t,0), 8u(5,,0)) Ja(s) d(s;) daa>

dte— 1Ja 1( )dy( )(g//)a—ldo_a—l

= [, </ /. / £(6°(s,t,7)) dt® Ju(s)d(s;) J“<S>d”<5al)>

(U")“alaaala‘“1

=m* /a /a . f(©%s,t,0)) dt* J(s)dv(s®) (o")*dc*

oy v~ [

Aa

Case 2. Suppose next that d, = (0,1) so that a = a} with £ = k(a). Then
S* = Sl and J%(s) = J*(s), but T* = T* - T}, (¢")* = (0”)“ !

m® = m® 'my,. We have

04, and

f(Aa) drg = my / f(Ou(s,t,0)) dty oudo,,

Uq a Ik

hence

) dA® = AN, dX A\t
o= [ (] orx10)

:/ / / (/ f(O s, t,0),0.(s,ty, 0)) mkdtko'ado-a)
Ya—1 Jga—1 Jfa—1 W J I

a ldta IJa l(s)dV(Sa_1>(O'//)a_ldo'a_l

R /Z / <mk / /I | 70 (s,1,0) dte! J“(s)du(sa)>

Oodog (") o !

=m* /a /Sa . f(©%s, t,0)) J*(s)dv(s?) dt* (¢")*dc”

Case 3. Finally, if d, = (1,1), then a = a} = aj, with j = j(a) and k = k(a).
Here S ~ St x S;, T* = T* ! ~ Ty, m* = m* 'my, and since o, = 1 in this
case, (0")* = (0")* o, = (0”)%"!. The calculation is a combination of Cases 1
and 2. [

Let ¥y C ¥ be a fundamental domain for the action of F' on ¥ so that
F/FNK x ¥, — % defined by (¢é,7) — €y is a Borel isomorphism. A natural
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choice for Y is the following. For a positive integer m set
C(m) ={z€ C\ {0} | sign(z) € T(m)}. For each 1 <a < ¢ set

F*=Fn ﬂ ker .
b=1
Assume that X' € 37! is defined. If F* = F*! then set ¥¢ = {(04,...04) €
Y| (01, ..,00-1) € X0} If F@ £ Fo7L | then x,(F* ') = F(m) for some m,
and set

Yo ={(01,09,...,04) | (01,09,...,04_1) € Xo~ " and o, € V,(0) NC(m)}.

Given o € ¥, suppose that €¢*~! € Fo=! and 0% ! € ¥¢7! such that ¢ lg?! =
0. Choose ¢, € F, and o, € V,(0) NC(m) such that x4(€,)Xa(€* 1 )o, = 04.
This iterative argument shows that FYXg = X, and if 0 € Xy and € # 1 € F,
then e € F*~1\ F* for some a, and then by construction y,(¢)o, ¢ C(m). Hence
eogNYg=0if e #£1.
We have
[ oeo= > [ otenan (2:2)
= ¢eF/FnK V>0

Now recall that we have H =5 -T - K, where K, is the connected component of
the identity in K. Note that S N K = (1) by definition of S. It follows that the
map S x (T'/KNT) — H/K defined by (s,f) — st is a continuous isomorphism
of groups. Now K NT"'= K N F and [ is a fundamental domain in 7" for the
action of F'. Hence the image of I in T/K N T is a fundamental domain for the
action of F/KNF and the map I x F/KNF — T/KNT defined by (t,¢) + te
is a Borel isomorphism. Moreover, the prescription

/T - o(t) di = éeF/ZKﬂF /I o(te) dt

defines a Haar measure on 7'/ KNT. Hence we have the natural Borel isomorphism
H/K~SxIxF/KNF

and a Haar measure on H/K is given by

/H/K oa) da= /S /1 d(estK) dt du(s)

¢eF/FNK
Now for the H-orbit O, of o € ¥y define the measure w, on O, by
o) deah) = [ olao) [8(a)| ! da

0, H/K
(Note that [d(a)| is constant on K-cosets.) Finally, set [de| = [[;c.[d;] and
dii(c) = mo”|Pf(0)|do. Combining these observations with Lemma 2.4 yields the

following.
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Proposition 2.3. For any non-negative measurable function f on A one has
sy peovlan= [ [ 50 e ditto)
A 3o Os

Proof. By Lemma 2.4 and the preceding decomposition (2.2) of do, we have

/A FO) dr=m /E /s /1 Fst- o) dt J(s)dv(s) o"do
—m Y /E 0 /S /l F(ste- o) dt J(s)du(s) odo.

F/KNF

Now with Lemma 1.1, we have

/A FOPEN A =m 3 /Z 0 /S /I F(ste - o) [PE(stf - )| dt J(s)du(s) odo

F/KNF

=m Y /E O /S /1 F(ste- o) 16o(s)| "V [PE(0)| dt J(s)dv(s) o"do

F/KNF

—m 3 /S /I F(ste- o) dt [5o(s)| "1 (s) du(s) | [PE(o)|o"do

Yo \ p/KOF

and the proof is finished upon observing that J(s) = [];4, 16;(s)|7!, and hence
[6(s)] ™" = 1de(s)[ 71 I (s). -

3. Explicit realizations of irreducible representations

Denote by N the Borel space of unitary equivalence classes of irreducibe unitary
representations of N, and let x : n*/N — N be the canonical Kirillov correspon-
dence. With the preceding constructions in place, we associate to each A € A an
irreducible representation 7, whose equivalence class is k(N ), as follows.

Recall that we have fixed an adaptable basis B = {7y, Z,,...,Z,} for
[ =n., and we have §2 the minimal (Zariski open) fine layer in n*. Recall also the
subindex set K3 for which

p(0) = p(l) Np(l) + span {pp_1(Zy, L) | k € K3}

where p(¢) is the complex Vergne polarization associated with ¢ € Q2 and B. Write
Ks={hi <hy<--+-<hp}. For £ € Q and | =1,2,...m, define

Wi(l) = pn-1(Zi,,, 0),

hy?

(W), Wi(e)],

N | .

fl(@ = g[th (ﬁ)) th (@] =
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and

a(l) =sign(&(0)), 1 <1 <m.

For each ¢ € Q set €(f) = (e1(£),€2(0),...,€,(¢)). We write the layer 2 as a
disjoint union of open sets: for each € = (e1,...,€,) € {£1}™ set

Q={leQ]el)=c¢€}.

Note that in many situations (for example, when N is a Heisenberg group and
Zs = Z5) some of the sets Q° are empty.

Lemma 3.1.  For each sign index €, the set Q¢ is G -invariant.

Proof. It follows from Lemma 1.5 that Q¢ is N-invariant, and from Lemma
1.6 that Q€ is H-invariant: let a € H; then

0=

VVl<a€) = phz—l(Zihl ) aé) = aphl—l(a_lzi ih, (a)_l CLVV[(E)

hy?

and Wi(al) = 6, (a)~" aWi (). m

Let e € {£1}™. If j & {iy, jr : k € K3}, then set Z5 = Z;. If j =iy, (with
h; € K3), then define Z5 and Z5,, as follows. If ¢ =1 set 75 = Z;, 75, | = Zj 1,
while if ¢ = —1, then Z;- = 7]- = Zj41 and Z;-H = 7j+1 = Z;. It is clear that

Be={Z,Zs,..., Z5} is also an adaptable basis for [. Put
(5 = span{Z}, Z5,..., Z5}, 1 < j <mn,

and let pe(¢) = Z?Zl(@)é N[5 be the corresponding complex Vergne polarization
at £.

Lemma 3.2.  For each ¢ € Q°, p({) is a positive polarization at (.

Proof. Let £ € Q° and let Y € p¢(¢). By Lemma 1.4 we have Y = W +

Y vers WPe—1(Z5,€) where W€ p(£) N p(f), a, € C. Now pp1(Z; () =
pr—1(Z; ) and

17

v g[qu(ka,@’/)kq(?;, 0)) = e i Lpr—1(Zi,, 0), pe—1(Ziy, 0)]
= | Upe-1(Zi, 0), pr—1(Z;,., 0)]].

Since pe(¢) Np<(€) C (p<(¢) + pe(f))(Z and for k £ k' € K3,

€

5[Pk—1(ka7 0), prr—1 (Eik/ 0] =0,
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then we have

i (], Y] :e[W+ S” a1 (Z, 0. W+ S @y 1(2%,15)]

keK3 keK3
= Z |ag|* i €[pr— 1(Z5,0), pi— 1(2%75)]
keKs
= > lal® [los1(Zi, 0), p1(Ziy, 0] > 0
keKs3

We set A= ANQ° and X =X NQ°. Foreach A € A, HANX C X¢,
so I leaves 3¢ invariant, and so if ¥y is a fundamental domain for ¥ /F', then
X5 = Yo N X is a fundamental domain for X¢/F.

Now fix A € A°. Set d(N)e¢ = p(\) Np<(A), 9(A) = d(A\)c Nn and
e(A) = (pe(N) +W)\)) N n. Note that 9(\) and e(\) are independent of €(\)
and as is well-known, [e(A),e(N)] C 9(A\). Let D(A) and E(X) the corresponding
analytic subgroups of N. We realize the irreducible representation corresponding
to the N-orbit of A by an explicit version of holomorphic induction as follows.

First we define complex coordinates on E(\). Let af : C™ x D(\) — E(\)
be defined by

a5 (w,d) = exp <§R(w1W1()\)) +- 4 %(mem()\))) d.

For each € € {£1}™ and 1 <1 <m, set W (\) = pp,—1(Zf ,\) and

Zh7

G0 = &) = 5 AV, T )]

Note that p¢(A) = d(A\)¢ + C-span{W(\) : 1 <1 < m}. Writing w;, = z; + iy,

define the usual complex derivative by

1 0 0
o= (a——@)

and put 9;' = g, or 0y, if ¢ = 1 or —1, respectively. Define the algebra A¢(C™)
of “e-holomorphic” functions on C™ by

A(C™) ={peC®(C™) |0, “p=0,1<Il<m}.

Now set € = €(A) so that &(A) > 0, 1 <1 < m. Define H} = (AY(C™),| - |I»)

where

IplI3 =/ Ip(w)[* exp (__Z & (A)|wi] > dwdw.
Write w;' = w; or w;' = w; according as ¢ = +1 or ¢ = —1 respectively. Let
k = (ki, ks, ..., ky) be a multi-index of non-negative integers and put

Yh(w) =& (W) (w)k2 - - (wer )
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where c§ is a normalizing constant. Then {¢§ | k; > 0,1 <1 < m} is a complete

orthonormal set in HS. Define the unitary representation 7§ of E(\) in HS by

(w3 (w', d')p) (w) =
Pl — w ) (d) exp (% > §5<A>wzwl) exp (—i S &) |wz|2> .

We show that for A € A¢, the representation 73 is isomorphic with the represen-
tation obtained from p°(A) via holomorphic induction. For X € e(\) define the
differential operator R(X) on E(\) by

d
R(X)¢ = 7

We can then define R(W) for W € ¢(\)c by extending in the obvious way.
Proposition 3.1. The unitary representation w3 is irreducible and its equivalence

¢(~exp(tX)).

t=0

class corresponds to the E(\)-coadjoint orbit of X g .

Proof. In terms of the preceding coordinates and notations, we find that
R(W; (X)) = 207 + senwf' R(Z{ (V).

where Zf(\) = £ [Wf(\), W;(\)]. Define

Yo(w,d) = xx(d) " exp (_Z Z 516()\)|wl’2> :

We compute easily that R(W;"(X))yo(w,d) = 0, 1 <1 < m . It follows that
Yo o (a3)~! belongs to the Hilbert space H(E(X), D()), xx, p()\)) for holomorphic
induction. Recall that H(E(X), D(A), xa, p(A)) is the completion of the subset
D(E(N), D(X), xa, p9(N\)) consisting of all smooth functions ¢ on E()\) satisfying
R(W)d = —iA(W)é for all W € p()\), and

[ 16tasia, ) dwdm < oo
Moreover (see for example [2, Theorem 1.2.7]), one has

H(EA), D(A), xa, p(A))
— {6 € H(E, D, x») | ¢(a3(w,d)) = p(w)o(w, d) for some p € A«(C™)}.
Thus H$ is naturally isomorphic with H(E(X), D(N), xx, p(A)) via the map

p— (ptho) o (a3) .

and it is a standard calculation to show that = is isomorphic with the holomor-
phically induced representation. [ |
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The irreducible representation m, of N associated with A will be induced
from 75. Just as with 7§ we realize m\ by a precise construction.

First we identify indices belonging to the sequence j which are “supplemen-
tary” to the subalgebras e(A). Let j' denote the subsequence of j consisting of
the indices {j =jr€jNI | k¢ K3} U{je€j|j¢1,7+1¢j} and write

j/: {jkujkgw"ajk;,}‘ (31)

We decompose j' into disjoint subsequences j~ and j¢ where j° consists of those
indices j € j’ such that j — 1 ¢ I (and hence j —1 € j).

Next, let O € C be a covering set, as defined in Lemma 1.2. We use
the continuous N-invariant functions ¢$ of Lemma 1.2 to define an N-invariant,
smoothly-varying supplementary basis for e¢(\) in n. Fix 1 <1 < p and j = jy,.
If j €I, then set X°(\) = Z;. If j ¢ I (and hence j + 1 ¢ j), then, referring to
notations of Lemma 1.2 and to the comments following it, set

Zi(A)

[E1Z;(A), Vie(M]'?

XP) =N

where k is the subindex for j in j. From Lemma 1.2, we have that X°()\) is real,
and from Lemma 1.5, we have that X ()\) is N-invariant.

Now from the definition of the sequence j, and the construction of the
elements X2 ()), it is clear that the set

{XP), XPN) [ 1<1<p} U {pe-1(Z5,,0) | k€ K3}
is a basis of n¢ modulo p(A). By Lemma 1.4 we have

{pk—l(ijv)‘) ’ ke K3}

is a basis for e(A)c = p(A)+p(\) modulo p(A). Hence {XP(N), XP(N\) |1 <1< p}
is a basis for ng modulo e(\)c, and {R(XZ(N)),S(XP(N)) | 1 <1< p}is a basis
for n modulo e(\).

Now fix 1 <l <pand j=yj;. If j€j, put

af (z) = exp(zX’(N)), z €R,
while if j € j¢ then set
agl(x) = exp(?R(ij)>, r e C.

Set
X ={(x1,29,...,2,) | ; € Cif jy, €j° and x; € R otherwise},

and define o : X — N by

a?(ml, Ty ..., Tp) = agl(xl)agz(xg) .- -aip(xp)

Since N is nilpotent the following is immediate.
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Lemma 3.3.  The map
x> (@) E(\)

is a diffeomorphism of X onto N/E(X).

Write dz for the Lebesgue measure on X'. Define the measure dvy(n) on

N/E(X) by
n)d
/N/E( A) nalh / floX

Suppose that O’ is another covering set containing A. Then it follows from the
definition of the continuous functions ¢¢(\) (see [7]) that when j = j ¢ I and
j+1¢3j, then ¢f (\)71Z;,(A) = £6(X) 7' Z;,(A). Hence of(z) = af,(£z) and
the definition of dvy(n) is independent of the covering set O.

Now for each a € H define cy(a) : N/E(A) — N/E(a)) by cx(a)(nE(N)) =
ana'E(a)). We now compute a positive, multiplicative character |6'| on H such

that
/ flex(a)n) |0%(a)|dva(n) = / f(R)dva(n).
N/E()\) N/E(a))

Fix A € Aja € H and choose covering sets O and O’ such that A € O and
aX € O'. We must compute the determinant of the Jacobian matrix for the map

o(a) : X — X defined by

pla) = (a) "t oca(a) 0 af.

Fix 1 <l <pand j=j;if j € I, then aaf (z)a™" = af,(d;(a)z). If j ¢ I, then
we use Lemma 1.6. With k& the subindex for j in j, we have complex numbers
vi, (a) and v;(a) such that a™'-Vi(a)) = v;, (a)Vi(A) and a™'-Z;(aX) = v;(a) Z;(N)
where v;(a) = v;, (a)|d;(a)| 2. Hence a™' - X;(al)

_ 9 a~t-Z;(aN)
BT ATSRAPIIE
- vi(@)Z,()
= 0N @, ), e
a U vla)|~1/2 ZjO‘)
?b ( )‘> ( )| Zk( ) ( )| |)\[Zj(>\)’v;€(>\)]|1/2
Z;(A)

= 6 (@) sign, (0))63(0) "y N

_ <¢k’(a>\)*1¢k0(>\) Sign(l/ik(@))) !53'(61)\7%?(/\)71\)\[Zj(,\),m(A)]P/z
= +|5;(a)] ' X; (V)

where we have also used the fact that a=! - X;(a)) is real. Hence in this case

aaf (x)a™t = agy, (£;(a) ) (3.2)
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Hence ¢(a) = diag(p(a)i,¢(a)s, ..., ¢la),) where |p(a)| = |05, (a)] in each of
the preceding cases.
Now set ¢'(a) = [k, 9j,(a),a € H. The above shows that

[ (a)l = T [ 185(a)l x TT 165(a)”

Jej" Jej°

is the determinant of the Jacobian matrix for ¢(a). Hence

/ fea(@)n) 6'(a)] dua(n) =/ (f oex(a) o af)(x) [6'(a)] dx
N/E(N)

X

- /X (f 0 a8, 0 p(a))(z) 6" (a)] dz
- /X (f 0 a%)(x)dz

_ / F(R) dvan ().
N/E(h))

For each A € A, having fixed the relatively invariant measure dvy on N/E()),
let m\ be the representation of N induced from 75, acting in the Hilbert space
Hy = L*(N, E(\), H3, 73, dvy). We make two observations here about the explicit
constructions above and the action of the stabilizer K.

Lemma 3.4. For each a € K define the map ¢(a) = (o) ! ocr(a) o af :

X — X. Then ¢ : K — GL(X) is a representation of K that is isomorphic
1<I<p;in

with the natural linear action of K on n/e(X). Moreover, ¢ = dj,

particular, @ is independent of the choice of covering set and of \.

Proof.  The map 8¢ : X — n/e(\) defined by

Bz, o, . . . L Tp) = Z log(agl(xl)) +e()N)
=1

is the indicated isomorphism. To show that ¢; = 4, , we need only consider the

case where j = ji, ¢ I. For this we apply preceding k(l::)mputation that resulted in
equation (3.2):

pla) = sign (v,(a))'10;(a)l,
where j = ji. From Lemma 1.7 we know that v;, (a) and d;(a) = v;,(a)™" are

both positive. The result follows. [ |

Thus ¢ defines an action of K on & which is independent of A and O.
We define the unitary representation y* of K on L?(X) by

¥ (a) f (2)=f (p(a) ') 16" () /2
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Lemma 3.5.  Given a choice of covering set O containing A, we have a natural
isomorphism of Hy with L*(X) ® HS.

Proof.  Given f € Hy, we define AQ(f) as follows. For v € HS, and for a.e.
r € X put

(420N W) (@) = (F(af (@), v}

then the Cauchy-Schwartz inequality gives

| rtaf@n o de < [ 1S E@)IPII? do = 1Pl

so AQ(f)v defines an element of L?(X) and accordingly we have a linear map
AQ(f) : HS — L*(X). Let {v;} be an orthonormal basis for HS: then

S AN =Y [ 1@ ) da
— [ 3 e @) o

= [ U@ de = 1117

showing that AQ(f) is Hilbert-Schmidt and that A is an isometry.

Given an elementary tensor g ® v € L*(X) @ HS, define f € H,) as follows.
For each n € N, we have a unique point z(n) € X and e(n) € E()\) such that
n = af(z(n))e(n). Put

f(n) = g(x(n)) m3(e(n))~'v.
Then f € H, and fl?(f) =g ®uv. It follows that flf is surjective. [

Hence we may regard H, as a closed subspace of L*(X x C™) where the
norm is given by

| F||? = / / 2 exp (——Z{l )|w ) dwdw dz, F € L*(X x C™).

We now describe the action of H on N in terms of the preceding explicit
data. Let a € H. Let j” be the subsequence of j defined by j” = {jx € j :
k € Ks3}; note that j” is disjoint from j’, and recall the notation K3 = {h; <
hy < oo < hyp}. Put 67 =45, ,1 <1 < m and set 6° = (07,05,...,d;,) and
16°| = TI,Z, 167]. Let (w3)* be the irreducible representation of E(a)) defined by
(73)%(n) = mz(a"'na) and let B(a,\) : HS — HS, be the map

(B(a, Mp) (w) = p(0°(a)~"w) 8°(a)] ™ = p(d7(a) "wi, ... ;. (a) " wm) [6°(a)|
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Lemma 3.6.  The operators B(a,\) are unitary and for each a € H , A € A,

a

B(a, \) intertwines the representations (w$)* and w2, . Moreover they satisfy the

relation
B(a,b\) o B(b,\) = B(ab, \)

for each a,b € H X € A.

Proof. By Lemma 1.6 we have

(@A) (WilaA)) = 8, ()" A(Wi(N) = F(a) " A(Wi(N)
(aN)[Wi(aX), Wi (ah)] = |67 (@) 2A[W(A), Wi (V)]

and hence &(a)X) = [67(a)|™? &(N\). Tt follows that for each a € H, B(a,\) is
unitary:

1B(a, A)pllsy”

= [ 5@ Mo 8 @) )P (@) e (—% ) 5l<ax>|wl|2> dwd

l

o R A G Ol

exp (—— Z |07 (a)|™ 2 6(N)|w] ) dwdw
= [ bl @)
xp (—% S 162 &(A)Iéf(a>wzl2) 6°(a)? dwdw

l

— [ o) e (——Z &) )dwdw

2
= [IplI%"-

It is easy to check that B(a,\)w3(a ™ (w,d)a) = 75, (w,d)B(a,\) holds for all
(w,d) € C™ x D(\) and that B(a,b\) o B(b, \) = B(ab,\). ]

Denote the unitary representation B(-,A)|x of K acting in HS by 75.
Recall that by part (b) of Lemma 1.7, each 6;, when restricted to K, is a unitary
character, 1 <[ < m. The unitary representation 6° : K — D(m,C) is equivalent
to the linear action of K on e(A\)/0(\) via the map C™ — logas +9(A). For any
p € H3,

(V3(a)p) (w) = p(6°(a)"'w), a € K.
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Let 15 denote a Borel measure on K and mS the non-vanishing multiplicity
function associated with ~{ so that

(&)
g = /K mS(n) 1 dys ().

Then S is supported on K" (where K” C K in the usual way. )

Lemma 3.7.  The class of the measure p3 and the multiplicity function m§
associated with ~5 depend only upon the sign index €(\).

Proof. The monomials

{(w)" = (W)™ (W)™ - (wi )™ [ k1 =0,k 2 0, ki > 0}
are a complete set of eigenfunctions for 75 (a),a € K:

9500 (w)*) = 03 (@) 185(a) 72" -85, (@) (w),a € K.

Hence, if n belongs to the support of 5, then the multiplicity m3(n) of a character
n e K in the irreducible decomposition of 75 is just

mi(n) = ){(k’l, k’g, e km) | (5;’)—61161(5;)—62162 . (5;)—e7nkm _ 77} ‘

For each a € H define 7§ = my(a™' - a). For f € H,, define C(a,\)f by
(C’(a, )\)f) (n) = B(a, )\)(f(a’lna))él(a)’lﬂ.
Lemma 3.8.  The operator C(a, \) is a unitary operator from Hy to Hay and
intertwines ©$ and 7w,y . Moreover, the operators C(a, \) satisfy

C(a,bX) o C(b, \) = C(ab, ) (3.3)

Proof. For y € E(a)), we have a 'ya € E()\). For f € H, we have
(Cla, N f)(ny) = Bla,\) (f(cfln(m’ly(z))51(a)’1/2
= B(a, ) (ﬂf\(a_lya)_lf(a_la:h))él(a)_1/2
= mox(y) "' Bla, \) f(a" za)6" (a) 72
= 1o (y) " (Cla, M) f) (@)
It follows that C'(a, A\) maps H, into H,y. To see that C(a, \) is unitary,

/ 1€, A) £ (m)|Pdar (i) = / 1f(a na)|? 6 (a) duoa ()
N/E(a))

N/E(a))
S N LGIEA
N/E(N)

and it is easily seen that C'(a,\) intertwines 7§ and mgy. ]
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The following is immediate from the preceding.
Corollary 3.2. Denote by ¢ the natural injection « : A — N so that 1(\) = [m].
Then v is equivariant with respect to the actions of H on A and N. Hence for
each A€ A, H = Hy,=K.

4. Decomposition of the quasiregular representation

In this section we show how the explicit orbital parameters and realizations are
combined with results in [9] to obtain an explicit decomposition of the quasiregular
representation of G = N x H induced from H. We begin by recalling the group
Fourier transform on N in terms of the parameter set A and the realizations 7).
For each A € A and f € L'(N)N L*(N), set

F(H) = /N £(n) my(n) dn.

Then F(f)(\) belongs to the space Hy ® Hy of Hilbert-Schmidt operators on
H,. Now let u be the Plancherel measure on A as in Proposition 1.5. Then
{H\® ﬂ,\} acA 1s a measurable field of Hilbert spaces and we set

@ —
H :/ Ha @ Hy du(N).
A

Now A — my is a Borel function from A to Irr(N), F(i) belongs to H, and the
map

F:LNN)NL*N) - H

as defined above extends to all of L?(N) as a unitary isomorphism. For f € L?(N)
we use the notation f(A\) = F(f)(A\), A € A.

Next we recall the quasiregular representation 7 of G in L*(N). Let G
have the Haar measure dvg(na) = dn |6(a)|"'da. We realize 7 on L?(N) as
follows. For f € L*(N), set

(t(a)f)(no) = f(a"'nea)|d(a)|™V?, a € H
(r(n)f)(no) = f(n"'ng), n € N.
The representation 7 := F o7 o F ! is described in terms of the usual action of

H on N.
For a € H and A € A', let D(a, ) : B(Hy) — B(Hay) be defined by

D(a,\)(T) = C(a,\)oT oC(a,\)*.

A simple computation shows the following.
Proposition 4.1. Let f € LY(N)NL*(N), a € H, n € N. Then for each X € A,

one has
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(i) (F(a)f)(N) = D(a,a='N)(f(aN)) [8(a)|?, and

(ii) (7(n)/)(A) = ma(n) o f(A).
Denote the unitary representation C'(-, \)|x of K by ~v,. Recall that given
a covering set O containing A, we have a natural isomorphism /1? s Hy —

L*(X) @ HS. Tt is easy to check that for each a € K,
AR o(a) o (AQ) ™! = 7% (a) © 13(a).

We propose to write v, as an outer tensor product of representations v} of K’
and 74 of K”. Recall that we have decomposed j into disjoint subsequences j
and j° where j¢ consists of those indices j € j’ such that j —1 ¢ I (and hence
j—1€j). Write

3= {wys Jrygs s ke
and let U be the open subset of RP defined by

U={yeRP|y >0if z; is complex }.

Use polar coordinates for the complex coordinates of X' by setting y;(z) = x; if x;
is real, and y;(v) = || if ; is complex, 1 <1 < p, while z(z) = sign(zyy),1 <1 <
q. Thus for = (21,2, ...,2,) € X, define o(z) € Ux T4 by o(z) = (y(z), 2(z)).
We have the resulting obvious isomorphism S : L*(X) — L*(U,y"dy) ® L*(T?)
defined by

Sf(y.2) = fo7(y,2))

where y" = yprypy - “Ygy . Writing a € K as a = be,b € K’',c e K", we have
o (p(be)r) = (¢ (b)y(x), " (c)z()).
where ¢' : K/ — D(p,R) and ¢” : K" — D(q,C) are defined by ¢’ = ¢|x and

@l (c) = prr(c), 1 <1< q.

c

Note that by Lemma 3.4, the characters ¢ are just the characters d,,j € j°.
Define the representation 4" of K’ in L*(U,y"dy) by

V(D) F(y) = F('(0)"'y)d' ()2, be K.
Similarly we have the representation 4" of K” in L?(T?) defined by

V'(0)G(2) = G(¢"(0)"2).

and it is clear that
SovtoSt=+®~"
Moreover, since K’ C ker(q}), we can regard 75 as a representation of K”. Set
H' = L*(U,y"dy) and
HY = L*(T9) @ HS.
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Let g : L*(U,y"dy) ® L*(T9) ® H; — H' ® H} be the operation of reassociation:
g((F ®G)® ;D) = F® (G ®1). Thus, for a fixed covering set O, we have
BY : Hy — H' ® HY defined by BY :goS®[o/4~1?,
A0
BY My B I2(X) @ Hy (LZ(U, y'dy) @ LQ(Tq)> O HS L Hy @ HY

and it follows that

B omo(BY) ' =9"® (Y ®1). (4.1)
Let n € K and write n = £ ® ¢ where £ € K’ and ¢ € K”. Let m, be the
multiplicity function for v, on K; by (4.1), we have

ma(n) = ma(§ ® ) = m/(§)mi(()- (4.2)

where m' and m/ are the multiplicity functions for 7 and 7" ® 7%, respectively.
We have already seen that the multiplicity function for 7§ depends only upon
€(\); since 7 and 4" are independent of A, the following is immediate.
Proposition 4.2. The measure class py and the positive multiplicity function m
on K for the irreducible decomposition of vy depend only upon €(X).

When € = ¢(\) we shall also write my = m, and m{ = m”. Let T) :
HY @ HY — [ ;f C™ ™ duy(n) be an isomoorphism effecting the irreducible
decomposition of ~,. Then

@
A =T o B H, — / C™ M dpy(n) (4.3)
K
is a unitary isomorphism such that for b € K’',c € K",
A ome)e (49) = [ ml(Eml(O€b)ac(o) dulesc)
K'xK"

We now digress to recall two facts. First, suppose that H is a Hilbert
space and that {Cs}scs is a measurable field of Hilbert spaces over a measure
space (S,v). Then there is a unique v-measurable field structure on {H ® Ky}ses
for which {vs}ses measurable in {Ks}ses implies {u ® vs}ses is measurable in
{H ® Ks}ses. Setting K = f ;D Ksdv(s), one has a canonical isomorphism

@
HRK ~ / HR K dv(s) (4.4)
s

that takes the elementary tensor u ® {vs}secs to the vector field {u ® vs}ges. In a
similar way, tensor products distribute over direct sums on the right as well.

Second, let H be any separable, locally compact group and K a closed
subgroup of H. Let dv(a) be a Borel measure on H/K, V a Hilbert space, and ~
a unitary representation of K acting in V. Let L*(H, K,V,v,dv) be the Hilbert
space of Borel functions f : H — V which satisfy

fab) = 7x(b)"f(a),a € H,b € K,
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and

medemw<m

Let W be a Hilbert space; then v also acts in V ® W in the obvious way. We
have the following.

Lemma 4.1.  There is a canonical isomorphism
L*(H,K,V,v,dv) @ W ~ L*(H, K,V @ W,v,dv).

Proof. Elementary tensors in L*(H, K,V,v,dv) ® W map naturally and iso-
metrically into L*(H, K,V ® W,~,dv): for each v € L?*(H,K,V,v,dv) and
v € V, define f(u ® v)(a) = u(a) ® v,a € H. The mapping [ extends to
an isometry on L*(H, K,V,v,dv) ® W. Now choose an orthonormal basis {e;}
for W and for U € L*(H, K,V @ W,v,dv), define U; € L*(H,K,V,v,dv) by
Uj(a) = Ul(a)(e;),a € H. Then ||U(a)||%s = D 1|U;(a)]|* and it is easy to check

that
sz(Z Uj®ej>.
J

As is well-known, 7, extends to a representation 7, of NK defined by the
prescription

#r(na) = m(n)n(a),n € Nya € K,

and for each character n € K, the representation ind$ (7?,\ ® 77) is irreducible
and isomorphic with the representation p} defined as follows. We realize p} in the
Hilbert space H,1 = L*(H, K, Hx,v» ®@n,|6(a)| " da). For f € Hyn and a € H,

PO f = fb~ a)|a(b)'"2, b € H,

and
px(n)f(a) = m3(n)f(a), n € N.

The following is an concrete form of [9, Theorem 7.1], specialized to the present
context. (See also [11].)

Theorem 4.3. Let G = N x H be an algebraic solvable group with N connected,
simply connected nilpotent and H 1is a connected, abelian Levi factor in G. Let
A be parameters for coadjoint orbits in n* as constructed above with Xy C A
a fundamental domain for ¥/F ~ N/H. Let i be the explicit measure on ¥
defined above, and let {m)}rex, be the explicit field of irreducible representations
of N constructed above. Write ¥y = U.2§ where £§ = {\ € ¥y | €(A\) = €}. For
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each sign index € for which ¥§ # (), let me be the positive multiplicity function
(as in Proposition 4.2) and u. a measure on K such that for each X € 5,

Y /K me(n) -0 dpe(n).

Then we have the decomposition

T EB /f/j me(n) - py - dpe(n) dji(N)

implemented by an explicit isomorphism .

Proof. For each A € ¥y with O, the H-orbit of A, put
@ —
H)\ == HA@H)\ dW)\()\)
Ox
By Proposition 2.3 we have an obvious and explicit isomorphism
@

o

The formula for 7 obtains a unitary representation 7, on H, and thus we have
the decomposition:

D
T:/ T dii(N).
>

0

Put o
o= / Cet dpie(n)
K

and

i\ =H, ®KE
Fix a covering set O and for A € ¥§ N O, let
Ay = A? Hy — K.

be the intertwining operator for =, defined above. To construct & we must
construct, for each A\ € X§ N O, an isomorphism

7]
d, : H, — / My @ C™< dp.(n)
K

that intertwines 7y and [/ pl ® L,_( dpe(n).
Fix A € ¥ N O and let T'= {T\/} be a measurable field belonging to H,.
For each a € H define

fE(a) = C(a, ) TunCa, N AT
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Note that f7(a) € LS, which we identify with

/ Ho @ T dpc(n)
K

via (4.4). Thus for a € H we write f7(a) = {fT(a)n}nef(' Now put
@
7= [ e dun
K

acting in £5. We claim that f7: H — L5 belongs to

Myi=L2(H, K, L5, 7, 15(a)|~'da)
and that ||fT|| = ||T||. It is clear that fT is Borel. To check the appropriate
covariance property we use (3.3); for b € K,

ST (ab) = (b)) T (@) A (D) Ay

and hence

fo (@b) = n(b) " fy (@)n(b) = (1a(b) @77(b)) ™" (fnT ().

To check || f7||, choose an orthonormal basis {2} for K¢, set v() = A1z and
calculate that

/H IRl = /H Z 17 (@) (2955 [6(a)| " da
:/H ZHC(a, ) A Cla, NoD))? 6(a)| " da

— [ 3 ITasCla e 5@
H -
J
= [ sl 6@ da = TP

and the claim is verified. Now by (4.4) and Lemma 4.1, we have the canonical

isomorphism
@
My=Hz @K ~ / My @ " dpc(n).
K

It remains to verify that the map @, : T+ fT has the appropriate intertwining
property. Let b € H, then for any a € H we have (again using (3.3))

fﬁ(b)T(a) O(CL, )\) ( ( ) )a )\C’(a /\) —1|5( )|1/2
(aa )‘> 1C<b b~ a)\)Tb 1q. )\C(b b~ a)\) 1C(a7 A)A;l‘é(b)‘l/Q
= O(b7a, \) Ty-1,2C (b7 a, \) A L3 (b)) /2

I Cy a)|f5(b)|”2-
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For n € N, we have for any a € H,
T (q) = C(a, \) "L (7 (n)T)arC(a, M)A
= C(a, \) ' mar(n)TuaC(a, )AL
= 75(n)C(a, \) ' TpaC(a, \) A
= m(n) " (a).

5. Multiplicities

In this section we study the multiplicity function m, for the decomposition of 7,
given in Theorem 4.3. For each sign index e we have the positive multiplicity
function m. and a measure y, on K that give a decomposition of 7y, A € 235
Recall that by (4.1) we have v, ~+' ® (7” ® 7}’\) as an outer tensor product, and
by (4.2) and Theorem 4.3 we have m.(p]) = m.(n) = m'(€)m”(¢) where n = £®(
with € € K’ and ¢ € K”. Since K” is countable discrete, then we may choose the
measure . so that for some Borel subset Z¢ of K” and measure z/ on K’, . is
supported on K’ x Z¢ and given on each piece K’ x {¢},¢ € Z¢ by p/. With this
in mind we study the multiplicity functions m’ and m. separately.

Recall that the representation +" of K’ is given by

(V(@)f)(y) = f('(a) " y)ld (a)], a € K', f € M.

On the other hand, the representation 7" ® 75 of the compact subgroup K" acts
in HY = L*(T?) @ A9(C™): for h € L*(T?) and p € A¢(C™),

(7" ®93) (6) (h(z) @ p(w)) = (" (b)2) @ p(6°(b)'w), b€ K.

We simplify notation here and just denote elements of H” @ HS as F(z,w) and
write ¢y, = 67, 1 <1 < m. Thus we have the homomorphism ¢” : K — D(p, C)
such that
(V" ®@13) ) (F(z,w)) = F(¢"(b) 7 (2, w).

The components of ¢’ are given by characters §; where j € j' = {Jr,s ko - - -5 Jiy }»
the subsequence of j defined in Section 3. Recall that j' is decomposed into the
disjoint subsequences j~ and j° where j¢ consists of those indices j € j' such that
j—1¢ I, and that ¢ is the number of indices belonging to j¢. We also have
j”, the subsequence of j consisting of those indices j = ji where k € Kj; recall
that we have written j” = {jn,, jhys - - -, Jn, r- With this notation and referring
to Lemma 3.4, we have that ¢’ is isomorphic with the linear action of K’ on
n/e(A), (..., ¢)) is isomorphic with the linear action of K” on n/e(\), and
(@415 -+ Pyrm) is isomorphic with the linear action of K” on e(\)/0(A).

If dim(¢/(K’)) = p, then we shall say that “K’ acts with full rank”. We
have the following.
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Lemma 5.1.  If K’ acts with full rank, then m' = 2P~% holds i/ -a.e.. Otherwise,
m’' = oo holds ' -a.e.

Proof. We proceed by induction on p: if p = 1, and dim(go’(K’)) = 0, then
4" =1 and the result is trivial (note that here v/ is point mass measure at 1).
Suppose that dim(¢'(K’)) =1 =p. Choose A € ¥ such that ¢'(A) =1, and let
K| = ker(¢'). Write p: K’ — K'/ker(¢’) ~ R for the canonical map and put
v =4 op. We consider two cases: Case 1: p=1 and ¢ =0, and Case 2: p=1
and g =1.

Case 1. For each t € R, we have

(7' (exp(tA) f) (y) = f(e'y)e™ 2, y € R.

which is isomorphic to two copies of the regular representation of R, and hence in
this case m/(n') =2 a.e..

Case 2. For each t € R, we have

(7 (exp(tA)t) f)(s) = f(e*s)e™, s €S.

(recall that we are using the measure sds on S here.) It is clear that 4’ is equivalent
to the regular representation of R and so m/(n) =1 a.e..

Suppose then that p > 1. We first assume that p > ¢. Choose an index [ such
that y; runs through R, and let

V={v e R lv=(y1,¥2,- -, Y-, Yi+1, - - -, Yp), Yy € U}

so that U ~ R x V and H' ~ L*(R) ® L*(V,v"dv). Let J = ker¢j, and let
p:J — D(p—1,R) be defined by

p= (Al bl Gials rgals - @pl)-

For a € J and g € L*(V,v"dv), define

7u(a)g(v) = g(u(a)~'v) det(p(a))™?, a € J.

By induction the result holds for «/,. If J = K, then dim(gp’(K')) <p,7 =17,
and m’ = com, = oo . If J # K’, then choose A € £ such that ¢j(A) =1 and
w(A) =0. For h € L*(R) put

v (exp(tA)h(u) = h(e tu)e™?, t € R;

so that 7' =+ ®v,, and m’ = mim;,. Now if dim(¢'(K’)) < p in this case, then
/

= 00 and hence m' = o a.e.. If

dim(u(J)) < p—1, and so by induction m
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dim(¢'(K’)) = p, then dim(u(J)) = p — 1 and so by induction m/, = 20797 a.e.;
but m} =2 a.e., so we are done.

Finally, if p = ¢, then repeat the above argument except that in this case
74 acts in L*(S, sds), and

vi(exp(tA)h(s) = h(e 's)e™", t € R.
has multiplicity 1. [ |

We turn next to the representation v ® 75 of the compact subgroup K”.
Lemma 5.2.  The unitary homomorphism " is injective.

Proof.  Let b € K” such that ¢/(b) =1 for 1 <[ < ¢+ m. Since we have
assumed that 0 is injective, then it is enough to show that d,(b) = 1 holds for all
1 < j <n. Now by definition of K, we have d;(b) =1 for all j ¢ e. If j is a
value in j”, then by definition of ¢” and j” we have §;(b) = 1. If j € j but j is
not a value in j”, then either j € I or j ¢ I and j+ 1 ¢ e. But now parts (c)
and (d) of Lemma 1.7 imply that 9,(b) = 1 in these cases also. Hence by part (a)
of Lemma 1.7, we have §;(b) =1 for all j € e. ]

Write K" = (FNK) - K/, and write F N K = G1Gy---G, as a direct
product where G; is finite cyclic of order m;. For b € K N F' write b = biby--- b,
where b; € G;. Choose a basis {C1,...,C,} for £ consisting of integral elements
and such that for each k, ker(exp|rc,) = 27Z. Put K} = exp(RCy) so that
K! = K{/Kl---K!. Accordingly we write an element ¢ € K" as ¢ = ci¢y- - - ¢5.

Let ¢nymy,..ngsm € Z% be the canonical complete orthogonal system for
L*(T?). Using the monomials described in the proof of Lemma 3.7, we have the

natural complete orthogonal system for HY:

\Ijn = ¢n1>n2 77777 Ngq ® ’lpnq+1anq+2 ~~~~~ Jaq+m>

where
wnq+17nq+2 77777 jq+m = (wil)nq+1 (w§2)nQ+2 e (w?)nq“’m.
Here n = (ny,na,...,n41m) belongs to the set
J={(n1,n2,... . Nggm) € ZT™ | ngyy > 0,1 <1 < m},
and

m{(Q) =[{n e J| (v @13) (1) T, =((b) ¥, b€ K"}|.

Now take ¢ = (5 € K" where g; € Z/m;Z,1 <i<r and h € Z*, so that

Conlbiby---b,) = bIb% . b9 be KNF,
g, 172 r
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and
h1 h h 1"
Conlcica - --cs) =cley? -y, c € K.

Since the elements Cj € ¢ are integral we have integers pj;, 1 <k <s,1 <1 <

q + m, such that

o (ew) ™ =g

Indeed, the integers py,; are also defined by
iy = =3(de (Cr)) = idy] (Cr)

(here d denotes the differential.) We shall say that P is the action matrix for K.

Write n¢ = [n1,ng, ..., Ng, €1741 - - - , €mNgrm| and observe that
(V' @) () U = G0,
where

Pk = Prani+Pr2ano+ A PrgNgFDhgt 1611041 TPk, g+2€2Ng 12+ * *+Di gt mEmMgtm-
Similarly, we have integers ¢;;, 1 <¢ <r,1 <1 < ¢+ m, such that
o (b))~ = b;,
and we have
(V" @ 73) (b)) Wy, = bE™ W,

Put P = [pr] ., @ = [¢i4], and J* = {n° | n € J}. Writing n as a column vector,
we see that the mulitplicity of ¢ is equal to the number of common solutions for
the diophantine systems n = g and Pn = h that belong to J¢. Now denote the
solution set (in R?*™) for Px = h by S(P, h), and the (integer point) solution set
for the system @Qn =g by Z(Q, g). We have

m! () = |Z(Q,9) NS(P,h)NJ. (5.1)

We shall see that the more important role is played by the set S(P,h).
Lemma 5.3.  There are matrices L € SLy(Z) and R € SLyym(Z) such that

0--- 0

00 0--- 0
LPR =
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Proof. It is well known that there are matrices L and R as above such that
rn 0--- 0 0 O0--- 0
Py v+ 0 0 0--- 0
LPR = ) )
o 0--- r, O 0--- 0
where 1q,79,...,7rs integers, and for some s, 0 < 74|rer1,1 < a < &, and

re = 0,8 < a < s. Now suppose that the result is false. Then we have t =
(t1,t2,...,ts) where tLPR € Z9"™ but not all ¢; are integers. Set u =tL. Then
not all coordinates uy of u are integers (since L € SL,(Z)) but uP = (tLPR)R™!
belongs to Zt™ and so

Uip1 + UePay + -+ Usps ) €L

holds for 1 < [ < g+ m. Let ¢ = exp2musCr) € K;,1 < k < s. Then
c=cica---cs # 1, but

o) (¢) = e 2milupritupzttuspst) — 1 1 < | < g4 m.
This contradicts Lemma 5.2. n

Let N be the nullspace for P; then N' = R(7) where 7 C RI™™ is the
nullspace for LPR. Of course

T={zeR"|z;=0,1<j<s}
For any subset S of R4 put Sz = SN ZI™.
Lemma 5.4.  One has Nz = R(7z).

Proof. This follows immediately from the fact that both R and R™' have
integer entries and 7 = R™'(N). n

We say that “K” acts with full rank ” (on n/d(X)) if dim(p"(K")) =
g +m. We are now ready to dispense with this case. Define ¢ : R® — R by
xy,...,x5) = (x1,...,25,0,0,...,0). Then ¢ is a right inverse for LPR, and it
follows that
2° = 2°(h) = R(«(Lh))

belongs to S(P, h)z. The following is proved in a different form in [11, Theorem
3.2].

Proposition 5.1. One has dim(¢"(K")) = g+m if and only if s = g+m. In this
case, m" = 1 and the support Z¢ of !’ is Z¢ = {Con € K" | 2°(h) € Z(Q,g)NJ}.



CURREY 603

Proof. ~ We have dim(¢"(K”)) = dim(¢"(K”)) = rank(P). By Lemma 5.3,
s = g+ m if and only if rank(P) = ¢ + m. In this case P is invertable and hence
S(P,h) = {z°(h)} so that the result follows from equation (5.1). n

Now define the cone E¢ in RY™™ by
E¢={[x1, 79, ..., %g1m)" | €411 > 0 holds for all 1 <1 < m}.

It is clear that for any subset S of R¥™™ we have S N .J¢ = S; N E°. Hence if
S(P,h) N E€ is bounded, then

m"(¢) = |2(Q,g) NS(P,h) N J*

< ‘S(P, h) N Je

- ‘S(P, h)z N E| < 0.

We claim that the boundedness of S(P, h) N E€ is necessary for finite multiplicity

as well.

Lemma 5.5.  Suppose that S(P,h) N E¢ is unbounded. Then S(P,h) N J¢ is
nfinite.

Proof.  Set ||yl| = sup,<jc im |y;],y € RIT™ and

IR|| = sup Ry
lyll=1

Choose any M > ||R||. Since S(P,h) N E* is unbounded, the coordinates €;z; are
arbitrarily large as z runs through S(P, h) N E€, so we have z € S(P, h) N E€ such
that [z — 2°|| > M and €(zg41 — 25,;) > M for 1 <1 <m. Then z 1= 2 — 2°
belongs to NN E¢; put y = R~z € 7. Then the cube C' with edge length 1
centered at y must contain points of 77, and so by Lemma 5.4, the neighborhood
R(C) of z is contained in E° and must contain elements u € A7. These elements
satisfy |lul| > M — ||R|.

Since M was arbitrary we see that NzNE* is unbounded and hence infinite.
Hence there are infinitely many 2 € Nz N E¢ such that €;(z; + 25) > 0 holds for
all j and for such z, 2°+ 2 € S(P,h) N E°. ]

The following shows that the question of finite multiplicity is not affected
by the set Z(Q, g).

Lemma 5.6. Let g € Z° and h € Z% such that Z(Q,g) N S(P,h) # 0. If
S(P,h) N J¢ is infinite, then Z(Q,g) NS(P,h) N J¢ is infinite.

Proof. Observe that if Z(Q,g) # 0, say n = [n1,...,ngm)" € Z(Q,g), then
for any point n° € R7*™

{n+mimy---mskn® | k € Z} C Z(Q,9).
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Let n € Z(Q,g) NS(P,h) and suppose that S(P, h) N J¢ is infinite. By the proof
of Lemma 5.5 we have n° € N N J¢ = Nz N E¢, and there is kg € Z such that
{n+mimg---mgkn® | k > ko} C J¢. Hence

{n+mimg---mgkn® | k > ko} C S(P,h)NZ(Q,g9) N J"

We combine the preceding lemmas to obtain the following.
Proposition 5.2. Let € be a sign index and let ( = (), € K". Then m!'(¢) < o0
if and only if S(P,h) N E¢ is bounded.

Proof.  Suppose that m”(¢) < oo, so that S(P,h) N Z(Q, k) N J is finite. By
Lemma 5.6, we have S(P, h) N J¢ is finite, and hence by Lemma 5.5, S(P,h) N E*
is bounded. On the other hand, suppose that S(P,h) N E€ is bounded. Again
by Lemma 5.5 we have S(P,h) N J¢ is finite, so that S(P,h) N Z(Q, k) N J¢ is
finite. [ |

We have seen that when P is invertable, then m” = 1 holds. Let P, be
the submatrix consisting of the the first ¢ columns of P:

P11 P12 - DPig

P21 P22 - D2,
P= | . !

Pst Ps2 " Psgq

Thus Py describes the action of K” in the direction of the indices belonging to j°,
that is, the action of K7 on n/e(\) (for each ). If rank(F,) = ¢, then we shall
say that K" acts on n/e(\) with full rank.

Write R7" = Q@M where Q = {(z € R¥"" | 2; = 0,¢+1 < j <m} ~R?
and M ={(z e R | z; =0,1 <j <q} ~R™.

Lemma 5.7.  Suppose that K" does not act on n/e(\) with full rank. Then
m!”(¢) = oo holds for all ¢ € K" and for all sign indices €.

Proof. Let ¢ =(yp € K" observe that for each sign index e,
S(P,h)NnQ C S(P,h)NE*

holds. Now rank(Fp) < ¢ means that S(P,h) N Q has positive dimension, and
hence is unbounded. Proposition 5.2 now says that m.(¢) = co. n

We sum up our results so far as follows.
Proposition 5.3. If K acts with full rank on n/o(X\) , then m. = 1. On the
other hand, if K does not act on n/e(\) with full rank, then m. = +oo.
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We turn to the case where K acts with full rank on n/e(\) but not with
full rank on n/9(A). Hence we must consider the case where K’ acts with full
rank and K" acts on n/e(A) with full rank, but K” does not act with full rank
on ¢(A\)/0(A). We begin with an algebraic criterion in order that S(h, P) N E€ is
bounded. Set

Cc=ENM

and observe that E° = Q @ C¢. We can identify C¢ with a “generalized quadrant”
in R™: C°={z e R™ | gz; > 0,1 <1< m}. Set int(C) = {z € C°| wgper >
0,1 <1 < m}; so that when the above identification is made, int (Ce) is the interior
of C¢.

Lemma 5.8.  Let W be a subspace of R™ and let C be a generalized quadrant in
R™. Then for any y € R™, y+ W meets C if and only if y € C+W. Moreover,
(y + W) N C is bounded for all y if and only if

W nint(C) # 0.

Proof. The first statement is obvious. As for the second, note first that v-w > 0
for all v,w € int(C) so W Nint(C) # O implies W N int(C) = 0.

Suppose that W Nint(C) # 0, and let x = (21, 29, ..., 2,,) € WHNint(C).
Set @ = min{|z;| | 1 < j <m} >0 and ¢ = 21y; + T2y2 + - - + T Y. For any
u=(ug,ug, ..., Up) € (y—I—W) N C we have

T-U=2T1UL + LU + *+* + Ty, = C,
but also z;u; > 0 for all j so

;] SE, 1<j<m.
«
Hence (y + W) N C is bounded.

To finish the proof it is enough to show that if W N C = {0}, then
WHNint(C) # 0. Suppose that W N C = {0}; we may assume that W # {0}. I
claim that in any finite dimensional real vector space U, for any convex cone S C U
with 0 ¢ S and any subspace W such that W N S = (), there is a hyperplane
YV C U such that W C V and VN S =0 also.

Assume for the moment that this claim holds. Then we have a hyperplane
V in R™ such that W C V, and VNC\ {0} = 0. There is b € R™ such that

sup(b,z) < inf (b,2)
2eV z€int(C)

(see for example [3, Chapter IV, Theorem 3.7]). Now since V is a subspace and
0 is a limit point of int(C) we have b € V= C W™ and (b,z) > 0 holds for all
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z € C. It follows that b € int (C): clearly ¢b; > 0 holds for all 1 <[ < m, and if
by = 0 for some [ then (0,0,...,0,1(I"™ position),0,...,0) belongs to {b}*+ =V,
contradicting the claim.

Finally, we verify the claim by induction on m, the claim being obvious if
m = 1. Suppose that the claim is true for m’,m’ < m, and let Q : U — U/W

be the canonical map. Then Q(S) is a convex cone in U/W, and 0 ¢ Q(S)
since W NS = (. By induction we have V, a hyperplane in U /W such that
VoNQ(S)=0. Then V =Q (V) is a hyperplane in &/ and VNS = (). n

We are now ready to describe a precise criterion for finiteness of m/(().
Recall that we already know that a necessary condition for finiteness of m.(() is
that K" acts with full rank on n/e(\). Let R denote the row space of P. We
shall state the criterion first in terms of the row space R.

Lemma 5.9.  Fiz a sign index € and suppose that K" acts on n/e(\) with full
rank. Then S(h, P) N E€ is bounded if and only if R N int(C¢) # 0.

Proof.  Denote the projection of N into M by M. Then the projection of
S(P,h) N E* is
(y + Ny) NCE

where y is the projection of 2°(h). Now since rank(F,) = ¢, the projection of
N into M is injective, whence the projection of S(P,h) N E¢ into M is injective
also. The image of S(P, h) N E° under this projection is (y + ANy ) N int(C*).

Suppose that S(P,h) N E€ is bounded. Then (y - NM) N C¢ is bounded,
and so by Lemma 5.8, we have (J\/’M)l Nint(C%) # 0. But now

(M) N M Nint(C) € NN int(C) = R M int(C°),

and hence R Nint(C) # 0.
Suppose then that R Nint(C) # 0. It is easily seen that

R Nint(CY) = N Nint(C) C Niy Nint(CF).

Hence N3 Nint(C) # @ and Lemma 5.8 says that (y + My) N C is bounded.
Since the projection of S(h, P) N E€ onto (y + NM) N C¢ is a bijection of affine
sets, then S(P,h) N E° must be bounded as well. ]

Lemma 5.10.  Suppose that K acts with full rank on n/e(\), K" does not act
with full rank on e(X)/0(N), and R Nint(C¢) # 0. Then m” is unbounded.

Proof.
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Here we have rank(P) < ¢+ m. Let ¢ € K” such that m”(¢) > 0 and
write ¢ = (yp. Then
Z(Q,9) NS(P,h)N J#0.
We claim that

=

sup ’S(P, h)ynJ¢
h
Now for each h,
sSpmns= ] 2@QgnSPhnJ
geKNF
so that it is clear that the claim is sufficient. Now for each positive integer M , set
TM ={teT | Mt € Z7™} and
S(P,W)M = {v e S(P,h) | Mv € 7™},

Then S(P,h)™ > 2°+ R (T™) and so

sup |S(P,h)" N E‘| = cc.

M

But
S(P,Mh)NJ*=S8(P,Mh);NE* > MS(P,h)™ N E*

and the claim is proved. [ |

We have a natural map 7 : ¢ — R defined by
r(C) =idg"(C) = [idg}(C), idg,(C), . .., idpg,,, (O));

g+m
observe that this map is surjective. Let us say that an element C' € £ “acts on
e(N)/o(A) with sign €” if idy/(C) = 0,1 <1 < ¢ (that is, C' acts trivially on
n/e(A)), and sign (idgl,,(C)) = 6,1 <1 < m. Observe that £, hence ¢, has
an element that acts with sign e if and only if R Nint (CE) # (). We sum up the
results of this section in these terms.
Theorem 5.4. Let G = N x H be an algebraic solvable Lie group with N simply
connected nilpotent and H a connected Levi factor in G acting faithfully on N,
and let K be the generic stabilizer in H. Let T be the quasireqular representation
of G induced from H, and let T = @.7. be the decomposition of Theorem 4.3.
Then one of the following obtains.

(1) If K acts with full rank on n/0(\), then for each sign index €, 7. has uniform
multiplicity 2", where r is the split rank of K .

(2) If K does not act with full rank on n/e(\), then for each sign index €, 7. is
infinite.

(3) If K acts with full rank on n/e(\), but not with full rank on n/d(N\), then T
has finite multiplicity if and only if € contains an element that acts on e(\)/0(\)
with sign €. Otherwise, T, is infinite.
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6. Examples

We conclude with several examples to illustrate the notations and conclusions of
the preceding. We begin with the classical oscillator group.

Example 6.1. Let N = C x R be the three-dimensional Heisenberg group:
(w, 2)(w',2") = (w+w', 242 +S(ww') and H = T acting by a-(w, 2) = (a " w, 2).
The usual basis for n is {Z,Y, X} where [X,Y] = Z and where the exponential
mapping is just

2Z+yY +aX =22+ R((x+iy)(X —iY)) — (z + 1y, 2)

An adaptable basis for [ consisting of eigenvectors is 71 = Z, 7, = X + 1Y, Z3 =
X —iY and we have &,(a) = 1, while d3(a) = d2(a) = a~'. The generic layer
Q) consists of all £ € n* with ¢(Z) # 0, where for such ¢ we have i = {2}
and j = j" = {3}. Now H = K = K" and A = ¥ = ¥, and for A € A,
e(\) = sign(A\(Z)) and A = AT U A~ accordingly. Put € = A(Z). The generic
irreducible representations of N are m¢ := m\, = =3}, realized in the space of
holomorphic functions if £ > 0 and anti-holomorphic functions if £ < 0. Recall
also that the Plancherel measure is (a constant multiple of) |£|d€.

Now ¢”(a)™! = d3(a)™* = a and the action matrix P is given by P = [1].
For e = 1, J° = {0,1,2,...} and Z¢ = J¢ with m.(n,) = m/(n,) = 1 for
h=012...1fe=-1,J ={0,—-1,-2,...} and Z¢ = J° with m.(n,) =

"

m!(n,) =1 on Z¢ also. Thus 7 = 7,1 @ 7_; where for ¢ = +1,

52
Te ™ / Beho Te O Ty [€]dE.
A€

The next example exhibits a cross-section that is not flat.
Example 6.2. Let N =C x R x C with
(z,y,2)(' ), 2) = (x+ 2,y +y, 2+ 2 + §(xy — 2'y))
and H = T acting as a - (w,y,2) = (a"'w,y,a*2). The natural basis for n
is {Ey, By, Y, X1, X0} with [X;,Y] = Ej,j = 1,2, and where the exponential
mapping is

ZlEl + ZQEQ + yY + Ile + l’QXQ — (LL’l + iIQ, Y, z1 + iZQ).

Write Z = E; +iFy and X = X; +iXs, and for ¢ € n* write £ = ¢(Z) and
B = ((X). The adaptable basis is Z; = 2,7, = Z,Z3 = Y, Zy = X, Zs = X
and dy(a) = 6,(a) = d5(a) = d4(a) = a~'. The generic layer here is Q = {¢ €
n* | {(Z) # 0}, with index sequences i = {3} and j = {4}. The H-invariant
cross-section is determined by the conditions ¢(Y) = 0, and ¢(Z4(¢)) = 0 where
Zy(0) = S((X,Y]X 4+ ([X,Y]X). Precisely,

A={leQ|B+0,R(€3) =0}.
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Now K and F are trivial here and ¥ = {(£,0,08) | £ > 0,8 € iR*}. Each
irreducible representation 7¢ g := m\ of N is induced from the variable (but real)
polarization
— 1, — —
p(\) = C-span{Z, Z.Y, §(€[X, YIX — (X, Y]X)}.

Note that the supplementary basis for p(A) Nn in n is X(\) = Z4(N\)/[¢|, and
X(a-A)=a-X(\). Since the stabilizer K is trivial (while N is not abelian) the
muliplicity is infinite, and (again up to a constant multiple) di(A) = |Pf(\)|dA
where Pf()\) = £. Hence our formula reads

re [ peadated) = [ [T oo pe edcar

where pe 3 = ind$§ (e 5) .

In the following the finite subgroup F' used in the parametrization A/H ~
Y/F is non-trivial.
Example 6.3. Let N be the 8-dimensional real Lie group realized as N = C*
with

x2w’

5 )

and with H = T acting on n by a - (w,z,y,2) = (aw, azx,a’y,a’z). A suitable
adaptable basis (listed in the order of 7, Z,, etc.) is {Z,Z,Y,Y, X, X,W,W}
with brackets [W, X] = Y, [W,X] = 0,[X,Y] = Z,[X,Y] = 0. (Note that the
brackets of the real basis for n consisting of real and imaginary parts of the

(w,,y, 2) (W', 2"y, 2" ) = (w+w,z+ 2y +y —aw', 2+ 2 +axy —

preceding basis can be recovered from the above; the exponential mapping is
exactly as in the preceding, for example (w,0,0,0) = exp(R(wW)), etc..) The
generic layer is {¢ € n* | {(Z) # 0} with i = {3,4},j = {5,6}. Writing
0Z) = W) = [, we have A = {£ € Q | LY) = {X) = 0,8 # 0} and
accordingly we write A = (£,8). Now xi(a) = d1(a)”! = a®, so H acts by
rotations in the ¢-direction and ¥ = {(£,3) € A | £ > 0}. On the other hand,
F = ker(x;) = F(3), and for t € F,(§,0) € X, t-(&0) = (§,t8). We put
Yo = {(§,8) € X | sign(B) = € with 0 < 0 < 27/3}. Now as in Example 6.2, K
is trivial and 7 is infinite. Here Pf(£,8) = £2, so

T~ 00 - pep E2dEdEASBAP.
3o
We close with an example where K acts on n/e(\) with complex roots, and
where 7 decomposes into finite unbounded and infinite subrepresentations.
Example 6.4. Let N be the 10-dimensional real Lie group realized as N = C?
with
(z,y, wy,wa, 2) (2,4, Wi, wh, 2') =

1 1
(@ 42’y ¢ wn +wy, we - wh, 2+ 2+ Sy’ — 2y) + S (S(@rwh) + S (Wzwh)).
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Let H =S x Ty x T where S =R7, T}, = T, and so that for a € S, b, € T},
able(x7y7w17w27 Z) - (a’blxaa_lbl_lyﬂ b2_1w17b2_1w27z)'

We choose the adaptable basis (listed in order): {Z, Z, Wy, Wi, Wy, W5, Y, Y, X, X}
with brackets [X,Y] = Z,[X,Y] = 0, [W;, W}] = —2iR(2), [Wa, Ws] = —2i3(Z)
and so that &;(abiby) = 01(abiby) = 1, 64(abiby) = d3(abiby) = dg(abiby) =
05(abiby) = byt, while 0 = 07(abiby) = a='b;! and 19 = dg(abiby) = aby. (Defi-
nition of the exponential mapping follows the convention of the preceding.)

The generic layer is {¢ € n* | {(Z) # 0} with jump sequences i =
{3,5,7,8},j = {4,6,9,10}. We have A = {£ € Q | {(Wy) = (W) = UY) =
((X) =0} and for A € A we write A = £ where ((Z) = £. Hence K = H in this
example, so ¥ = A and F' = {1}. Put {&(A) =& = A(R(Z)) and &(N) = & =
A(S(Z)) and €,(\) = sign(&), = 1,2. Note that Q¢ = {£ € Q| ¢(\) = €} is
non-empty for each sign index ¢ € {£1}?. The polarization p()\) for each A\ € A
obtained from the adaptable basis is a positive polarization only for those A for
which €(A) = (1,1), and for sign indices € = (€1, €2) we have

p‘(\) = C-span{Z,{Z, Z, W{* W52, Y, Y}
is a positive polarization when € = €(\). Let £ C N be the subgroup
E:{(07y7w17w27z> | y7w17w2,ZEC}.

Then 7, = ind}(7}) where 73 acts in the Hilbert space (A¢(C2), |- ||lx) of e(\)-
holomorphic functions in the variables wy,w;. Now X = C = U x T where
U is the set of positive reals and Hy ~ H\ ® HY where H\ = L*(U,sds) and

! = L[*(T) ® A°(C?). With regard to the action of K, we have j = j = {9}
and K acts with full rank on n/e (via S and T}), but K" acts with rank one on
e/0 (via Ty). We have ¢”(biby)~t = (by, by, by). so the action matrix is

P:100
011

and we are in the situation (3) of Theorem 5.4. We have
int(C)={(0, 22, 23) | 122 > 0, €23 > 0} and the row space of P meets int(C*)
exactly when e = (1,1) or € = (—1,—1). Hence we have 7 = ®.7. where 7 1)
and 7(_; 1) have finite unbounded multiplicity, and 7. is infinite otherwise. We
exhibit the finite unbounded subrepresentations 741 +1y.

Since j’ = j¢ and K’ acts with full rank, then m, = m”. For € = (1,1),
and for h € Z, we find that m”({,) =0 if h <0 while for A >0,

m! () = [{(n1,n2) | ng €4{0,1,2,...},ny +ng =h}| =h+ 1.
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Similarly, for € = (=1, —1), m/(¢,) = 0 if h > 0 while for h <0,

my (Cu) = ){(n17n2) | n, € {0,—1,-2,...},ny +ne=h}|=h+1.

Hence

2]
ranan = [ 6%y (h+1) e T PEE)Ide

€

and one computes that Pf(£) = && (&8 + £3).

[10]

[11]
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