Decomposition and Multiplicities for Quasiregular Representations of Algebraic Solvable Lie Groups

Bradley N. Currey

Communicated by J. Ludwig

Abstract

We obtain an explicit irreducible decomposition for the quasiregular representation τ of a connected algebraic solvable Lie group induced from a co-normal Levi factor. In the case where the multiplicity function is unbounded, we show that τ is a finite direct sum of subrepresentations τ_{ϵ} where for each ϵ, τ_{ϵ} is either infinite or has finite but unbounded multiplicity. We obtain a criterion by which the cases of bounded multiplicity, finite unbounded multiplicity, and infinite multiplicity are distinguished. Mathematics Subject Classification 2000: Primary 22E45, 22E25, Secondary 43A25.. Key Words and Phrases: Quasiregular representation, coadjoint orbit, Plancherel formula, multiplicity function..

0. Introduction

Let N be a connected, simply connected nilpotent Lie group, and let H be a connected abelian group acting on \mathfrak{n} by automorphisms in such a way that ad (\mathfrak{h}) is completely reducible. The resulting semi-direct product $G=N \rtimes H$ is solvable, and if it is also exponential, then the irreducible decomposition of monomial unitary representations of G can be understood precisely in terms of co-adjoint orbit parameters [8, 10]. In the case where $\tau=\operatorname{ind}_{H}^{G}(1)$ and G is algebraic and exponential, then a number of precise results regarding the decomposition of τ have been obtained [11, 6]. In particular, the question of the existence of admissible vectors in the case where H has trivial stabilizers is settled in [4] by means of an explicit decomposition for τ. We are concerned in this paper with the following situation where G is not exponential. Let U be a torus in $\operatorname{Aut}\left(\mathfrak{n}_{\mathbb{C}}\right)$ that is defined over \mathbb{R}; we assume that $H=U(\mathbb{R})_{0}$ is the connected component of the set of real points of U. The group G is not exponential here, but it is Type

1 and acts regularly on \hat{N}. Again for $\tau=\operatorname{ind}_{H}^{G}(1)$, the decomposition of τ is obtained in [9] (where the context is more general) in terms of parameters for \hat{G} that constitute a fiber space over the base \hat{N} / H. Motivated in part by the question of admissibility in this context, the aim of the present work is two-fold. First, to give a natural construction for this decomposition in terms of an explicit manifold that parametrizes (a.e.) \hat{N} / H, an explicit measure $\tilde{\mu}$ on this manifold, and an explicit intertwining operator Φ. Second, to describe the multiplicity function for τ in precise terms, and in particular to obtain a criterion for the case where it is finite but unbounded.

Since τ is naturally realized in $L^{2}(N)$ so that its restriction to N is the regular representation, a starting point for this analysis is a concrete Plancherel formula for $L^{2}(N)$. Originally this is obtained in [13], where \hat{N} is explicitly parametrized by a cross-section for coadjoint orbits in \mathfrak{n}^{*}. Since we are ultimately interested in an explicit parametrization for \hat{N} / H, we then consider the natural action of H on $\mathfrak{n}^{*} / N \simeq \hat{N}$, with the hope of describing this action in terms of the cross-section. However, the cross-section used in [13] is not H-invariant in general. In order to construct an explicit cross-section for coadjoint orbits in \mathfrak{n}^{*} that is H invariant, we apply a method of stratification and parametrization of coadjoint orbits first developed in [7] for the case of exponential groups, and then slightly but significantly generalized in [1]. As a result of the work in [1], one obtains a cross-section for each stratum (or "layer") in \mathfrak{n}^{*} that is simply described and well-behaved under certain projection maps. As usual, the construction depends only upon a certain choice of Jordan-Hölder basis for the complexification of the Lie algebra. In the present work we show that by making this choice of basis so as to consist of eigenvectors for $\operatorname{ad}(H)$, the resulting orbital cross-section in each layer is indeed H-invariant. In particular, specializing to the minimal Zariski-open layer, we obtain an H-invariant cross-section Λ that parametrizes almost all of \hat{N}, and thus the action of H on \hat{N} is understood in explicit terms as the action of H on Λ. Moreover, there is a closed subgroup K of H that coincides exactly with the stabilizer H_{λ} in H for all $\lambda \in \Lambda$. The preceding constructions are carried out in Section 1.

In Section 2, we specialize to the class of G that are algebraic in the sense described above. Then the quotient space Λ / H is described by means of an explicit algebraic submanifold Σ of Λ, and a finite subgroup F of H acting on Σ, so that the map $H \lambda \mapsto H \lambda \cap \Sigma$ is a homeomorphism of Λ / H onto Σ / F. For each H-orbit $\mathcal{O}^{H} \subset \Lambda$, a natural semi-invariant measure ω is defined on \mathcal{O}^{H} and an explicit measure $\tilde{\mu}$ on Σ is defined so that for any fundamental domain Σ_{0} for Σ / F,

$$
\int_{\Lambda} f(\lambda) d \mu(\lambda)=\int_{\Sigma_{0}} \int_{\mathcal{O}_{\sigma}^{H}} f(\lambda) d \omega_{\sigma}(\lambda) d \tilde{\mu}(\sigma)
$$

Here $\tilde{\mu}$ is explicitly described in terms of the usual Pfaffian and a Lebesgue measure
on Σ_{0}. The stage is then set for an explicit decomposition of the quasi-regular representation τ, which is taken up in Section 3, and as in [11] this depends upon an understanding of the action of K on each $\mathfrak{n} / \mathfrak{n}(\lambda), \lambda \in \Sigma_{0}$. We write Λ as a finite disjoint union $\Lambda=\Lambda^{\epsilon}$ where $\epsilon \in\{1,-1\}^{m}$ are "sign indices" measuring the positivity (or lack thereof) of the Vergne polarizations $\mathfrak{p}(\lambda)$ associated to $\lambda \in \Lambda_{\epsilon}$. Setting $\mathfrak{e}(\lambda)=(\mathfrak{p}(\lambda)+\overline{\mathfrak{p}(\lambda)}) \cap \mathfrak{n}$ and $\mathfrak{d}(\lambda)=\mathfrak{p}(\lambda) \cap \overline{\mathfrak{p}(\lambda)} \cap \mathfrak{n}$, we construct irreducible representations π_{λ} associated with λ by inducing from a BargmannFock representation of $E(\lambda)$. For $\lambda \in \Lambda^{\epsilon}$, the actions of K in $\mathfrak{n} / \mathfrak{n}(\lambda)$ (or on $\mathfrak{n} / \mathfrak{d}(\lambda))$ are isomorphic, and hence the Weil representations γ_{λ} are isomorphic. Using methods borrowed from [9], an intertwining operator is defined that obtains a finite decomposition $\tau \simeq \oplus_{\epsilon} \tau_{\epsilon}$ where

$$
\tau_{\epsilon}=\int_{\Sigma_{0}^{\epsilon}}^{\otimes} \int_{\hat{K}}^{\otimes} m_{\epsilon}(\eta) \cdot \rho_{\lambda}^{\bar{\eta}} d \eta d \tilde{\mu}(\lambda)
$$

Here $m_{\epsilon}(\eta)$ is the multiplicity of $\eta \in \hat{K}$ in the decomposition of γ_{λ}, and $\rho_{\lambda}^{\bar{\eta}}$ is the irreducible representation of G induced from an extension $\tilde{\pi}_{\lambda} \otimes \bar{\eta}$ of π_{λ} to $N K$ corresponding to $\bar{\eta}$. Since the K-actions on $\mathfrak{n} / \mathfrak{d}(\lambda)$ are constant on each Λ^{ϵ}, the multiplicity functions depend only upon the index ϵ.

In Section 5 we turn to the analysis of the multiplicity functions. The irreducible representation π_{λ} of N is realized in an L^{2}-space where γ_{λ} is simply described, and we show that the real issue is the multiplicities for the characters of the identity component $K_{\circ}^{\prime \prime}$ in the anisotropic subgroup $K^{\prime \prime}$ of K; note that $K_{0}^{\prime \prime} \simeq \mathbb{T}^{s}$ for some s. By evaluating a (convenient) basis for the Lie algebra $\mathfrak{k}^{\prime \prime}$ at the roots of $\mathfrak{k}^{\prime \prime}$ in $\mathfrak{n} / \mathfrak{d}(\lambda)$, we codify this action in an "action matrix" P. For $h \in \hat{K}_{\circ}^{\prime \prime}=\mathbb{Z}^{s}$, the value $m_{\epsilon}(h)$ is the number of integer solutions to the diophantine system $P n=h$ that lie in a convex cone E^{ϵ} determined by ϵ. This number is finite if and only if the intersection of the real solution set $\mathcal{S}(P, h)$ for $P x=h$ with E^{ϵ} is bounded. In particular, if K acts with full rank on $\mathfrak{n} / \mathfrak{d}(\lambda)$ (in other words, if the image of K in $\operatorname{Sp}\left(\mathfrak{n}_{\mathbb{C}} / \mathfrak{n}(\lambda)_{\mathbb{C}}\right)$ is Cartan), then P is invertable and m_{ϵ} is bounded (with value 2^{r} a.e., given by the rank of the split subgroup K^{\prime} of K, see also [11, Lemma 3.3]). In the case where K does not act with full rank, then m_{ϵ} is unbounded but not necessarily infinite: see for example [9, Section 8, example (vii)]. When P is not invertable but $S(P, h) \cap E^{\epsilon}$ is bounded for all h, then m_{ϵ} is finite everywhere, and this condition depends only upon P and the sign index ϵ. We prove a precise criterion for unbounded finite multiplicity in terms of the relationship between the action of \mathfrak{k} on $\mathfrak{n} / \mathfrak{d}(\lambda)$ and the cone E^{ϵ}. We obtain the following result, which is stated more precisely in Section 5 as Theorem 5.4.
Theorem 0.1. Let $G=N \rtimes H$ be a real algebraic solvable Lie group with N simply connected nilpotent and H a connected Levi factor, and let $\tau=i n d_{H}^{G}$. Let K be the generic stabilizer in H. Then one of the following obtains.
(1) If K acts with full rank on $\mathfrak{n} / \mathfrak{d}(\lambda)$, then τ has uniform multiplicity 2^{r}, where
r is the split rank of K.
(2) If K does not act with full rank on $\mathfrak{n} / \mathfrak{e}(\lambda)$, then τ is infinite.
(3) If K acts with full rank on $\mathfrak{n} / \mathfrak{e}(\lambda)$, but not with full rank on $\mathfrak{n} / \mathfrak{d}(\lambda)$, then τ is a finite direct sum of subrepresentations τ_{ϵ}, such that for each ϵ, either τ_{ϵ} has finite unbounded multiplicity, or τ_{ϵ} is infinite.

We conclude in Section 6 with four examples to illustrate both methods and notations.

1. An \boldsymbol{H}-invariant Orbital Cross-section

Let N be a real, connected, simply connected nilpotent Lie group with Lie algebra \mathfrak{n}. Let \mathfrak{l} be the complexification of \mathfrak{n}, and for $Z \in \mathfrak{l}$ let $\Re Z$ and $\Im Z$ denote the elements in \mathfrak{n} for which $Z=\Re Z+i \Im Z$ (we apply the same notation to complex numbers also.) Choose an ordered basis $\left\{Z_{1}, \ldots, Z_{n}\right\}$ for \mathfrak{l} with the properties that
(i) For each $1 \leq j \leq n, \mathfrak{l}_{j}=\mathbb{C}$-span $\left\{Z_{1}, Z_{2}, \ldots, Z_{j}\right\}$ is an ideal in \mathfrak{l}.
(ii) If $\mathfrak{l}_{j} \neq \overline{\mathfrak{l}_{j}}$ then $\mathfrak{l}_{j+1}=\overline{\mathfrak{l}_{j+1}}$ and $Z_{j+1}=\overline{Z_{j}}$.
(iii) if $\mathfrak{l}_{j}=\overline{\mathfrak{l}}_{j}$ and $\mathfrak{l}_{j-1}=\overline{\mathfrak{l}_{j-1}}$, then $Z_{j} \in \mathfrak{n}$.

We shall find the following notation useful. Define $I=\left\{1 \leq j \leq n \mid \mathfrak{l}_{j}=\overline{\mathfrak{l}}_{j}\right\}$, $I^{\prime}=\{j \in I \mid j-1 \in I\}$, and $I^{\prime \prime}=I-I^{\prime}$. For each $1 \leq j \leq n$ set $j^{\prime}=$ $\max \{k \in I \mid k<j\}$ and $j^{\prime \prime}=\min \{k \in I \mid k \geq j\}$.

An element $X \in \mathfrak{n}$ can be written as $X=z_{1} Z_{1}+z_{2} Z_{2}+\cdots+z_{n} Z_{n}$ and can be identified with the element $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of \mathbb{R}^{n} setting $x_{j}=z_{j}$ if $j \in I^{\prime}$, and $x_{j}=\Re z_{j}, x_{j+1}=\Im z_{j}$, if $j \notin I$. Let \mathfrak{n} have the Lebesgue measure obtained by this identification.

Let \mathfrak{n}^{*} be the linear dual of \mathfrak{n}; elements of \mathfrak{n}^{*} are extended to \mathfrak{l} in the natural way. For $\ell \in \mathfrak{n}^{*}$, write $\ell_{j}=\ell\left(Z_{j}\right)$, and $\ell=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right)$. Note that if $j \notin I$, then $\ell_{j+1}=\overline{\ell_{j}}$. Thus ℓ is identified with an element of \mathbb{C}^{n} and is in turn identified with an element ξ of \mathbb{R}^{n} by setting $\xi_{j}=\ell_{j}$ if $j \in I^{\prime}$, and $\xi_{j}=\Re \ell_{j}, \xi_{j+1}=\Im \ell_{j}$ if $j \notin I$. Let \mathfrak{n}^{*} have the corresponding Lebesgue measure via this identification.

Let H be a closed, abelian subgroup of $\operatorname{Aut}(N)$ with Lie algebra $\mathfrak{h} ; H$ acts linearly on \mathfrak{n} and \mathfrak{n}^{*} as usual, and we denote all actions multiplicatively. We assume that for each $a \in H$, the basis elements Z_{j} are eigenvectors of a,. For each $a \in H$ we set

$$
a Z_{j}=\delta_{j}(a) Z_{j}, 1 \leq j \leq n,
$$

and we denote the differential $\mathbf{d} \delta_{j}$ by γ_{j}. Let $D(n, \mathbb{C})$ be the torus of all diagonal elements in $G L(n, \mathbb{C})$, and for $a \in H$ put

$$
\delta(a)=\operatorname{diag}\left(\delta_{1}(a), \delta_{2}(a), \ldots, \delta_{n}(a)\right) \in D(n, \mathbb{C}) .
$$

We assume that the action of H on \mathfrak{n} is effective, and so we can identify H with its image $\delta(H) \subset D(n, \mathbb{C})$. Let G be the semi-direct product of N by H, and $\mathfrak{g}=\mathfrak{n}+\mathfrak{h}$ its Lie algebra. The inverse of the modular function of G is $|\delta|:=\left|\delta_{1} \delta_{2} \cdots \delta_{n}\right|$. Note that \mathfrak{l}_{j} is an ideal in $\mathfrak{g}_{\mathbb{C}}, 1 \leq j \leq n$. We denote the actions of G on \mathfrak{n} and \mathfrak{n}^{*} multiplicatively as well.

For any subset \mathfrak{t} of \mathfrak{l}, if f is a linear functional defined on $[\mathfrak{l}, \mathfrak{t}]$, then set

$$
\mathfrak{t}^{f}=\{Z \in \mathfrak{g} \mid f[Z, T]=0 \text { holds for every } T \in \mathfrak{t}\}
$$

If \mathfrak{t} is an ideal in \mathfrak{l}, then $\mathfrak{t}^{\mathfrak{f}}$ is a subalgebra of \mathfrak{l}. Recall that for any $\ell \in \mathfrak{n}^{*}$, the Lie algebra $\mathfrak{g}(\ell)$ of its stabilizer $G(\ell)$ in G is \mathfrak{n}^{ℓ}, and the Lie algebra $\mathfrak{n}(\ell)$ of its stabilizer $N(\ell)$ in N is $\mathfrak{n}^{\ell} \cap \mathfrak{n}$. We apply the stratification procedure as described in [7] to the Lie algebra \mathfrak{n}; in [1], it is observed that this procedure does not require that the chosen basis of $\mathfrak{n}_{\mathbb{C}}$ be real (as is the assumption in [7]). Thus we have the following.
(1) To each $\ell \in \mathfrak{n}^{*}$ there is associated a set $\mathbf{e}(\ell) \subset\{1,2, \ldots, n\}$ defined by

$$
\mathbf{e}(\ell)=\left\{1 \leq j \leq n \mid \mathfrak{l}_{j} \not \subset \mathfrak{l}_{j-1}+\mathfrak{l}^{\ell}\right\} .
$$

Note that since $\bar{\ell}=\mathfrak{r}^{\ell}$, then for each index $j, j^{\prime \prime} \in \mathbf{e}(\ell)$ implies $j \in \mathbf{e}(\ell)$. Note also that the number of elements in the index set $\mathbf{e}(\ell)$ is even since it is the dimension of the coadjoint orbit of N through ℓ. For a subset \mathbf{e} of $\{1,2, \ldots, n\}$, the set $\Omega_{\mathbf{e}}=\left\{\ell \in \mathfrak{n}^{*} \mid \mathbf{e}(\ell)=\mathbf{e}\right\}$ is N-invariant. The non-empty $\Omega_{\mathbf{e}}$ are determined by polynomials as follows: to each index set \mathbf{e} one associates the skew-symmetric matrix

$$
M_{\mathbf{e}}(\ell)=\left[\ell\left[Z_{i}, Z_{j}\right]\right]_{i, j \in \mathbf{e}} .
$$

Setting

$$
Q_{\mathbf{e}}(\ell)=\operatorname{det} M_{\mathbf{e}}(\ell)
$$

one has a total ordering \prec on the set $\mathcal{E}=\left\{\mathbf{e} \mid \Omega_{\mathbf{e}} \neq \emptyset\right\}$ such that

$$
\Omega_{\mathbf{e}}=\left\{\ell \in \mathfrak{g}^{*} \mid Q_{\mathbf{e}^{\prime}}(\ell)=0 \text { for all } \mathbf{e}^{\prime} \prec \mathbf{e}, \text { and } Q_{\mathbf{e}}(\ell) \neq 0\right\} .
$$

(2) Set $d=|\mathbf{e}| / 2$. To each ℓ there is associated a "polarizing sequence" of subalgebras

$$
\mathfrak{l}=\mathfrak{p}_{0}(\ell) \supset \mathfrak{p}_{1}(\ell) \supset \cdots \supset \mathfrak{p}_{d}(\ell)=\mathfrak{p}(\ell)
$$

and an index sequence pair $\mathbf{i}(\ell)=\left\{i_{1}<i_{2}<\cdots<i_{d}\right\}$ and $\mathbf{j}(\ell)=\left\{j_{1}, j_{2}, \ldots, j_{d}\right\}$, having values in $\mathbf{e}(\ell)$, defined recursively for $1 \leq k \leq d$ by

$$
\begin{gathered}
i_{k}=\min \left\{1 \leq j \leq n \mid \mathfrak{l}_{j} \cap \mathfrak{p}_{k-1}(\ell) \not \subset \mathfrak{p}_{k-1}(\ell)^{\ell}\right\}, \\
\mathfrak{p}_{k}(\ell)=\left(\mathfrak{p}_{k-1}(\ell) \cap \mathfrak{l}_{i_{k}}\right)^{\ell} \cap \mathfrak{p}_{k-1}(\ell),
\end{gathered}
$$

and

$$
j_{k}=\min \left\{1 \leq j \leq n \mid \mathfrak{l}_{j} \cap \mathfrak{p}_{k-1}(\ell) \not \subset \mathfrak{p}_{k}(\ell)\right\}
$$

For each $k, i_{k}<j_{k}$, and $\mathbf{e}(\ell)$ is the disjoint union of the values of $\mathbf{i}(\ell)$ and $\mathbf{j}(\ell)$. The subalgebra $\mathfrak{p}(\ell)$ is the complex Vergne polarization associated to ℓ and to the given Jordan- Hölder sequence for \mathfrak{l}. Note that $\overline{\mathfrak{p}(\ell)}$ does not necessarily coincide with $\mathfrak{p}(\ell)$.

Since $\mathbf{i}(\ell)$ must be increasing, it is determined by $\mathbf{e}(\ell)$ and $\mathbf{j}(\ell)$. For any such splitting of \mathbf{e} into such a sequence pair (\mathbf{i}, \mathbf{j}) we have the N-invariant set $\Omega_{\mathbf{e}, \mathbf{j}}=\left\{\ell \in \Omega_{\mathbf{e}} \mid \mathbf{j}(\ell)=\mathbf{j}\right\}$. We refer to these sets as "fine layers", and to the collection of non-empty $\Omega_{\mathbf{e}, \mathbf{j}}$ as the fine stratification of \mathfrak{n}^{*}. For $1 \leq k \leq d$, if we set

$$
M_{\mathbf{e}, k}(\ell)=\left[\ell\left[Z_{i}, Z_{j}\right]\right]_{i, j \in\left\{i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{k}, j_{k}\right\}}
$$

let $\mathbf{P f}_{\mathbf{e}, k}(\ell)$ denote the Pfaffian of $M_{\mathbf{e}, k}(\ell)$, and let

$$
\mathbf{P}_{\mathbf{e}, \mathbf{j}}(\ell)=\mathbf{P} \mathbf{f}_{\mathbf{e}, 1}(\ell) \mathbf{P} \mathbf{f}_{\mathbf{e}, 2}(\ell) \cdots \mathbf{P}_{\mathbf{e}, d}(\ell)
$$

Then there is a total ordering $\prec \prec$ on the pairs \mathbf{e}, \mathbf{j} such that

$$
\Omega_{\mathbf{e}, \mathbf{j}}=\left\{\ell \in \mathfrak{g}^{*} \mid \mathbf{P}_{\mathbf{e}^{\prime}, \mathbf{j}^{\prime}}(\ell)=0 \text { for all }\left(\mathbf{e}^{\prime}, \mathbf{j}^{\prime}\right) \prec \prec(\mathbf{e}, \mathbf{j}) \text { and } \mathbf{P}_{\mathbf{e}, \mathbf{j}}(\ell) \neq 0\right\}
$$

Lemma 1.1. For $a \in H$ and $1 \leq k \leq d$, one has

$$
\mathbf{P f}_{\mathbf{e}, k}(a \cdot \ell)=\left(\prod_{l=1}^{k} \delta_{i_{l}}(a)^{-1} \delta_{j_{l}}(a)^{-1}\right) \mathbf{P} \mathbf{f}_{\mathbf{e}, k}(\ell)
$$

In particular, the fine layers are H-invariant.
Proof. Let $a \in H$ and set $\mathfrak{s}_{k}=\operatorname{span}\left\{Z_{i_{1}}, Z_{j_{1}}, \ldots, Z_{i_{k}}, Z_{j_{k}}\right\}$. Let $\sigma_{k}(W, \ell)$ denote the projection of W into the subspace \mathfrak{s}_{k}^{ℓ} parallel to \mathfrak{s}_{k}. It is easily seen that $a \cdot \mathfrak{s}_{k}^{\ell}=\left(a \cdot \mathfrak{s}_{k}\right)^{a \cdot \ell}$ and since our basis consists of eigenvectors for a, then $a \cdot \mathfrak{s}_{k}=\mathfrak{s}_{k}$ and we have $a \cdot \mathfrak{s}_{k}^{\ell}=\mathfrak{s}_{k}^{a \cdot \ell}$. Now it follows that $a \circ \sigma_{k}(\cdot, a \cdot \ell) \circ a^{-1}=\sigma_{k}(\cdot, \ell)$ and hence for any $W \in \mathfrak{l}, a^{-1} \cdot \sigma_{k}(W, a \cdot \ell)=\sigma_{k}\left(a^{-1} \cdot W, \ell\right), 1 \leq k \leq d$. In particular, we have

$$
\begin{aligned}
a \cdot \ell\left[\sigma_{k-1}\left(Z_{i_{k}}, a \cdot \ell\right), \sigma_{k-1}\left(Z_{j_{k}}, a \cdot \ell\right)\right] & =\ell\left[\sigma_{k-1}\left(a^{-1} \cdot Z_{i_{k}}, \ell\right), \sigma_{k-1}\left(a^{-1} \cdot Z_{j_{k}}, \ell\right)\right] \\
& =\delta_{i_{k}}(a)^{-1} \delta_{j_{k}}(a)^{-1} \ell\left[\sigma_{k-1}\left(Z_{i_{k}}, \ell\right), \sigma_{k-1}\left(Z_{j_{k}}, \ell\right)\right]
\end{aligned}
$$

But $\mathbf{P f}_{\mathbf{e}, 1}(\ell)=\ell\left[Z_{i_{1}}, Z_{j_{1}}\right]$ and

$$
\mathbf{P f}_{\mathbf{e}, k}(\ell)=\mathbf{P f}_{\mathbf{e}, k-1}(\ell) \ell\left[\sigma_{k-1}\left(Z_{i_{k}}, \ell\right), \sigma_{k-1}\left(Z_{j_{k}}, \ell\right)\right], k=2,3, \ldots d
$$

The desired formula follows.

Now suppose that $Z_{j} \in \mathfrak{n}$ holds for $1 \leq j \leq n$, and fix a fine layer Ω. Then it is well-known that a cross-section for the coadjoint orbits in Ω is $\Omega \cap\left\{\ell \mid \ell_{j}=0, \forall j \in \mathbf{e}\right\}$, but it is clear that such a cross-section is not necessarily H-invariant if H has non-real roots. However, if each Z_{j} is an eigenvector for the elements $a \in H$, then we shall see that the methods of $[1,7]$ obtain an H-invariant cross-section.

We begin by describing the construction of [7, Lemma 1.3] (see also [5, Lemma 1.2.1]), which proceeds by means of a case-by-case analysis. To this end, and following the notation of [7, page 248], we define subsets of $K=\{1,2, \ldots d\}$ as follows. We set $K_{0}=\left\{1 \leq k \leq d \mid i_{k}-1 \in I\right.$ and $\left.i_{k} \in I\right\}, K_{1}=\{1 \leq$ $k \leq d \mid i_{k} \notin I$ and $\left.i_{k}+1 \notin \mathbf{e}\right\}, K_{2}=\left\{1 \leq k \leq d \mid i_{k}-1 \in \mathbf{j} \backslash I\right\}$, $K_{3}=\left\{1 \leq k \leq d \mid i_{k} \notin I\right.$ and $\left.i_{k}+1 \in \mathbf{j}\right\}, K_{4}=\left\{1 \leq k \leq d \mid i_{k} \notin I\right.$ and $\left.i_{k}+1 \in \mathbf{i}\right\}$, and $K_{5}=\left\{1 \leq k \leq d \mid i_{k}-1 \in \mathbf{i} \backslash I\right\}$. One observes that if $k \in K_{2}$, then $i_{k}-1=j_{h}$ where $1 \leq h<k$. Second, it is shown in [7, page 252] that if $k \in K_{3}$ then $i_{k}+1=j_{k}$. Third, note that the fact that \mathbf{i} is an increasing sequence implies that if $k \in K_{4}$, then $i_{k}+1=i_{k+1}$, and $K_{5}=K_{4}+1$. It follows from these observations that $K=\cup_{N=0}^{5} K_{N}$ as a disjoint union. We have the following.

Lemma 1.2. ([1, Lemma 3.1], [7, Lemma 1.3]) Let \mathfrak{n} be a nilpotent Lie algebra over \mathbb{R}, and choose an adaptable basis for $\mathfrak{l}=\mathfrak{n}_{c}$. Let $\Omega=\Omega_{\mathrm{e}, \mathfrak{j}}$ be a fine layer with $2 d$ the dimension of the G-orbits in Ω. Assume $d>0$. Then one has a construction for rational functions $V_{k}: \Omega \rightarrow \mathfrak{l}$ and $U_{k}: \Omega \rightarrow \mathfrak{l}, 1 \leq k \leq d$, that satisfy the following conditions.
(i) For each $\ell \in \Omega, U_{k}(\ell) \in \mathfrak{l}_{j_{k}^{\prime \prime}}-\mathfrak{l}_{j_{k}^{\prime}}$ and $V_{k}(\ell) \in \mathfrak{l}_{i_{k}^{\prime \prime}}-\mathfrak{l}_{i_{k}^{\prime}}$
(ii) $\ell\left[U_{h}(\ell), U_{k}(\ell)\right]=\ell\left[V_{h}(\ell), V_{k}(\ell)\right]=0,1 \leq h, k \leq d$.
(iii) $\ell\left[U_{h}(\ell), V_{k}(\ell)\right]=0$ if and only if $h \neq k, 1 \leq h, k \leq d$.
(iv) There is a covering \mathcal{C} of Ω by finitely many Zariski-open subsets and for each $O \in \mathcal{C}$ and $1 \leq k \leq d$, a continuous function $\phi_{k}^{O}: O \rightarrow \mathbb{T}$, such that for each $\ell \in O$, the elements $\left\{\phi_{k}^{O}(\ell)^{-1} U_{k}(\ell)\right.$ and $\phi_{k}^{O}(\ell)^{-1} V_{k}(\ell)$ are real (i.e., they belong to n.)
(v) For $1 \leq k \leq d$, if $k \in K_{0} \cup K_{1} \cup K_{2}$, then $\mathfrak{h}_{k}(\ell)=\mathfrak{h}_{k-1}(\ell) \cap\left\{V_{k}(\ell)\right\}^{\ell}$ holds for each $\ell \in \Omega$. If $k \in K_{4}$, then $\mathfrak{h}_{k+1}(\ell)=\mathfrak{h}_{k-1}(\ell) \cap\left\{V_{k}(\ell), V_{k+1}(\ell)\right\}^{\ell}$ holds for each $\ell \in \Omega$.

Set $\mathfrak{m}_{0}(\ell)=(0)$, and for each $1 \leq k \leq d$, set

$$
\mathfrak{m}_{k}(\ell)=\mathbb{C}-\operatorname{span}\left\{V_{1}(\ell), V_{2}(\ell), \ldots, V_{k}(\ell), U_{1}(\ell), U_{2}(\ell), \ldots, U_{k}(\ell)\right\}
$$

so that for each $\ell \in \Omega, \mathfrak{l}=\mathfrak{m}_{k}(\ell) \oplus \mathfrak{m}_{k}(\ell)^{\ell}$. For $Z \in \mathfrak{l}, \ell \in \Omega$, let $\rho_{k}(\cdot, \ell)$ be the projection of \mathfrak{l} onto $\mathfrak{m}_{k}(\ell)^{\ell}$ parallel to $\mathfrak{m}_{k}(\ell)$, with $\rho_{0}(\cdot, \ell)$ the identity mapping.

It follows easily from the preceding that $\rho_{k}(\cdot, \ell)$ has the following properties (for each $1 \leq k \leq d, \ell \in \Omega)$.
(a) For each $Z \in \mathfrak{l}, \rho_{k}(\bar{Z}, \ell)=\overline{\rho_{k}(Z, \ell)}$.
(b) ρ_{k} satisfies the recursion formula

$$
\rho_{k}(Z, \ell)=\rho_{k-1}(Z, \ell)-\frac{\ell\left[\rho_{k-1}(Z, \ell), U_{k}(\ell)\right]}{\ell\left[V_{k}(\ell), U_{k}(\ell)\right]} V_{k}(\ell)-\frac{\ell\left[\rho_{k-1}(Z, \ell), V_{k}(\ell)\right]}{\ell\left(\left[U_{k}(\ell), V_{k}(\ell)\right]\right.} U_{k}(\ell)
$$

(c) $\rho_{k}(\mathfrak{l}, \ell) \subset \mathfrak{r}_{i_{k+1}^{\prime}}^{\ell}$, holds for $1 \leq k \leq d-1$ and $\rho_{d}(\mathfrak{l}, \ell) \subset \mathfrak{l}(\ell)$. Also, $\rho_{k}\left(\mathfrak{l}_{j}, \ell\right) \subset$ $\mathfrak{l}_{j^{\prime \prime}}, 1 \leq j \leq n$.
(d) For any $W, Z \in \mathfrak{l}, \ell\left[\rho_{k}(W, \ell), \rho_{k}(Z, \ell)\right]=\ell\left[W, \rho_{k}(Z, \ell)\right]=\ell\left[\rho_{k}(W, \ell), Z\right]$

There are two more properties of the function ρ_{k} that emerge from the above and that we shall need later.

Lemma 1.3. [1, Lemma 3.2] One has each of the following.
(a) If $k \notin K_{4}$, then $\mathfrak{m}_{k}(\ell)^{\ell} \subset \mathfrak{p}_{k}(\ell)$, and hence (by definition) $\rho_{k}(\cdot, \ell)$ maps \mathfrak{l} into $\mathfrak{p}_{k}(\ell)$.
(b) For each $1 \leq k \leq d$, $\rho_{k-1}(\cdot, \ell)$ maps $\mathfrak{l}_{i_{k}^{\prime}}$ into $\mathfrak{~}^{\ell}$.

An implicit part of the proof of [7, Lemma 1.3] is the construction of rational functions $Z_{i_{k}}: \Omega \rightarrow \mathbf{C}$-span $\left\{Y_{1}, Y_{2}\right\}$ and $Z_{j_{k}}: \Omega \rightarrow \mathbf{C}$-span $\left\{X_{1}, X_{2}\right\}$ such that $\left.V_{k}(\ell)=\rho_{k-1}\left(Z_{i_{k}}(\ell), \ell\right)\right)$ and $\left.U_{k}(\ell)=\rho_{k-1}\left(Z_{j_{k}}(\ell), \ell\right)\right)$. An important insight of [1] is the utility of these functions in describing coadjoint orbit cross-sections. They are defined case by case, as follows.
$k \in K_{0}$. We have $Z_{i_{k}}(\ell)=Z_{i_{k}}$. (Note that $Z_{i_{k}}$ is real in this case.)
$k \in K_{1}$. We have

$$
Z_{i_{k}}(\ell)=\frac{1}{2}\left(\ell\left[\rho_{k-1}\left(Z_{j_{k}}, \ell\right), \bar{Z}_{i_{k}}\right] Z_{i_{k}}+\ell\left[\rho_{k-1}\left(\bar{Z}_{j_{k}}, \ell\right), Z_{i_{k}}\right] \bar{Z}_{i_{k}}\right)
$$

$k \in K_{2}$. Here we have $i_{k}-1=j_{r}$ for some $1 \leq r<k$ and we have

$$
Z_{i_{k}}(\ell)=\frac{1}{2 i}\left(\ell\left[\bar{Z}_{j_{r}}, V_{r}(\ell)\right] Z_{j_{r}}-\ell\left[Z_{j_{r}}, V_{r}(\ell)\right] \bar{Z}_{j_{r}}\right)
$$

$k \in K_{3}$. Here we can take $Z_{i_{k}}(\ell)=\Im Z_{i_{k}}$.
$k \in K_{4}$. It is not necessarily true here that $Z_{j_{k+1}}=\bar{Z}_{j_{k}}$, but it is true that $j_{k+1}>j_{k}{ }^{\prime}$. Accordingly this case splits into two subcases.
Subcase (a). $Z_{j_{k+1}}=\bar{Z}_{j_{k}}$. Here $Z_{i_{k}}(\ell)=\Re Z_{i_{k}}$ and $Z_{i_{k+1}}(\ell)=\Im Z_{i_{k}}$.

Subcase (b): $Z_{j_{k+1}} \neq \bar{Z}_{j_{k}}$. In this case one has $j_{k+1}>j_{k}^{\prime \prime}$ ([7, page 250]). For the index i_{k}, this case is the same as $k \in K_{1}$: one has

$$
Z_{i_{k}}(\ell)=\frac{1}{2}\left(\ell\left[\rho_{k-1}\left(Z_{j_{k}}, \ell\right), \bar{Z}_{i_{k}}\right] Z_{i_{k}}+\ell\left[\rho_{k-1}\left(\bar{Z}_{j_{k}}, \ell\right), Z_{i_{k}}\right] \bar{Z}_{i_{k}}\right)
$$

As for the index i_{k+1}, we define

$$
Z_{i_{k+1}}(\ell)=\frac{1}{2 i}\left(\ell\left[\rho_{k-1}\left(Z_{j_{k}}, \ell\right), \bar{Z}_{i_{k}}\right] Z_{i_{k}}-\ell\left[\rho_{k-1}\left(\bar{Z}_{j_{k}}, \ell\right), Z_{i_{k}}\right] \bar{Z}_{i_{k}}\right)
$$

Note that in this subcase because $j_{k+1}>j_{k}^{\prime \prime}$, it follows that $\rho_{k}\left(Z_{i_{k+1}}(\ell), \ell\right)=$ $\rho_{k-1}\left(Z_{i_{k+1}}(\ell), \ell\right)$, that is, that $V_{k+1}(\ell)=\rho_{k-1}\left(Z_{i_{k+1}}(\ell), \ell\right)$.

For future reference we write $K_{4}=K_{4 a} \cup K_{4 b}$ and $K_{5}=K_{5 a} \cup K_{5 b}$ according to the subcases (a) and (b) above. The covering sets referenced in Proposition 1.2 are formed by writing

$$
Z_{i_{k}}(\ell)=\beta_{1}(\ell) \Re Z_{i_{k}}+\beta_{2}(\ell) \Im Z_{i_{k}}
$$

for each $k \in K_{1} \cup K_{4 b}$. For each such k, select $t_{k}=1$ or $t_{k}=2$. Then a covering set $O=O_{t}$ is a set $O_{t}=\left\{\ell \in \Omega \mid \beta_{t_{k}}(\ell) \neq 0, k \in K_{1} \cup K_{4 b}\right\}$.

Now that we have defined $Z_{i_{k}}(\ell)$, and hence $V_{k}(\ell)$, for all possible cases, it is shown in [5] that one definition for $Z_{j_{k}}(\ell)$ will suffice. Thus in each case above we can take

$$
Z_{j_{k}}(\ell)=\frac{1}{2}\left(\ell\left[\bar{Z}_{j_{k}}, V_{k}(\ell)\right] Z_{j_{k}}+\ell\left[Z_{j_{k}}, V_{k}(\ell)\right] \bar{Z}_{j_{k}}\right)
$$

The following three results are proved in [1].
Lemma 1.4. Let $\mathfrak{p}=\mathfrak{p}_{d}(\ell)$ be the complex Vergne polarization associated with the chosen adaptable basis. Then

$$
\mathfrak{p}=\mathfrak{p} \cap \overline{\mathfrak{p}}+\operatorname{span}\left\{\rho_{k-1}\left(Z_{i_{k}}, \ell\right) \mid k \in K_{3}\right\} .
$$

Lemma 1.5. [1, Lemma 3.3] Let Ω be a fine layer whose orbits have dimension $2 d>0$. Let $k, 1 \leq k \leq d$ be a subindex such that $k \notin K_{5}$, let $X \in \mathfrak{l}_{j_{k}^{\prime \prime}}-\mathfrak{l}_{j_{k}^{\prime}}, Y \in$ $\mathfrak{l}_{i_{k}^{\prime \prime}}-\mathfrak{l}_{i_{k}^{\prime}}$, and set $\beta(\ell)=\ell\left[X, \rho_{k-1}(Y, \ell)\right], \ell \in \Omega$. Then β is N-invariant on Ω. In particular, the functions $Z_{j}(\ell), j \in \mathbf{e}$ defined above are N-invariant, and the functions $\ell \mapsto \ell\left[Z_{j}, V_{k}(\ell)\right]$ are N-invariant. Moreover, each covering set O is N-invariant, and the continuous functions ϕ_{k}^{O} are N-invariant.

Theorem 1.1. [1, Theorem 4.5 (specialized to the nilpotent case)] The subset

$$
\Lambda=\left\{\ell \in \Omega \mid \ell\left(Z_{j}(\ell)\right)=0, \text { for all } j \in \mathbf{e}\right\}
$$

is a cross-section for the coadjoint orbits in Ω.

Note that even in the generic layer, the above cross-section need not be flat; see Section 6, Example 6.2. The following consequence of our cross-section description shall be useful later.
Corollary 1.2. For each $Z \in \mathfrak{l}, \ell \in \Lambda$, we have $\ell\left(\rho_{k}(Z, \ell)\right)=\ell(Z), 0 \leq k \leq d$.
Proof. The result is true for $k=0$ by definition of ρ_{0}. Assume that the result is true for $k-1$. Then $\ell\left(U_{k}(\ell)\right)=\ell\left(\rho_{k-1}\left(Z_{j_{k}}(\ell), \ell\right)\right)=\ell\left(Z_{j_{k}}(\ell)\right)=0$ and similarly $\ell\left(V_{k}(\ell)\right)=0$. Hence

$$
\ell\left(\rho_{k}(Z, \ell)\right)=\ell\left(\rho_{k-1}(Z, \ell)-c(\ell) U_{k}(\ell)-d(\ell) V_{k}(\ell)\right)=\ell\left(\rho_{k-1}(Z, \ell)\right)=\ell(Z)
$$

We have seen in Lemma 1.1 that the fine layers Ω are invariant under that action of H. We claim that the cross-sections Λ are H-invariant also. This claim will follow from the next result.

Lemma 1.6. Let Ω be a fine layer with $d>0$. For $\ell \in \Omega$, we have the following.
(1) If $k \geq 1$ and $k \notin K_{3} \cup K_{4 a} \cup K_{5 a}$, then we have homomorphisms $\nu_{i_{k}}: H \rightarrow \mathbb{C}^{*}$ and $\nu_{j_{k}}: H \rightarrow \mathbb{C}^{*}$ such that for any $a \in H, a^{-1} Z_{i_{k}}(a \ell)=\nu_{i_{k}}(a) Z_{i_{k}}(\ell)$ and $a^{-1} Z_{j_{k}}(a \ell)=\nu_{j_{k}}(a) Z_{j_{k}}(\ell)$. Moreover, the functions $\nu_{i_{k}}$ and $\nu_{j_{k}}$ are defined as follows. One has $\nu_{j_{k}}(a)=\left|\delta_{j_{k}}(a)\right|^{-2} \nu_{i_{k}}(a)$ in all cases, while $\nu_{i_{k}}$ is defined casewise by
(i) $\nu_{i_{k}}(a)=\delta_{i_{k}}(a)^{-1}$, if $k \in K_{0}$,
(ii) $\nu_{i_{k}}(a)=\left|\delta_{i_{k}}(a)\right|^{-2} \delta_{j_{k}}(a)^{-1}$, if $k \in K_{1} \cup K_{4 b}$,
(iii) $\nu_{i_{k}}(a)=\nu_{i_{k-1}}(a)$, if $k \in K_{5 b}$ (whence $k-1 \in K_{4 b}$), and
(iv) $\nu_{i_{k}}(a)=\left|\delta_{j_{r}}(a)\right|^{-2} \delta_{i_{r}}(a)$, if $k \in K_{2}$ (where $r<k$ is defined by $i_{k}-1=j_{r} \notin I$.)
(2) If $k \notin K_{4 a}$, then
(a) $\mathfrak{m}_{k}(a \ell)=a \mathfrak{m}_{k}(\ell)$,
(b) $\mathfrak{m}_{k}(a \ell)^{a \ell}=a\left(\mathfrak{m}_{k}(\ell)^{\ell}\right)$, and
(c) $\rho_{k}\left(a^{-1} W, \ell\right)=a^{-1} \rho_{k}(W, a \ell)$ holds for each $W \in \mathfrak{l}$.

Proof. We begin by establishing that for each k, the statements (2b) and (2c) follow from (2a). Suppose that for some $0 \leq k \leq d$, $a \in H$, we have $\mathfrak{m}_{k}(a \ell)=a \mathfrak{m}_{k}(\ell)$. Then $W \in \mathfrak{m}(a \ell)^{a \ell}$ iff $a \ell[W, a Z]=0$ holds for all $Z \in \mathfrak{m}_{k}(\ell)$, iff $\ell\left[a^{-1} W, Z\right]=0$ holds for all $Z \in \mathfrak{m}_{k}(\ell)$, iff $a^{-1} W \in \mathfrak{m}_{k}(\ell)^{\ell}$. Now set $P=$ $a^{-1} \circ \rho_{k}(\cdot, a \ell) \circ a$; then P is a projection, and the preceding shows that the image
of P is $\mathfrak{m}_{k}(\ell)^{\ell}$. If $W \in \mathfrak{m}_{k}(\ell)$, then $a W \in \mathfrak{m}_{k}(a \ell)$ and so by definition of $\rho_{k}(\cdot, a \ell)$ we have $\rho_{k}(a W, a \ell)=0$. Hence $P(W)=a^{-1} \rho_{k}(a W, a \ell)=0$ and it follows that $P=\rho_{k}(\cdot, \ell)$. The identity (2c) follows.

Secondly, we show that in (1), if one assumes that (2c) holds for $k-1$ and that $a^{-1} Z_{i_{k}}(a \ell)=\nu_{i_{k}}(a) Z_{i_{k}}(\ell)$ holds, then the identities $a^{-1} V_{k}(a \ell)=\nu_{i_{k}}(a) V_{k}(\ell)$, $a^{-1} Z_{j_{k}}(a \ell)=\nu_{j_{k}}(a) Z_{j_{k}}(\ell)$, and $a^{-1} U_{k}(a \ell)=\nu_{j_{k}}(a) U_{k}(\ell)$ follow.

Suppose that for some $1 \leq k \leq d, k \notin K_{3} \cup K_{4 a} \cup K_{5 a}, a \in H$, we have $a^{-1} Z_{i_{k}}(a \ell)=\nu_{i_{k}}(a) Z_{i_{k}}(\ell)$ and that $\rho_{k-1}\left(a^{-1} W, \ell\right)=a^{-1} \rho_{k-1}(W, a \ell)$ holds for each $W \in \mathfrak{l}$. We then have $a^{-1} \rho_{k-1}\left(Z_{j_{k}}, a \ell\right)=\delta_{j_{k}}(a) \rho_{k-1}\left(Z_{j_{k}}, \ell\right)$, and

$$
\begin{aligned}
a^{-1} V_{i_{k}}(a \ell) & =a^{-1} \rho_{k-1}\left(Z_{i_{k}}(a \ell), a \ell\right)=\rho_{k-1}\left(a^{-1} Z_{i_{k}}(a \ell), \ell\right) \\
& =\rho_{k-1}\left(\nu_{i_{k}}(a) Z_{i_{k}}(\ell), \ell\right) \\
& =\nu_{i_{k}}(a) V_{k}(\ell)
\end{aligned}
$$

Using the formula for $Z_{j_{k}}(\ell)$ given above, we have

$$
\begin{aligned}
a^{-1} Z_{j_{k}}(a \ell)= & a^{-1}\left\{\frac{1}{2}\left(a \ell\left[\bar{Z}_{j_{k}}, V_{k}(a \ell)\right] Z_{j_{k}}+a \ell\left[Z_{j_{k}}, V_{k}(a \ell)\right] \bar{Z}_{j_{k}}\right)\right\} \\
= & \frac{1}{2}\left(\ell\left[a^{-1} \bar{Z}_{j_{k}}, a^{-1} V_{k}(a \ell)\right] a^{-1} Z_{j_{k}}+\ell\left[a^{-1} Z_{j_{k}}, a^{-1} V_{k}(a \ell)\right] a^{-1} \bar{Z}_{j_{k}}\right) \\
= & \frac{1}{2}\left(\ell\left[\bar{\delta}_{j_{k}}(a)^{-1} \bar{Z}_{j_{k}}, \nu_{i_{k}}(a) V_{k}(\ell)\right] \delta_{j_{k}}(a)^{-1} Z_{j_{k}}\right. \\
& \left.\quad+\ell\left[\delta_{j_{k}}(a)^{-1} Z_{j_{k}}, \nu_{i_{k}}(a) V_{k}(\ell)\right] \bar{\delta}_{j_{k}}(a)^{-1} \bar{Z}_{j_{k}}\right) \\
= & \left|\delta_{j_{k}}(a)\right|^{-2} \nu_{i_{k}}(a) Z_{j_{k}}(\ell) .
\end{aligned}
$$

Now just as the identity for $V_{k}(\ell)$, the identity $a^{-1} U_{k}(a \ell)=\nu_{j_{k}}(a) U_{k}(\ell)$ follows.
Having established these preliminary relations between the above identities, we proceed by induction on $k, 0 \leq k \leq d$. The statements (1) and (2) are trivially true when $k=0$. Suppose then that $k \geq 1$ and that the lemma holds for smaller k. Observe that if $k \notin K_{3} \cup K_{4 a} \cup K_{5 a}$, then $k-1 \notin K_{4 a}$, and hence we have the identity (2c) for $k-1$.

Therefore, in light of the relations established above, it remains to prove the following statements for k :
(a) if $k \notin K_{3} \cup K_{4 a} \cup K_{5 a}$, then for $a \in H, a^{-1} Z_{i_{k}}(a \ell)=\nu_{i_{k}}(a) Z_{i_{k}}(\ell)$ where $\nu_{i_{k}}$ is as claimed, and
(b) if $k \notin K_{4 a}$, then $\mathfrak{m}_{k}(a \ell)=a \mathfrak{m}_{k}(\ell)$ holds for $a \in H$.

We consider several cases.
Case 0. Suppose that $k \in K_{0}$. In this case $Z_{i_{k}}(\ell)=Z_{i_{k}}$, so (a) is clear. As for (b), in this case we have $\mathfrak{m}_{k}(\ell)=\mathfrak{m}_{k-1}(\ell)+\left(V_{k}(\ell), U_{k}(\ell)\right)$. By induction and the above observations we have $\mathfrak{m}_{k}(a \ell)=\mathfrak{m}_{k-1}(a \ell)+\left(V_{k}(a \ell), U_{k}(a \ell)\right)=$ $a \mathfrak{m}_{k-1}(\ell)+a\left(\nu_{i_{k}}(a) V_{k}(\ell), \nu_{j_{k}}(a) U_{k}(\ell)\right)=a \mathfrak{m}_{k}(\ell)$, so (b) is proved.

Case 1. Suppose that $k \in K_{1}$. Here again $k-1 \notin K_{4 a}$, so we have the identity (2c) for $k-1$.

$$
\begin{aligned}
& a^{-1} Z_{i_{k}}(a \ell)=\frac{1}{2}\left(a \ell\left[Z_{j_{k}}, \rho_{k-1}\left(\bar{Z}_{i_{k}}, a \ell\right)\right] a^{-1} Z_{i_{k}}+a \ell\left[Z_{j_{k}}, \rho_{k-1}\left(Z_{i_{k}}, a \ell\right)\right] a^{-1} \bar{Z}_{i_{k}}\right) \\
& \quad=\frac{1}{2}\left(\ell\left[a^{-1} Z_{j_{k}}, a^{-1} \rho_{k-1}\left(\bar{Z}_{i_{k}}, a \ell\right)\right] a^{-1} Z_{i_{k}}+\ell\left[a^{-1} Z_{j_{k}}, a^{-1} \rho_{k-1}\left(Z_{i_{k}}, a \ell\right)\right] a^{-1} \bar{Z}_{i_{k}}\right) \\
& \quad=\frac{1}{2}\left(\ell\left[a^{-1} Z_{j_{k}}, \rho_{k-1}\left(a^{-1} \bar{Z}_{i_{k}}, \ell\right)\right] a^{-1} Z_{i_{k}}+\ell\left[a^{-1} Z_{j_{k}}, \rho_{k-1}\left(a^{-1} Z_{i_{k}}, \ell\right)\right] a^{-1} \bar{Z}_{i_{k}}\right) \\
& \quad=\left|\delta_{i_{k}}(a)\right|^{-2} \delta_{j_{k}}(a)^{-1} \frac{1}{2}\left(\ell\left[Z_{j_{k}}, \rho_{k-1}\left(\bar{Z}_{i_{k}}, \ell\right)\right] Z_{i_{k}}+\ell\left[Z_{j_{k}}, \rho_{k-1}\left(Z_{i_{k}}, \ell\right)\right] \bar{Z}_{i_{k}}\right) \\
& \quad=\nu_{i_{k}}(a) Z_{i_{k}}(\ell)
\end{aligned}
$$

where $\nu_{i_{k}}(a)=\left|\delta_{i_{k}}(a)\right|^{-2} \delta_{j_{k}}(a)^{-1}$. Thus (a) is proved. As for (b), we have $\mathfrak{m}_{k}(\ell)=\mathfrak{m}_{k-1}(\ell)+\left(V_{k}(\ell), U_{k}(\ell)\right)$ just as in Case 0, and the proof of (b) is the same as that case.

Case 2. Suppose that $k \in K_{2}$. Let $i_{k}-1=j_{r}$ where $r<k$. Observe that in this case $r \notin K_{3} \cup K_{4 a} \cup K_{5 a}$, and hence we have the identity $a^{-1} V_{r}(a \ell)=\nu_{i_{r}}(a) V_{r}(\ell)$. In a similar way as Case 1 we find

$$
\begin{aligned}
a^{-1} Z_{i_{k}}(a \ell) & =\frac{1}{2 i}\left(\ell\left[a^{-1} \bar{Z}_{j_{r}}, a^{-1} V_{r}(a \ell)\right] a^{-1} Z_{j_{r}}-\ell\left[a^{-1} Z_{j_{r}}, a^{-1} V_{r}(a \ell)\right] a^{-1} \bar{Z}_{j_{r}}\right) \\
& =\nu_{i_{k}}(a) Z_{i_{k}}(\ell)
\end{aligned}
$$

where in this case $\nu_{i_{k}}(\ell)=\left|\delta_{j_{r}}(a)\right|^{-2} \delta_{i_{r}}(a)^{-1}$. The proof of the identity (b) is the same as the preceding cases.

Case 3. Suppose that $k \in K_{3}$, so that $Z_{j_{k}}=\bar{Z}_{i_{k}}$. Here we need only prove that (b) holds, and the point here (as in the cases where $k \in K_{4 a}$ and $k \in K_{5 a}$ also) is that $\mathfrak{m}_{k}(\ell)$ can be rewritten in a more convenient form. Indeed, since

$$
V_{k}(\ell)=\frac{1}{2 i}\left(\rho_{k-1}\left(Z_{i_{k}}, \ell\right)-\rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right)
$$

and

$$
U_{k}(\ell)=\frac{1}{2}\left(\rho_{k-1}\left(Z_{i_{k}}, \ell\right)+\rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right),
$$

then we have

$$
\mathfrak{m}_{k}(\ell)=\mathfrak{m}_{k-1}(\ell)+\left(\rho_{k-1}\left(Z_{i_{k}}, \ell\right), \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right) .
$$

Now as in prior cases, $k-1 \notin K_{4 a}$ so we have the identity (2c) for $k-1$. Hence $a^{-1} \rho_{k-1}\left(Z_{i_{k}}, a \ell\right)=\delta_{i_{k}}(a)^{-1} \rho_{k-1}\left(Z_{i_{k}}, \ell\right)$ and $a^{-1} \rho_{k-1}\left(Z_{j_{k}}, a \ell\right)=\delta_{j_{k}}(a)^{-1} \rho_{k-1}\left(Z_{j_{k}}, \ell\right)$ and

$$
\begin{aligned}
a^{-1} \mathfrak{m}_{k}(a \ell) & =a^{-1} \mathfrak{m}_{k-1}(a \ell)+\left(a^{-1} \rho_{k-1}\left(Z_{i_{k}}, a \ell\right), s^{-1} \rho_{k-1}\left(Z_{j_{k}}, a \ell\right)\right) \\
& =\mathfrak{m}_{k-1}(\ell)+\left(\delta_{i_{k}}(a)^{-1}\left(Z_{i_{k}}, \ell\right), \delta_{j_{k}}(a)^{-1} \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right) \\
& =\mathfrak{m}_{k}(\ell) .
\end{aligned}
$$

Case 4. Suppose that $k \in K_{4 b}$. We have $k-1 \notin K_{4 a}$ and since the formulae for $Z_{i_{k}}(\ell)$ and $\mathfrak{m}_{k}(\ell)$ are the same as Case 1 , the proof in this case is identical to that of Case 1 as well.

Case 5. Suppose that $k \in K_{5}$. Note that in this case we have $k-2 \notin K_{4 a}$. We consider two subcases.

Subcase 5(a). Suppose that $k \in K_{5 a}$. By construction, the complex span of the elements $\left.V_{k-1}(\ell), V_{k}(\ell), U_{k-1}(\ell), U_{k}(\ell)\right\}$ coincides with the complex span of $\left.\left\{\rho_{k-2}\left(Z_{i_{k-1}}, \ell\right), \rho_{k-2}\left(Z_{j_{k-1}}, \ell\right), \rho_{k-2}\left(Z_{i_{k}}, \ell\right), \rho_{k-2}\left(Z_{j_{k}}, \ell\right)\right)\right\}$, and hence

$$
\mathfrak{m}_{k}(\ell)=\mathfrak{m}_{k-2}(\ell)+\left(\rho_{k-2}\left(Z_{i_{k-1}}, \ell\right), \rho_{k-2}\left(Z_{j_{k-1}}, \ell\right), \rho_{k-2}\left(Z_{i_{k}}, \ell\right), \rho_{k-2}\left(Z_{j_{k}}, \ell\right)\right)
$$

Now an argument similar to that of Case 3 shows that $\mathfrak{m}_{k}(a \ell)=s \mathfrak{m}_{k}(\ell)$.
Subcase 5(b). Suppose that $k \in K_{5 b}$. Here we have

$$
Z_{i_{k}}(\ell)=\frac{1}{2 i}\left(\ell\left[Z_{j_{k-1}}, \rho_{k-2}\left(\bar{Z}_{i_{k-1}}, \ell\right)\right] Z_{i_{k-1}}-\ell\left[Z_{j_{k-1}}, \rho_{k-2}\left(Z_{i_{k-1}}, \ell\right)\right] \bar{Z}_{i_{k-1}}\right)
$$

and an argument similar to that of Case 2 shows that $a^{-1} Z_{i_{k}}(a \ell)=\nu_{i_{k}}(a) Z_{i_{k}}(\ell)$ and $\mathfrak{m}_{k}(a \ell)=a \mathfrak{m}_{k}(\ell)$.

The following is almost immediate.
Proposition 1.3. The cross-sections $\Lambda_{\mathbf{e}, \mathbf{j}}$ are H-invariant.
Proof. An examination of the definitions of the functions $Z_{j}(\ell), j \in \mathbf{e}$, shows that if $k \in K_{3}$, then the statement

$$
\ell\left(Z_{i_{k}}(\ell)\right)=0 \text { and } \ell\left(Z_{j_{k}}(\ell)\right)=0
$$

is equivalent to

$$
\ell_{i_{k}}=\ell_{j_{k}}=0 .
$$

while if $k \in K_{4 a}$, then

$$
\ell\left(Z_{i_{k}}(\ell)\right)=\ell\left(Z_{j_{k}}(\ell)\right)=\ell\left(Z_{i_{k+1}}(\ell)\right)=\ell\left(Z_{j_{k+1}}(\ell)\right)=0
$$

is equivalent to the vanishing of each of $\ell_{i_{k}}, \ell_{j_{k}}, \ell_{i_{k+1}}$, and $\ell_{j_{k+1}}$. It follows from this and from Lemma 1.6 that for each $j \in \mathbf{e}$, we have a non-zero, semi-invariant function p_{j} on Ω such that $\Lambda=\left\{\ell \in \Omega \mid p_{j}(\ell)=0, j \in \mathbf{e}\right\}$, and the proposition follows.

Next we examine the restrictions of the preceding characters to stabilizer subgroups.

Lemma 1.7. Suppose that a belongs to the stabilizer H_{ℓ} in H for some $\ell \in \Omega$. Then we have the following.
(a) For each $1 \leq k \leq d, \delta_{j_{k}}(a)=\delta_{i_{k}}(a)^{-1}$.
(b) If $k \in K_{3}$ then $\left|\delta_{j_{k}}(a)\right|=1$.
(c) If $k \in K_{0} \cup K_{1} \cup K_{2} \cup K_{4 b} \cup K_{5 b}$, then $\nu_{i_{k}}(a)$ and $\nu_{j_{k}}(a)$ are both real.
(d) If $k \in K_{0} \cup K_{1} \cup K_{2} \cup K_{4 b} \cup K_{5 b}$, then $\delta_{i_{k}}(a)=\nu_{i_{k}}(a)^{-1}$ and $\delta_{j_{k}}(a)=\nu_{j_{k}}(a)^{-1}$.

Proof. First of all, we observe that by the preceding lemma, for any $1 \leq j \leq n$

$$
a \rho_{k}\left(Z_{j}, \ell\right)=\delta_{j}(a) \rho_{k}\left(Z_{j}, \ell\right) .
$$

Suppose that $k \notin K_{5}$. Using the definition of i_{k} and j_{k} and the properties of the functions ρ_{k}, we have

$$
\ell\left[\rho_{k-1}\left(Z_{j_{k}}, \ell\right), \rho_{k-1}\left(Z_{i_{k}}, \ell\right)\right] \neq 0
$$

and hence

$$
\begin{aligned}
0 \neq \ell\left[\rho_{k-1}\left(Z_{i_{k}}, \ell\right), \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right] & =a \ell\left[\rho_{k-1}\left(Z_{i_{k}}, a \ell\right), \rho_{k-1}\left(Z_{j_{k}}, a \ell\right)\right] \\
& =\delta_{i_{k}}(a) \delta_{j_{k}}(a) \ell\left[\rho_{k-1}\left(Z_{i_{k}}, \ell\right), \rho_{k-1}\left(Z_{j_{k}}, \ell\right)\right] .
\end{aligned}
$$

If $k \in K_{5}$, then replace $k-1$ by $k-2$ and repeat the preceding. Part (a) follows.
Now $k \in K_{3}$ means that $Z_{j_{k}}=\bar{Z}_{i_{k}}$, so $\delta_{j_{k}}=\overline{\delta_{i_{k}}}$ and part (b) follows. As for (c), suppose that $k \in K_{0} \cup K_{1} \cup K_{2} \cup K_{4 b} \cup K_{5 b}$; the point here is that in this case $Z_{i_{k}}(\ell)$ and $Z_{j_{k}}(\ell)$ are "almost real": they belong to $\mathbb{C} \mathfrak{n}$. It follows immediately from the definitions of $\nu_{i_{k}}$ and $\nu_{j_{k}}$ and the fact that $a \ell=\ell$ that $\nu_{i_{k}}(a)$ and $\nu_{j_{k}}(a)$ belong to \mathbb{R}. Thus part (c) holds, and now the proof is completed by an examination of the formulae for $\nu_{i_{k}}$ and $\nu_{j_{k}}$ in each case, and using parts (a) and (c). The cases where $k \in K_{0} \cup K_{1} \cup K_{4 b} \cup K_{5 b}$ are straightforward. If $k \in K_{2}$, then let $r<k$ such that $i_{k}-1=j_{r}$. We have $r \in K_{0} \cup K_{1} \cup K_{2} \cup K_{4 b} \cup K_{5 b}$, so by induction we may assume that the result holds for r (Note that $1 \notin K_{2}$ by definition of K_{2}.) Hence $\delta_{j_{r}}(a)$ is real and

$$
\nu_{i_{k}}(a)=\left|\delta_{j_{r}}(a)\right|^{-2} \delta_{i_{r}}(a)^{-1}=\delta_{j_{r}}(a)^{-1}=\delta_{i_{k}}(a)^{1} .
$$

Then using part (a) (the following calculation works for all cases),

$$
\nu_{j_{k}}(a)=\left|\delta_{j_{k}}(a)\right|^{-2} \nu_{i_{k}}(a)=\delta_{j_{k}}(a)^{-2} \delta_{i_{k}}(a)^{-1}=\delta_{j_{k}}(a)^{-1}
$$

From now on we let $\Omega=\Omega_{\mathbf{e}, \mathrm{j}}$ be the minimal (and hence Zariski-open) fine layer in \mathfrak{n}^{*}, with Λ its orbital cross-section. From Theorem 1.1 we have rational
functions $Z_{j}: \Omega \rightarrow \mathfrak{l}, j \in \mathbf{e}$ such that Λ is a Zariski open subset of the algebraic set $V=\left\{\ell \in \mathfrak{n}^{*} \mid \ell\left(Z_{j}(\ell)\right)=0, j \in \mathbf{e}\right\}$. We shall now define real coordinates for Λ and equip Λ with a Lebesgue measure. Recalling the index operations $j \mapsto j^{\prime}$ and $j \mapsto j^{\prime \prime}$ defined at the beginning of this section, we have already observed that (see the definition of \mathbf{e} above) that if $j^{\prime \prime} \in \mathbf{e}$, then $j \in \mathbf{e}$ also. If the basis of $\mathfrak{l}=\mathfrak{n}_{c}$ consists entirely of elements in \mathfrak{n} - or more generally, if $j \in \mathbf{e}$ implies $j^{\prime \prime} \in \mathbf{e}-$ then V is just a subspace of \mathfrak{n}^{*}, that is, the cross-section is flat. However, it may happen that $j \in \mathbf{e}$ while $j^{\prime \prime} \notin \mathbf{e}$. It is the presence of this case which results in a cross-section which is not so simple.

First we identify the indices j for which the coordinate ℓ_{j} does not vanish on Λ. Define the index sequence \mathbf{u} by

$$
\mathbf{u}=\left\{u_{1}<u_{2}<\cdots<u_{c}\right\}=\left\{1 \leq j \leq n \mid j-1 \in I \text { and } j^{\prime \prime} \notin \mathbf{e}\right\} .
$$

The indices \mathbf{u} identify the directions where there is a "non-jump index"; in fact, in terms of the index operation $j \mapsto j^{\prime}$, we have

$$
\mathbf{u}=(\{1,2, \ldots n\} \backslash \mathbf{e})^{\prime}+1
$$

Note also $\mathbf{u} \cap \mathbf{e}=\left\{j \in \mathbf{e} \mid j \notin I, j^{\prime \prime} \notin \mathbf{e}\right\}$ consists of the indices referred to in the preceding paragraph.

For each $1 \leq a \leq c$, set $\mathbb{K}_{a}=\mathbb{R}$ if $u_{a} \in I$ and $\mathbb{K}_{a}=\mathbb{C}$ if $u_{a} \notin I$. Set $\lambda_{a}=\ell\left(Z_{u_{a}}\right), 1 \leq a \leq c$. We shall find it convenient to identify elements of Λ by their mixed real and complex coordinates, writing $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{c}\right) \in \Lambda$ where $\lambda_{a} \in \mathbb{K}_{a}, 1 \leq a \leq c$. We point out that in the simpler case where none of the indices u_{a} belong to \mathbf{e}, this notation identifies Λ with an open subset of $\prod_{a=1}^{c} \mathbb{K}_{a}$ (this is the case in [4]). We shall also find it convenient in what follows to adopt a notation for the characters of the action of H on Λ : set $\chi_{a}=\delta_{u_{a}}^{-1}$.

For each $1 \leq a \leq c$, write $\lambda^{a}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{a}\right)$, and set

$$
\Lambda^{a}=\left\{\lambda^{a} \mid \lambda \in \Lambda\right\}
$$

Now if $u_{a} \notin \mathbf{e}$, then for each $\lambda \in \Lambda$ set $L_{a}(\lambda)=\mathbb{K}_{a}$. Suppose that $u_{a} \in \mathbf{e}$. For $j=u_{a}$, recall that we have defined the element $Z_{j}(\lambda)=\beta_{1}(\lambda) \Re Z_{j}+\beta_{2}(\lambda) \Im Z_{j}$. Since $j \in \mathbf{e}$ but $j^{\prime \prime} \notin \mathbf{e}$, it follows (see [7]) that $\Im\left(\beta_{1}(\lambda) \overline{\beta_{2}}(\lambda)\right)=0$. For each $\lambda \in \Lambda$ let $L_{a}(\lambda)$ be the real subspace of \mathbb{C} defined by

$$
L_{a}(\lambda)=\left\{z \in \mathbb{C} \mid \beta_{1}(\lambda) \Re z+\beta_{2}(\lambda) \Im z=0\right\}
$$

It is shown in [5] that for each $\ell \in \Omega, \beta_{1}(\ell)$ and $\beta_{2}(\ell)$ depend only upon $\ell_{1}, \ldots, \ell_{j-1}$. Taking $\ell=\lambda \in \Lambda$ we see that $\beta_{1}(\lambda)$ and $\beta_{2}(\lambda)$, and hence $L_{a}(\lambda)$, depend only upon λ^{a-1}. Combining Theorem 1.1 with [5, Proposition 2.2.1], we have

Proposition 1.4. [5, Proposition 2.2.1] For each $1 \leq a \leq c$, there is a dense open subset $U_{a}(\lambda)=U_{a}\left(\lambda^{a-1}\right)$ of $L_{a}(\lambda)$ depending only upon λ^{a-1} such that

$$
\Lambda^{a}=\left\{\lambda^{a}=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{a}\right) \mid \lambda^{a-1} \in \Lambda^{a-1} \text { and } \lambda_{a} \in U_{a}(\lambda)\right\} .
$$

Set

$$
\mathbf{u}^{1}=\{u \in \mathbf{u} \mid u \in I \text { or } u \in \mathbf{e}\}=\left\{u_{a} \in \mathbf{u} \mid \operatorname{dim} L_{a}(\lambda)=1\right\}
$$

and

$$
\mathbf{u}^{2}=\{u \in \mathbf{u} \mid u \notin I \text { and } u \notin \mathbf{e}\}=\left\{u_{a} \in \mathbf{u} \mid \operatorname{dim} L_{a}(\lambda)=2\right\} .
$$

We define a Lebesgue measure $d \lambda^{a}$ on $\Lambda^{a}, 1 \leq a \leq c$ iteratively. Since \mathfrak{n} is nilpotent, $u_{1}=1 \notin \mathbf{e}$ and we take $d \lambda^{1}$ to be Lebesgue measure on $L^{1}=\mathbb{K}_{1}$. Assume that $1<a \leq c$ and that $d \lambda^{a-1}$ is defined. If $u_{a} \in \mathbf{u}^{1}$, denote by $d \lambda_{a}$ the one-dimensional Lebesgue measure on $L_{a}\left(\lambda^{a-1}\right)$, while if $u_{a} \in \mathbf{u}^{2}$, denote also by $d \lambda_{a}$ the two dimensional Lebesgue measure on $L_{a}\left(\lambda^{a-1}\right)=\mathbb{C}$. For non-negative measurable functions f on Λ^{a} define

$$
\int_{\Lambda^{a}} f\left(\lambda^{a}\right) d \lambda^{a}=\int_{\Lambda^{a-1}} \int_{U_{a}\left(\lambda^{a-1}\right)} f\left(\lambda^{a-1}, \lambda_{a}\right) d \lambda_{a} d \mu_{a-1}\left(\lambda^{a-1}\right) .
$$

We denote the measure on Λ so obtained by $d \lambda$. Now let $\mathbf{P f}=\mathbf{P f}_{\mathbf{e}, d}$; we have the following [5].
Proposition 1.5. [5, Corollary 2.2.6] The Plancherel measure on N is given (up to a constant) by $|\operatorname{Pf}(\lambda)| d \lambda$.

In the final portion of this section, we observe that the almost all elements of Λ have a common stabilizer in H. Set

$$
K=\bigcap_{u \in \mathbf{u}} \operatorname{ker}\left(\delta_{u}\right) ;
$$

since $\delta_{j^{\prime \prime}}=\overline{\delta_{j}}$, we have $K=\bigcap_{j \notin e} \operatorname{ker}\left(\delta_{j}\right)$. Observe also that the Lie algebra \mathfrak{k} of K is

$$
\mathfrak{k}=\bigcap_{u \in \mathbf{u}} \operatorname{ker} \gamma_{u}
$$

and is contained in \mathfrak{n}^{ℓ} for every $\ell \in \Lambda$.

Lemma 1.8. Let $\lambda \in \Lambda$ such that $\lambda_{a} \neq 0,1 \leq a \leq c$. Then $K=H_{\lambda}$.
Proof. It is clear that $K \subset \operatorname{stab}_{H}(\lambda)$ holds for all $\lambda \in \Lambda$. On the other hand, if $h \in H$ but $h \notin K$, then for some $1 \leq a \leq c$, we have $\chi_{a}(h) \neq 1$ and hence $(h \lambda)_{a} \neq \lambda_{a}$.

From now we denote by Λ those elements λ of our cross-section for which $\lambda_{a} \neq 0,1 \leq a \leq c$. The natural inclusion of K in $\operatorname{Sp}(\mathfrak{n} / \mathfrak{n}(\lambda), \lambda \in \Lambda$ is associated with the characters $\delta_{j}, j \in \mathbf{e}$, and hence the following is expected.

Lemma 1.9. One has $K \subset \operatorname{ker}|\delta|$.
Proof. Let $a \in K$; by Lemma 1.7, we have $\delta_{i_{k}}(a)=\delta_{j_{k}}(a)^{-1}$. Now suppose that $j \notin \mathbf{e}$; then $\rho_{d}\left(Z_{j}, \lambda\right)$ belongs to $\mathfrak{n}(\lambda)$. By Corollary 1.2 we have $r_{j}(\lambda)=$ $\lambda\left(\rho_{d}\left(Z_{j}, \lambda\right)\right)=\lambda_{j}$ and it is clear from the description of Λ that r_{j} is non-vanishing on Λ when $j \notin \mathbf{e}$. From part (c) of Lemma 1.6, we find that $r(s \lambda)=\delta_{j}(s) r(\lambda)$, and hence $\delta_{j}(s)=1$.

2. The Connected Algebraic Case

For the remainder of this paper we assume that G is connected and algebraic, that is, that H satisfies the following. We suppose that $\mathfrak{h}=\mathfrak{h}^{\prime} \oplus \mathfrak{h}^{\prime \prime}$, with
(i) $H=H^{\prime} H^{\prime \prime}$ where $H^{\prime}=\exp \left(\mathfrak{h}^{\prime}\right)$ and $H^{\prime \prime}=\exp \left(\mathfrak{h}^{\prime \prime}\right)$
(ii) for each $A \in \mathfrak{h}^{\prime}$ we have $\gamma_{j}(A) \in \mathbb{R}, 1 \leq j \leq n$,
(iii) for each $B \in \mathfrak{h}^{\prime \prime}$ we have $\gamma_{j}(B) \in i \mathbb{R}, 1 \leq j \leq n$,
(iv) for each $B \in \mathfrak{h}^{\prime \prime}, \gamma_{j}(B) / \gamma_{k}(B)$ is rational, $1 \leq j<k \leq n$.

Of course G is not exponential; we have the following.

Lemma 2.1. One has

$$
\operatorname{ker}(\exp)=\left\{B \in \mathfrak{h}^{\prime \prime} \mid \gamma_{j}(B) \in 2 \pi i \mathbb{Z}, 1 \leq j \leq n\right\}
$$

In particular, H^{\prime} is exponential.

Proof. It follows from the fact that N is exponential that $\operatorname{ker}(\exp) \subset \mathfrak{h}$. If $A \in \mathfrak{h}^{\prime}$, then $e=\exp A$ implies $1=\delta_{j}(\exp A)=e^{\gamma_{j}(A)}$ so $\gamma_{j}(A)=0$. Hence for all $1 \leq j \leq n$ and any $t \in \mathbb{R}, \delta_{j}(\exp t A)=1$. But recall that we have assumed that H acts effectively on \mathfrak{n} so we have $\cap_{1 \leq j \leq n} \operatorname{ker}\left(\delta_{j}\right)=(1)$. Hence $\exp (\mathbb{R} A)=\{e\}$ and $A=0$.

Let $B \in \mathfrak{h}^{\prime \prime}$. If $e=\exp B$, then as above $1=\delta_{j}(\exp B)=e^{\gamma_{j}(B)}$ so $\gamma_{j}(B) \in 2 \pi i \mathbb{Z}$, while if $\gamma_{j}(B) \in 2 \pi i \mathbb{Z}, 1 \leq j \leq n$, then $\delta(\exp B)=1$ so $\exp B=e$.

For each subindex $a, 1 \leq a \leq c$, put $\chi_{a}=\delta_{u_{a}}^{-1}$, and let α_{a} be its differential. Set $H_{a}=\cap\left\{\operatorname{ker} \chi_{b} \mid 1 \leq b \leq a\right\}$; the Lie algebra of H_{a} is $\mathfrak{h}_{a}=\cap_{1 \leq b \leq a} \operatorname{ker} \alpha_{b}$.

Define $d_{a}=\left(d_{a}^{\prime}, d_{a}^{\prime \prime}\right), 1 \leq a \leq c$ by

$$
d_{a}^{\prime}=\operatorname{rank}\left(\left.\Re\left(\alpha_{a}\right)\right|_{\mathfrak{h}_{a-1}}\right)
$$

and

$$
d_{a}^{\prime \prime}=\operatorname{rank}\left(\left.\Im\left(\alpha_{a}\right)\right|_{\mathfrak{h}_{a-1}}\right)
$$

Let $\mathbf{a}=\left\{a_{1}<a_{2}<\cdots<a_{p}\right\}=\left\{1 \leq a \leq c \mid d_{a} \neq(0,0)\right\}, \mathbf{a}^{\prime}=\left\{a_{1}^{\prime}<a_{2}^{\prime}<\right.$ $\left.\cdots<a_{p}^{\prime}\right\}=\left\{1 \leq a \leq c \mid d_{a}^{\prime}=1\right\}$ and $\mathbf{a}^{\prime \prime}=\left\{a_{1}^{\prime \prime}<a_{2}^{\prime \prime}<\cdots<a_{q}^{\prime \prime}\right\}=\{1 \leq$ $\left.a \leq c \mid d_{a}^{\prime \prime}=1\right\}$. Let $\left\{A_{1}, A_{2}, \ldots, A_{p}\right\} \subset \mathfrak{h}$ be a subset of \mathfrak{h}^{\prime} that is dual to the roots $\alpha_{a_{1}^{\prime}}, \ldots, \alpha_{a_{p}^{\prime}}$ in the sense that $\alpha_{a_{j}^{\prime}}\left(A_{k}\right)=1$ if $j=k$ and 0 if $j \neq k$. Let $S_{j}=\exp \left(\mathbb{R} A_{j}\right), 1 \leq j \leq p$ and set $S=S_{1} S_{2} \cdots S_{p} \subset H^{\prime}$.

We shall say that an element $B \in \mathfrak{h}^{\prime \prime}$ is integral if $\gamma_{j}(B) \in i \mathbb{Z}$ holds for $1 \leq j \leq n$. We select integral elements $\left\{B_{1}, B_{2}, \ldots, B_{q}\right\} \subset \mathfrak{h}^{\prime \prime}$ as follows. Let $\left\{\tilde{B}_{1}, \tilde{B}_{2}, \ldots, \tilde{B}_{q}\right\}$ be a set of elements of $\mathfrak{h}^{\prime \prime}$ dual to the independent roots $\alpha_{a_{1}^{\prime \prime}}, \ldots, \alpha_{a_{q}^{\prime \prime}}$ in the sense that $\alpha_{a_{j}^{\prime \prime}}\left(\tilde{B}_{k}\right)=i$ if $j=k$ and 0 if $j \neq k$. Choose $B_{k} \in \mathbb{R} \tilde{B}_{k}$ such that the kernel of the map $t \mapsto \exp \left(t B_{k}\right)$ is $2 \pi \mathbb{Z}$. Our choice of B_{k} means that $2 \pi \mathbb{Z} B_{k} \subset \operatorname{ker}(\exp)$, so by Lemma 2.1, $\gamma_{j}\left(2 \pi B_{k}\right) \in 2 \pi i \mathbb{Z}$ and $\gamma_{j}\left(B_{k}\right) \in i \mathbb{Z}$ for $1 \leq j \leq n$. Thus B_{k} is integral. Set $T_{k}=\exp \left(\mathbb{R} B_{k}\right), 1 \leq k \leq q$, and put $T=T_{1} T_{2} \cdots T_{q} \subset H^{\prime \prime}$. We shall write elements of S and T as $s=$ $s_{1} s_{2} \cdots s_{p}$ and $t=t_{1} t_{2} \cdots t_{q}$ where $s_{j} \in S_{j}$ and $t_{k} \in T_{k}$.

We have

$$
\mathfrak{h}=\mathbb{R}-\operatorname{span}\left\{A_{1}, A_{2}, \ldots, A_{p}, B_{1}, B_{2}, \ldots B_{q}\right\} \oplus \mathfrak{k},
$$

and exponentiating,

$$
H=S \cdot T \cdot K_{\circ}
$$

as a direct product, where $K_{\circ}=\exp (\mathfrak{k})$ is the connected component of the identity in K. Put $\mathfrak{k}^{\prime}=\mathfrak{k} \cap \mathfrak{h}^{\prime}, \mathfrak{k}^{\prime \prime}=\mathfrak{k} \cap \mathfrak{h}^{\prime \prime} ;$ by definition of \mathfrak{h}^{\prime} and $\mathfrak{h}^{\prime \prime}$ we have $\mathfrak{k}=\mathfrak{k}^{\prime} \oplus \mathfrak{k}^{\prime \prime}$. We also have $\mathfrak{h}^{\prime}=\mathbb{R}$-span $\left\{A_{1}, A_{2}, \ldots, A_{p}\right\}+\mathfrak{k}^{\prime}$, and since H^{\prime} is exponential, then $K^{\prime}:=K \cap H^{\prime}=\exp \left(\mathfrak{k}^{\prime}\right)$ and $H^{\prime}=S \cdot K^{\prime}$.

Put $K^{\prime \prime}=K \cap H^{\prime \prime}$; note that $K^{\prime \prime}$ is not necessarily connected. Put $K_{\circ}^{\prime \prime}=\exp \left(\mathfrak{k}^{\prime \prime}\right), F_{k}=\operatorname{ker} \chi_{a_{k}^{\prime \prime}} \cap T_{k}, 1 \leq k \leq q$ and let F the finite subgroup of T defined by

$$
F=F_{1} F_{2} \cdots F_{q} .
$$

Lemma 2.2. One has $K^{\prime \prime} \cap F=K \cap F=K \cap T$ and $K^{\prime \prime}=(K \cap F) \cdot K_{\circ}^{\prime \prime}$.

Proof. \quad Since $F \subset T \subset H^{\prime \prime}$, it is clear that $K^{\prime \prime} \cap F=K \cap F$, and we have $K \cap F \subset K \cap T$; on the other hand if $t=t_{1} t_{2} \ldots t_{q} \in K \cap T$, then for each $1 \leq k \leq q$, by the definition of K and $T_{1}, T_{2}, \ldots T_{q}$, we have that

$$
1=\delta_{u_{a_{k}^{\prime \prime}}}(t)^{-1}=\chi_{a_{k}^{\prime \prime}}(t)=\chi_{a_{k}^{\prime \prime}}\left(t_{k}\right)
$$

so $t_{k} \in F_{k}$ and $t \in F$. Thus $K \cap T=K \cap F$.
Now let $b \in K^{\prime \prime}$, then $b \in H^{\prime \prime}$ so $b=\exp (B)$ with $B \in \mathfrak{h}^{\prime \prime}$. Write

$$
B=r_{1} B_{1}+\cdots+r_{q} B_{q}+B_{0}
$$

where $B_{0} \in \mathfrak{k}^{\prime \prime}$. Then $b=t_{1} t_{2} \ldots t_{q} b_{0}$ where $t_{k}=\exp \left(r_{k} B_{k}\right) \in T_{k}$ and $b_{0} \in K_{0}^{\prime \prime}$. Now for each $1 \leq k \leq q$,

$$
1=\delta_{u_{a_{k}^{\prime \prime}}}(b)^{-1}=\chi_{a_{k}^{\prime \prime}}(b)=\chi_{a_{k}^{\prime \prime}}\left(t_{k}\right)
$$

so $t_{k} \in F_{k}$. Thus $t_{1} t_{2} \ldots t_{q} \in K \cap F$.

Let \mathbb{S} denote the multiplicative group of positive real numbers, and \mathbb{T} the multiplicative group of complex numbers of modulus one. For each $1 \leq j \leq p$, we have the canonical isomorphism $\iota_{j}^{\prime}: S_{j} \rightarrow \mathbb{S}$ defined by $\iota_{j}^{\prime}\left(\exp \left(y A_{j}\right)\right)=e^{y}, y \in \mathbb{R}$, and from now on we identify S_{j} with \mathbb{S} in this way. Similarly, for each $1 \leq k \leq q$ identify T_{k} with \mathbb{T} by $\iota_{k}^{\prime \prime}\left(\exp \left(\theta B_{k}\right)\right)=e^{i \theta}, \theta \in \mathbb{R}$. Thus the subgroup S is identified with the direct product \mathbb{S}^{p} and T with the q-torus \mathbb{T}^{q}. Note that for $s=s_{1} s_{2}, \cdots s_{p} \in S$, we have $\chi_{a_{j}^{\prime}}(s)=s_{j}, 1 \leq j \leq p$. For each $1 \leq k \leq q$, we have $\alpha_{a_{k}^{\prime \prime}}\left(B_{k}\right)=i m_{k}$ where $m_{k} \in \mathbb{Z}$, so that

$$
\chi_{a_{k}^{\prime \prime}}(t)=t_{k}^{m_{k}}
$$

holds for all $t=t_{1} t_{2} \cdots t_{q} \in T$. Thus F_{k} is identified with the subgroup $\mathbb{F}\left(m_{k}\right)$ of m_{k}-th roots of unity in \mathbb{T}.

The Haar measure on S will be given by

$$
d \nu_{S}(s)=\frac{d s_{1} d s_{2} \cdots d s_{p}}{s_{1} s_{2} \cdots s_{p}} .
$$

The Haar measure ν_{T} on T will be the product of the usual Lebesgue probability measure on T_{k} when identified with \mathbb{T} as above; thus

$$
\int_{T} f(t) d \nu_{T}(t)=\frac{1}{(2 \pi)^{q}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} f\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{q}}\right) d \theta_{1} d \theta_{2} \cdots d \theta_{q}
$$

For simplicity we use the notation $d \nu(s)$ for $d \nu_{S}(s)$ and $d t$ for $d \nu_{T}(t)$.
The action of H on Λ is given by the actions of S and T; with this in mind we define a cross-section in Λ for this action. Set

$$
\begin{aligned}
\Sigma= & \left\{\lambda \in \Lambda \left|\left|\lambda_{a}\right|=1 \text { if } d_{a}=(1,0), \lambda_{a}>0 \text { if } d_{a}=(0,1),\right.\right. \\
& \text { and } \left.\lambda_{a}=1, \text { if } d_{a}=(1,1)\right\} .
\end{aligned}
$$

Using the iterative method by which Λ is described above, we describe Σ explicitly as follows.

Proposition 2.1. For $1 \leq a \leq c$ let

$$
\Sigma^{a}=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{a}\right) \mid \lambda \in \Sigma\right\}
$$

and define a subset $V_{a}(\lambda)=V_{a}\left(\lambda^{a-1}\right)$ of $U_{a}(\lambda)$ by

$$
V_{a}(\lambda)= \begin{cases}U_{a}(\lambda), & \text { if } d_{a}=(0,0) \\ \left\{\lambda_{a} \in U_{a}(\lambda)| | \lambda_{a} \mid=1\right\}, & \text { if } d_{a}=(1,0) \\ \left\{\lambda_{a} \in U_{a}(\lambda) \mid \lambda_{a}>0\right\}, & \text { if } d_{a}=(0,1) \\ \{1\}, & \text { if } d_{a}=(1,1)\end{cases}
$$

Then for each a,

$$
\begin{equation*}
\Sigma^{a}=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{a}\right) \mid \lambda^{a-1} \in \Sigma^{a-1}, \lambda_{a} \in V_{a}(\lambda)\right\} . \tag{2.1}
\end{equation*}
$$

In the case where $d_{a}=(1,0)$ and $\operatorname{dim}\left(L_{a}(\lambda)\right)=1$, then $V_{a}(\lambda)$ is the two-point set $\mathbb{T} \cap L_{a}(\lambda)$. If $d_{a}=(1,0)$ and $\operatorname{dim}\left(L_{a}(\lambda)\right)=2$ then $V_{a}(\lambda)$ is a full-measure subset of \mathbb{T}, while if $d_{a}=(0,1)$ and $\operatorname{dim}\left(L_{a}(\lambda)\right)=2$ then $V_{a}(\lambda)$ is a full-measure subset of \mathbb{S}.

Proof. The equality 2.1 follows easily by induction on $a, 1 \leq a \leq c$, using the definition of Σ and Proposition 1.4.

Suppose that $d_{a}=(1,0)$; observe that $U_{a}(\lambda)$ is invariant under the real dilations D_{a} since Λ is invariant under H. Hence if $L_{a}(\lambda)$ is one-dimensional (this occurs if $u_{a} \in I$ or if $u_{a} \notin I$ but $u_{a} \in \mathbf{e}$), then $U_{a}(\lambda)=L_{a}(\lambda) \backslash\{0\}$ and $V_{a}(\lambda)$ consists of the two points in $U_{a}(\lambda)$ that have unit modulus. If instead $L_{a}(\lambda)=\mathbb{C}$, then since $U_{a}(\lambda)$ is dilation-invariant and has full measure in \mathbb{C} it follows that $V_{a}(\lambda)$ has full measure in \mathbb{T}. Suppose next that $d_{a}=(0,1)$. Again $U_{a}(\lambda)$ is an open, full-measure subset of \mathbb{C} which is now invariant under rotations. Hence $V_{a}(\lambda)$ is an open full-measure subset of the positive reals.

Now it is easily seen that Σ is F-invariant. Indeed, let $t \in F, t=t_{1} t_{2} \cdots t_{q}$, and let $\lambda \in \Sigma$. If $a \in \mathbf{a}^{\prime \prime}$ then $(t \cdot \lambda)_{a}=\chi_{a}(t) \lambda_{a}=\lambda_{a}$ while if $d_{a}=(1,0)$, then $\left|(t \cdot \lambda)_{a}\right|=\left|\chi_{a}(t) \lambda_{a}\right|=1$. The set Σ / F of F-orbits in Σ will be our parameter set for H-orbits in Λ. For each $\lambda \in \Lambda$, define $P(\lambda) \subset \Lambda$ as follows. Fix $\lambda \in \Lambda$. For each $1 \leq j \leq p$, define $s_{j}(\lambda) \in S_{j}$ by $s_{j}(\lambda)=1 /\left|\lambda_{a_{j}^{\prime}}\right|$ and set $s(\lambda)=s_{1}(\lambda) s_{2}(\lambda) \cdots s_{p}(\lambda)$. For each $1 \leq k \leq q$, let $F_{k}(\lambda)$ be the finite subset of T_{k} defined by

$$
F_{k}(\lambda)=\left(1 / \operatorname{sign}\left(\lambda_{a_{k}^{\prime \prime}}\right)\right)^{1 / m_{k}},
$$

and set $F(\lambda)=F_{1}(\lambda) \times F_{2}(\lambda) \times \cdots \times F_{q}(\lambda) \subset T$. (Here $\operatorname{sign}(z)=z /|z|$ for $z \neq 0$ and for $z \in \mathbb{T}, z^{1 / m}$ denotes the set of $m^{-t h}$ roots of z in \mathbb{T}.) Define

$$
P(\lambda)=\{s(\lambda) t(\lambda) \cdot \lambda \mid t(\lambda) \in F(\lambda)\} .
$$

Lemma 2.3. For each $\lambda \in \Lambda, P(\lambda)$ is an element of Σ / F, and $P(\lambda)=H \lambda \cap \Sigma$.
Proof. Fix $\lambda \in \Lambda$. We begin by showing that $P(\lambda) \subset \Sigma$. Let $\lambda^{\prime}=s(\lambda) t(\lambda) \cdot \lambda \in$ $P(\lambda)$; we check the coordinates λ_{a}^{\prime} for which $d_{a} \neq(0,0)$. Suppose that $d_{a}=(1,0)$, say $a=a_{j}^{\prime}$. Then $\chi_{a}\left(s_{j}(\lambda)\right)=s_{j}(\lambda)=1 /\left|\lambda_{a_{j}^{\prime}}\right|$, so

$$
\lambda_{a}^{\prime}=\chi_{a}(s(\lambda) t(\lambda)) \lambda_{a}=\chi_{a}\left(s_{j}(\lambda)\right) \chi_{a}(t(\lambda)) \lambda_{a}=\chi_{a}(t(\lambda)) \operatorname{sign}\left(\lambda_{a}\right) .
$$

If $d_{a}=(0,1)$, say $a=a_{k}^{\prime \prime}$, then $t_{k}(\lambda) \in\left(1 / \operatorname{sgn}\left(\lambda_{a}\right)\right)^{1 / m_{k}}$, and so $\chi_{a}\left(t_{k}(\lambda)\right)=$ $t_{k}(\lambda)^{m_{k}}=1 / \operatorname{sgn}\left(\lambda_{a}\right)$. Hence

$$
\begin{aligned}
P_{a}(\lambda) & =\chi_{a}(s(\lambda) t(\lambda)) \lambda_{a}=\chi_{a}(s(\lambda)) \chi_{a}\left(t_{k}(\lambda)\right) \lambda_{a}=\chi_{a}(s(\lambda))\left(1 / \operatorname{sgn}\left(\lambda_{a}\right)\right) \lambda_{a} \\
& =\chi_{a}(s(\lambda))\left|\lambda_{a}\right| .
\end{aligned}
$$

Finally if $d_{a}=(1,1)$, say $a=a_{j}^{\prime}=a_{k}^{\prime \prime}$, then

$$
\chi_{a}(s(\lambda) t(\lambda))=\chi_{a}\left(s_{j}(\lambda) t_{k}(\lambda)\right)=\left(1 /\left|\lambda_{a}\right|\right)\left(1 / \operatorname{sgn}\left(\lambda_{a}\right)\right)=1 / \lambda_{a}
$$

so $\lambda_{a}^{\prime}=\chi_{a}(s(\lambda) t(\lambda)) \lambda_{a}=1$. Thus $\lambda^{\prime} \in \Sigma$.
Next, we show that in fact $P(\lambda)$ is an F-orbit in Σ. let λ^{\prime} and $\lambda^{\prime \prime}$ be elements of $P(\lambda): \lambda^{\prime}=s(\lambda) t^{\prime}(\lambda) \cdot \lambda$ and $\lambda^{\prime \prime}=s(\lambda) t^{\prime \prime}(\lambda) \cdot \lambda$. For each $1 \leq k \leq q$, $t_{k}^{\prime}(\lambda)$ and $t_{k}^{\prime \prime}(\lambda)$ both belong to $\left(1 / \operatorname{sgn}\left(\lambda_{a_{k}^{\prime \prime}}\right)\right)^{1 / m_{k}}$ and hence $t_{k}=t_{k}^{\prime}(\lambda) / t_{k}^{\prime \prime}(\lambda) \in$ $F_{k}\left(m_{k}\right)$. Thus

$$
\lambda^{\prime \prime}=s(\lambda) t^{\prime \prime}(\lambda) \lambda=s(\lambda) t_{1}^{\prime \prime}(\lambda) \cdots t_{q}^{\prime \prime}(\lambda) \lambda=t_{1} \cdots t_{q} s(\lambda) t^{\prime}(\lambda) \lambda=t_{1} \cdots t_{q} \lambda^{\prime}
$$

On the other hand if $\lambda^{\prime} \in P(\lambda)$ and $\lambda^{\prime \prime} \in F \lambda^{\prime}$, then we have $t=t_{1} \cdots t_{q} \in F$ such that $\lambda^{\prime \prime}=t \lambda^{\prime}$. Writing $\lambda^{\prime}=s(\lambda) t(\lambda) \cdot \lambda$, we have $t_{k} t_{k}(\lambda) \in\left(1 / \operatorname{sgn}\left(\lambda_{a_{k}^{\prime \prime}}\right)\right)^{1 / m_{k}}, 1 \leq$ $k \leq q$, so

$$
\lambda^{\prime \prime}=t \lambda^{\prime}=s(\lambda) t_{1} t_{1}(\lambda) t_{2} t_{2}(\lambda) \cdots t_{q} t_{q}(\lambda) \cdot \lambda \in P(\lambda)
$$

Thus the set $P(\lambda)$ belongs to Σ / F.
Since by definition $P(\lambda) \subset H \lambda$, we have $P(\lambda) \subset H \lambda \cap \Sigma$. To finish the proof, it is enough to show that $P(\lambda)$ is an H-invariant function. Let $\lambda \in \Lambda$ and set $\lambda^{\prime}=b \lambda$ where $b \in H$. We may assume that $b=s t$, where $s \in S$ and $t \in T$. Observe that for each $1 \leq j \leq p$, since $\chi_{a_{j}^{\prime}}(s)=s_{j}$, then

$$
s_{j}\left(\lambda^{\prime}\right)=1 /\left|\lambda_{a_{j}^{\prime}}^{\prime}\right|=1 / s_{j}\left|\lambda_{a_{j}^{\prime}}\right|=s_{j}^{-1} s_{j}(\lambda)
$$

Hence $s\left(\lambda^{\prime}\right)=s^{-1} s(\lambda)$. Similarly, for each $1 \leq k \leq q$, we have the equality of the finite subsets of \mathbb{T} :

$$
\left(1 / \operatorname{sgn}\left(\lambda_{a_{k}^{\prime \prime}}^{\prime}\right)\right)^{1 / m_{k}}=\left(1 / t_{k}^{m_{k}} \operatorname{sgn}\left(\lambda_{a_{k}^{\prime \prime}}\right)\right)^{1 / m_{k}}=t_{k}^{-1}\left(1 / \operatorname{sgn}\left(\lambda_{a_{k}^{\prime \prime}}\right)\right)^{1 / m_{k}}
$$

Hence for each $t\left(\lambda^{\prime}\right) \in F\left(\lambda^{\prime}\right)$, we have $t(\lambda) \in F(\lambda)$ such that $t\left(\lambda^{\prime}\right)=t^{-1} t(\lambda)$. It follows that

$$
\begin{aligned}
P\left(\lambda^{\prime}\right) & =\left\{s\left(\lambda^{\prime}\right) t\left(\lambda^{\prime}\right) \cdot \lambda^{\prime} \mid t\left(\lambda^{\prime}\right) \in F\left(\lambda^{\prime}\right)\right\} \\
& =\left\{s^{-1} s(\lambda) t^{-1} t(\lambda) \cdot \lambda^{\prime} \mid t(\lambda) \in F(\lambda)\right\} \\
& =\{s(\lambda) t(\lambda) \cdot \lambda \mid t(\lambda) \in F(\lambda)\}=P(\lambda) .
\end{aligned}
$$

This completes the proof.
The following is almost immediate from the preceding and the definition of $P(\lambda)$.
Proposition 2.2. The map $\eta: \Lambda / H \rightarrow \Sigma / F$ defined by $\eta(H \lambda)=P(\lambda)$ is a bijection; indeed, η is a homeomorphism of quotient topologies.

Proof. That η is injective follows from Lemma 2.3. To see that η is surjective, let $\lambda \in \Sigma$. Then the definition of Σ shows that $s_{j}(\lambda)=1,1 \leq j \leq p$, and $F_{k}(\lambda)=F_{k}$. Hence $P(\lambda)=F \lambda$ by definition of P. It is clear that η is bicontinuous.

For $m \in \mathbb{N}$ set $\mathbb{T}(m)=\left\{e^{i \theta} \mid 0 \leq \theta<2 \pi / m\right\}$. For each $1 \leq k \leq q$ define $I_{k} \subset T_{k}$ to be the set of elements in T_{k} that are identified with $\mathbb{T}\left(m_{k}\right)$, and set $I=I_{1} I_{2} \cdots I_{q} \subset T$. Note that I is a fundamental domain for the action of F on T, and that the map $S \times I \times \Sigma \rightarrow \Lambda$ given by $(s, t, \sigma) \mapsto s t \cdot \sigma$ is a Borel isomorphism.

We define a Lebesgue measure $d \sigma^{a}$ on $\Sigma^{a}, 1 \leq a \leq c$ by the iterative method used in the definition of $d \lambda$:

$$
\int_{\Sigma^{a}} f\left(\sigma^{a}\right) d \sigma^{a}=\int_{\Sigma^{a-1}} \int_{V_{a}(\sigma)} f\left(\sigma^{a-1}, \sigma_{a}\right) d \sigma_{a} d \sigma^{a-1}
$$

where $d \sigma_{a}$ is the natural measure on $V_{a}(\sigma)$: if $d_{a}=(0,0)$ then $d \sigma_{a}=d \lambda_{a}$. If $d_{a}=(1,0)$ and $L_{a}(\sigma)$ is one-dimensional, then $d \sigma_{a}$ is point mass measure on the two-point set $V_{a}(\sigma)$, while if $d_{a}=(1,0)$ and $L_{a}(\lambda)$ is two-dimensional, then $d \sigma_{a}$ is the counterclockwise line integral over $V_{a}(\sigma)$. If $d_{a}=(0,1)$ then $d \sigma_{a}$ is just Lebesgue measure on the positive reals, while if $d_{a}=(1,1)$ then $d \sigma_{a}$ is just point mass measure on $\{1\}$. Thus we have the Lebesgue measure $d \sigma$ on Σ.

We shall write the integral on Λ as an iterated integral over Σ, S, and I. For $s \in S$ define $J_{a}(s)=\chi_{a}(s)$ if $u_{a} \in \mathbf{u}^{1}$ and $J_{a}(s)=\left|\chi_{a}(s)\right|^{2}$ if $u_{a} \in \mathbf{u}^{2}$, and set $J(s)=J_{1}(s) J_{2}(s) \cdots J_{c}(s)$. We use the notation $\sigma^{\prime \prime}=\sigma_{a_{1}^{\prime \prime}} \sigma_{a_{2}^{\prime \prime}} \cdots \sigma_{a_{q}^{\prime \prime}}$ and $m=m_{1} m_{2} \cdots m_{q}$.

Lemma 2.4. For any non-negative Borel-measurable function f on Λ, one has

$$
\int_{\Lambda} f(\lambda) d \lambda=m \int_{\Sigma} \int_{S} \int_{I} f(s t \cdot \sigma) d t J(s) d \nu(s) \sigma^{\prime \prime} d \sigma
$$

Proof. Using the notation $\Theta(s, t, \sigma)=s t \cdot \sigma$, we examine the coordinate functions $\Theta_{a}, 1 \leq a \leq c$. Fix $1 \leq a \leq c$ and let $j(a)=\max \left\{1 \leq j \leq p \mid a_{j}^{\prime} \leq a\right\}$, $k(a)=\max \left\{1 \leq k \leq q \mid a_{k}^{\prime \prime} \leq a\right\}$. We have

$$
\Theta_{a}(s, t, \sigma)= \begin{cases}\chi_{a}\left(s_{1} s_{2} \cdots s_{j(a)} t_{1} t_{2} \cdots t_{k(a)}\right) \sigma_{a}, & \text { if } d_{a}=(0,0) \\ s_{j(a)} \sigma_{a}, & \text { if } d_{a}=(1,0) \\ t_{k(a)}^{m_{k(a)}} \sigma_{a}, & \text { if } d_{a}=(0,1) \\ t_{k(a)}^{m_{k(a)}} s_{j(a)}, & \text { if } d_{a}=(1,1)\end{cases}
$$

Set $S^{a}=\left\{s^{a}=\left(s_{1}, s_{2}, \ldots s_{j(a)}, 1,1, \ldots, 1\right) \mid s_{j} \in S_{j}\right\}$ and similarly define T^{a}. Denote the natural Haar measures on S^{a} and T^{a} by $d \nu\left(s^{a}\right)$ and $d t^{a}$, respectively. Set $I^{a}=I \cap T^{a}$. Set $J^{a}(s)=J_{1}(s) \cdots J_{a}(s)$. Let $m^{a}=m_{1} m_{2} \cdots m_{k(a)}$, and $\left(\sigma^{\prime \prime}\right)^{a}=$ $\sigma_{a_{1}^{\prime \prime}} \sigma_{a_{2}^{\prime \prime}} \cdots \sigma_{a_{k(a)}^{\prime \prime}}$. Set $\Theta^{a}=\left(\Theta_{1}, \Theta_{2}, \ldots, \Theta_{a}\right)$; note that $\Theta^{a}=\Theta^{a}(s, t, \sigma)$ depends only upon s^{a}, t^{a}, and σ^{a}. Also for simplicity, we denote $U_{a}(\lambda)=U_{a}, V_{a}(\lambda)=V_{a}$. We now proceed iteratively as in the definitions of $d \lambda$ and $d \sigma$. Assume that

$$
\begin{aligned}
& \int_{\Lambda^{a-1}} f\left(\lambda^{a-1}\right) d \lambda^{a-1}= \\
& \quad m^{a-1} \int_{\Sigma^{a-1}} \int_{S^{a-1}} \int_{I^{a-1}} f\left(\Theta^{a-1}(s, t, \sigma)\right) d t^{a-1} J^{a-1}(s) d \nu\left(s^{a-1}\right)\left(\sigma^{\prime \prime}\right)^{a-1} d \sigma^{a-1} .
\end{aligned}
$$

To show that the same formula holds for a, we consider several cases.
Case 0. Suppose that $d_{a}=(0,0)$. Then $j(a-1)=j(a), k(a-1)=k(a)$, $S^{a}=S^{a-1}, I^{a}=I^{a-1}, V_{a}=U_{a}$, and $d \sigma_{a}=d \lambda_{a}$. Moreover, we have

$$
\int_{V_{a}} f\left(\sigma_{a}\right) d \sigma_{a}=\int_{V_{a}} f\left(\Theta_{a}(s, t, \sigma)\right) J_{a}(s) d \sigma_{a}
$$

Hence

$$
\begin{array}{rl}
\int_{\Lambda^{a}} & f\left(\lambda^{a}\right) d \lambda^{a}=\int_{\Lambda^{a-1}}\left(\int_{V_{a}} f\left(\lambda^{a-1}, \sigma_{a}\right) d \sigma_{a}\right) d \lambda^{a-1} \\
& =m^{a-1} \int_{\Sigma^{a-1}} \int_{S^{a-1}} \int_{I^{a-1}}\left(\int_{V_{a}} f\left(\Theta^{a-1}(s, t, \sigma), \Theta_{a}(s, t, \sigma)\right) J_{a}(s) d \sigma_{a}\right) \\
& d t^{a-1} J^{a-1}(s) d \nu\left(s^{a-1}\right)\left(\sigma^{\prime \prime}\right)^{a-1} d \sigma^{a-1} \\
& =m^{a} \int_{\Sigma^{a}} \int_{S^{a}} \int_{I^{a}} f\left(\Theta^{a}(s, t, \sigma)\right) d t^{a} J^{a}(s) d \nu\left(s^{a}\right)\left(\sigma^{\prime \prime}\right)^{a} d \sigma^{a}
\end{array}
$$

Case 1. Suppose next that $d_{a}=(1,0)$, so that $a=a_{j}^{\prime}$ with $j=j(a)$. Then $T^{a}=T^{a-1}$ and $\left(\sigma^{\prime \prime}\right)^{a-1}=\left(\sigma^{\prime \prime}\right)^{a}$, but $S^{a} \simeq S^{a-1} \times S_{j}$ and $J^{a}(s)=J^{a-1}(s) J_{a}(s)$. We have

$$
\int_{U_{a}} f\left(\lambda_{a}\right) d \lambda_{a}=\int_{V_{a}} \int_{S_{j}} f\left(\Theta_{a}(s, t, \sigma)\right) J_{a}(s) d \nu\left(s_{j}\right) d \sigma_{a}
$$

and hence

$$
\begin{aligned}
& \int_{\Lambda^{a}} f\left(\lambda^{a}\right) d \lambda^{a}=\int_{\Lambda^{a-1}}\left(\int_{U_{a}} f\left(\lambda^{a-1}, \lambda_{a}\right) d \lambda_{a}\right) d \lambda^{a-1} \\
& =m^{a-1} \int_{\Sigma^{a-1}} \int_{S^{a-1}} \int_{I^{a-1}}\left(\int_{V_{a}} \int_{S_{j}} f\left(\Theta^{a-1}(s, t, \sigma), \Theta_{a}(s, t, \sigma)\right) J_{a}(s) d \nu\left(s_{j}\right) d \sigma_{a}\right) \\
& d t^{a-1} J^{a-1}(s) d \nu\left(s^{a-1}\right)\left(\sigma^{\prime \prime}\right)^{a-1} d \sigma^{a-1} \\
& =m^{a} \int_{\Sigma^{a-1}} \int_{V_{a}}\left(\int_{S^{a-1}} \int_{I^{a}} \int_{S_{j}} f\left(\Theta^{a}(s, t, \sigma)\right) d t^{a} J_{a}(s) d \nu\left(s_{j}\right) J^{a-1}(s) d \nu\left(s^{a-1}\right)\right) \\
& =m^{a} \int_{\Sigma^{a}} \int_{S^{a}} \int_{I^{a}} f\left(\Theta^{a} d \sigma_{a} d \sigma^{a-1}\right. \\
& =t, \sigma)) d t^{a} J^{a}(s) d \nu\left(s^{a}\right)\left(\sigma^{\prime \prime}\right)^{a} d \sigma^{a}
\end{aligned}
$$

Case 2. Suppose next that $d_{a}=(0,1)$ so that $a=a_{k}^{\prime \prime}$ with $k=k(a)$. Then $S^{a}=S^{a-1}$ and $J^{a}(s)=J^{a-1}(s)$, but $T^{a}=T^{a-1} \cdot T_{k},\left(\sigma^{\prime \prime}\right)^{a}=\left(\sigma^{\prime \prime}\right)^{a-1} \sigma_{a}$, and $m^{a}=m^{a-1} m_{k}$. We have

$$
\int_{U_{a}} f\left(\lambda_{a}\right) d \lambda_{a}=m_{k} \int_{V_{a}} \int_{I_{k}} f\left(\Theta_{a}(s, t, \sigma)\right) d t_{k} \sigma_{a} d \sigma_{a}
$$

hence

$$
\begin{array}{rl}
\int_{\Lambda^{a}} & f\left(\lambda^{a}\right) d \lambda^{a}=\int_{\Lambda^{a-1}}\left(\int_{U_{a}\left(\lambda^{a-1}\right)} f\left(\lambda^{a-1}, \lambda_{a}\right) d \lambda_{a}\right) d \lambda^{a-1} \\
& =\int_{\Sigma^{a-1}} \int_{S^{a-1}} \int_{I^{a-1}}\left(\int_{V_{a}} \int_{I_{k}} f\left(\Theta^{a-1}(s, t, \sigma), \Theta_{a}\left(s, t_{k}, \sigma\right)\right) m_{k} d t_{k} \sigma_{a} d \sigma_{a}\right) \\
& =m^{a-1} \int_{\Sigma^{a-1}} \int_{V_{a}}\left(m_{k} \int_{S^{a}} \int_{I^{a-1}} \int_{I_{k}} f\left(\Theta^{a-1}(s, t, \sigma)\right) d t_{k}^{a-1}(s) d \nu\left(s^{a-1}\right)\left(t^{\prime \prime \prime}\right)^{a-1} d \sigma^{a-1} J^{a}(s) d \nu\left(s^{a}\right)\right) \\
\sigma_{a} d \sigma_{a}\left(\sigma^{\prime \prime}\right)^{a-1} d \sigma^{a-1} \\
& =m^{a} \int_{\Sigma^{a}} \int_{S^{a}} \int_{I^{a}} f\left(\Theta^{a}(s, t, \sigma)\right) J^{a}(s) d \nu\left(s^{a}\right) d t^{a}\left(\sigma^{\prime \prime}\right)^{a} d \sigma^{a}
\end{array}
$$

Case 3. Finally, if $d_{a}=(1,1)$, then $a=a_{j}^{\prime}=a_{k}^{\prime \prime}$ with $j=j(a)$ and $k=k(a)$. Here $S^{a} \simeq S^{a-1} \times S_{j}, T^{a}=T^{a-1} \simeq T_{k}, m^{a}=m^{a-1} m_{k}$, and since $\sigma_{a}=1$ in this case, $\left(\sigma^{\prime \prime}\right)^{a}=\left(\sigma^{\prime \prime}\right)^{a-1} \sigma_{a}=\left(\sigma^{\prime \prime}\right)^{a-1}$. The calculation is a combination of Cases 1 and 2.

Let $\Sigma_{0} \subset \Sigma$ be a fundamental domain for the action of F on Σ so that $F / F \cap K \times \Sigma_{0} \rightarrow \Sigma$ defined by $(\dot{\epsilon}, \gamma) \mapsto \epsilon \gamma$ is a Borel isomorphism. A natural
choice for Σ_{0} is the following. For a positive integer m set $\mathbb{C}(m)=\{z \in \mathbb{C} \backslash\{0\} \mid \operatorname{sign}(z) \in \mathbb{T}(m)\}$. For each $1 \leq a \leq c$ set

$$
F^{a}=F \cap \bigcap_{b=1}^{a} \operatorname{ker} \chi_{b} .
$$

Assume that $\Sigma_{0}^{a-1} \subset \Sigma^{a-1}$ is defined. If $F^{a}=F^{a-1}$, then set $\Sigma_{0}^{a}=\left\{\left(\sigma_{1}, \ldots \sigma_{a}\right) \in\right.$ $\left.\Sigma^{a} \mid\left(\sigma_{1}, \ldots, \sigma_{a-1}\right) \in \Sigma_{0}^{a-1}\right\}$. If $F^{a} \neq F^{a-1}$, then $\chi_{a}\left(F^{a-1}\right)=\mathbb{F}(m)$ for some m, and set

$$
\Sigma_{0}^{a}=\left\{\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{a}\right) \mid\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{a-1}\right) \in \Sigma_{0}^{a-1} \text { and } \sigma_{a} \in V_{a}(\sigma) \cap \mathbb{C}(m)\right\}
$$

Given $\sigma \in \Sigma$, suppose that $\epsilon^{a-1} \in F^{a-1}$ and $\sigma^{a-1} \in \Sigma_{0}^{a-1}$ such that $\epsilon^{a-1} \sigma^{a-1}=$ σ^{a-1}. Choose $\epsilon_{a} \in F_{a}$ and $\sigma_{a} \in V_{a}(\sigma) \cap \mathbb{C}(m)$ such that $\chi_{a}\left(\epsilon_{a}\right) \chi_{a}\left(\epsilon^{a-1}\right) \sigma_{a}=\sigma_{a}$. This iterative argument shows that $F \Sigma_{0}=\Sigma$, and if $\sigma \in \Sigma_{0}$ and $\epsilon \neq 1 \in F$, then $\epsilon \in F^{a-1} \backslash F^{a}$ for some a, and then by construction $\chi_{a}(\epsilon) \sigma_{a} \notin \mathbb{C}(m)$. Hence $\epsilon \Sigma_{0} \cap \Sigma_{0}=\emptyset$ if $\epsilon \neq 1$.

We have

$$
\begin{equation*}
\int_{\Sigma} \phi(\sigma) d \sigma=\sum_{\epsilon \in F / F \cap K} \int_{\Sigma_{0}} \phi(\epsilon \gamma) d \gamma . \tag{2.2}
\end{equation*}
$$

Now recall that we have $H=S \cdot T \cdot K_{\circ}$ where K_{\circ} is the connected component of the identity in K. Note that $S \cap K=(1)$ by definition of S. It follows that the map $S \times(T / K \cap T) \rightarrow H / K$ defined by $(s, \dot{t}) \mapsto \dot{s t}$ is a continuous isomorphism of groups. Now $K \cap T=K \cap F$ and I is a fundamental domain in T for the action of F. Hence the image of I in $T / K \cap T$ is a fundamental domain for the action of $F / K \cap F$ and the map $I \times F / K \cap F \rightarrow T / K \cap T$ defined by $(t, \dot{\epsilon}) \mapsto \dot{t} \epsilon$ is a Borel isomorphism. Moreover, the prescription

$$
\int_{T / K \cap T} \phi(\dot{t}) d \dot{t}:=\sum_{\dot{\epsilon} \in F / K \cap F} \int_{I} \phi(t \dot{\epsilon}) d t
$$

defines a Haar measure on $T / K \cap T$. Hence we have the natural Borel isomorphism

$$
H / K \simeq S \times I \times F / K \cap F
$$

and a Haar measure on H / K is given by

$$
\int_{H / K} \phi(\dot{a}) d \dot{a}=\sum_{\dot{\epsilon} \in F / F \cap K} \int_{S} \int_{I} \phi(\epsilon s t K) d t d \nu(s)
$$

Now for the H-orbit \mathcal{O}_{σ} of $\sigma \in \Sigma_{0}$ define the measure ω_{σ} on \mathcal{O}_{σ} by

$$
\int_{\mathcal{O}_{\sigma}} \phi(\lambda) d \omega_{\sigma}(\lambda)=\int_{H / K} \phi(a \sigma)|\delta(a)|^{-1} d \dot{a} .
$$

(Note that $|\delta(a)|$ is constant on K-cosets.) Finally, set $\left|\delta_{\mathbf{e}}\right|=\prod_{j \in \mathbf{e}}\left|\delta_{j}\right|$ and $d \tilde{\mu}(\sigma)=m \sigma^{\prime \prime}|\mathbf{P f}(\sigma)| d \sigma$. Combining these observations with Lemma 2.4 yields the following.

Proposition 2.3. For any non-negative measurable function f on Λ one has

$$
\int_{\Lambda} f(\lambda)|\mathbf{P f}(\lambda)| d \lambda=\int_{\Sigma_{0}} \int_{\mathcal{O}_{\sigma}} f(\lambda) d \omega_{\sigma}(\lambda) d \tilde{\mu}(\sigma)
$$

Proof. By Lemma 2.4 and the preceding decomposition (2.2) of $d \sigma$, we have

$$
\begin{aligned}
\int_{\Lambda} f(\lambda) d \lambda & =m \int_{\Sigma} \int_{S} \int_{I} f(s t \cdot \sigma) d t J(s) d \nu(s) \sigma^{\prime \prime} d \sigma \\
& =m \sum_{F / K \cap F} \int_{\Sigma_{0}} \int_{S} \int_{I} f(s t \epsilon \cdot \sigma) d t J(s) d \nu(s) \sigma^{\prime \prime} d \sigma .
\end{aligned}
$$

Now with Lemma 1.1, we have

$$
\begin{aligned}
& \int_{\Lambda} f(\lambda) \mid \operatorname{Pf}(\lambda)\left|d \lambda=m \sum_{F / K \cap F} \int_{\Sigma_{0}} \int_{S} \int_{I} f(s t \epsilon \cdot \sigma)\right| \mathbf{P f}(s t f \cdot \sigma) \mid d t J(s) d \nu(s) \sigma^{\prime \prime} d \sigma \\
&=m \sum_{F / K \cap F} \int_{\Sigma_{0}} \int_{S} \int_{I} f(s t \epsilon \cdot \sigma)\left|\delta_{\mathbf{e}}(s)\right|^{-1}|\mathbf{P f}(\sigma)| d t J(s) d \nu(s) \sigma^{\prime \prime} d \sigma \\
&=m \int_{\Sigma_{0}}\left(\sum_{F / K \cap F} \int_{S} \int_{I} f(s t \epsilon \cdot \sigma) d t\left|\delta_{\mathbf{e}}(s)\right|^{-1} J(s) d \nu(s)\right)|\mathbf{P f}(\sigma)| \sigma^{\prime \prime} d \sigma
\end{aligned}
$$

and the proof is finished upon observing that $J(s)=\prod_{j \notin \mathbf{e}}\left|\delta_{j}(s)\right|^{-1}$, and hence $|\delta(s)|^{-1}=\left|\delta_{\mathbf{e}}(s)\right|^{-1} J(s)$.

3. Explicit realizations of irreducible representations

Denote by \hat{N} the Borel space of unitary equivalence classes of irreducibe unitary representations of N, and let $\kappa: \mathfrak{n}^{*} / N \rightarrow \hat{N}$ be the canonical Kirillov correspondence. With the preceding constructions in place, we associate to each $\lambda \in \Lambda$ an irreducible representation π_{λ} whose equivalence class is $\kappa(N \lambda)$, as follows.

Recall that we have fixed an adaptable basis $\mathcal{B}=\left\{Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$ for $\mathfrak{l}=\mathfrak{n}_{c}$, and we have Ω the minimal (Zariski open) fine layer in \mathfrak{n}^{*}. Recall also the subindex set K_{3} for which

$$
\mathfrak{p}(\ell)=\mathfrak{p}(\ell) \cap \overline{\mathfrak{p}(\ell)}+\operatorname{span}\left\{\rho_{k-1}\left(Z_{i_{k}}, \ell\right) \mid k \in K_{3}\right\}
$$

where $\mathfrak{p}(\ell)$ is the complex Vergne polarization associated with $\ell \in \Omega$ and \mathcal{B}. Write $K_{3}=\left\{h_{1}<h_{2}<\cdots<h_{m}\right\}$. For $\ell \in \Omega$ and $l=1,2, \ldots m$, define

$$
\begin{gathered}
W_{l}(\ell)=\rho_{h_{l}-1}\left(Z_{i_{h_{l}}}, \ell\right), \\
\xi_{l}(\ell)=\ell\left[U_{h_{l}}(\ell), V_{h_{l}}(\ell)\right]=\frac{i}{2} \ell\left[W_{l}(\ell), \overline{W_{l}(\ell)}\right],
\end{gathered}
$$

and

$$
\epsilon_{l}(\ell)=\operatorname{sign}\left(\xi_{l}(\ell)\right), 1 \leq l \leq m
$$

For each $\ell \in \Omega$ set $\epsilon(\ell)=\left(\epsilon_{1}(\ell), \epsilon_{2}(\ell), \ldots, \epsilon_{m}(\ell)\right)$. We write the layer Ω as a disjoint union of open sets: for each $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{m}\right) \in\{ \pm 1\}^{m}$ set

$$
\Omega^{\epsilon}=\{\ell \in \Omega \mid \epsilon(\ell)=\epsilon\} .
$$

Note that in many situations (for example, when N is a Heisenberg group and $Z_{3}=\bar{Z}_{2}$) some of the sets Ω^{ϵ} are empty.

Lemma 3.1. For each sign index ϵ, the set Ω^{ϵ} is G-invariant.
Proof. It follows from Lemma 1.5 that Ω^{ϵ} is N-invariant, and from Lemma 1.6 that Ω^{ϵ} is H-invariant: let $a \in H$; then

$$
W_{l}(a \ell)=\rho_{h_{l}-1}\left(Z_{i_{h_{l}}}, a \ell\right)=a \rho_{h_{l}-1}\left(a^{-1} Z_{i_{h_{l}}}, \ell\right)=\delta_{i_{h_{l}}}(a)^{-1} a W_{l}(\ell)
$$

and $\overline{W_{l}(a \ell)}=\overline{\delta_{i_{l}}}(a)^{-1} a W_{l}(\ell)$.

Let $\epsilon \in\{ \pm 1\}^{m}$. If $j \notin\left\{i_{k}, j_{k}: k \in K_{3}\right\}$, then set $Z_{j}^{\epsilon}=Z_{j}$. If $j=i_{h_{l}}$ (with $h_{l} \in K_{3}$), then define Z_{j}^{ϵ} and Z_{j+1}^{ϵ} as follows. If $\epsilon_{l}=1$ set $Z_{j}^{\epsilon}=Z_{j}, Z_{j+1}^{\epsilon}=Z_{j+1}$, while if $\epsilon_{l}=-1$, then $Z_{j}^{\epsilon}=\bar{Z}_{j}=Z_{j+1}$ and $Z_{j+1}^{\epsilon}=\bar{Z}_{j+1}=Z_{j}$. It is clear that $\mathcal{B}^{\epsilon}=\left\{Z_{1}^{\epsilon}, Z_{2}^{\epsilon}, \ldots, Z_{n}^{\epsilon}\right\}$ is also an adaptable basis for \mathfrak{l}. Put

$$
\mathfrak{l}_{j}^{\epsilon}=\operatorname{span}\left\{Z_{1}^{\epsilon}, Z_{2}^{\epsilon}, \ldots, Z_{j}^{\epsilon}\right\}, 1 \leq j \leq n
$$

and let $\mathfrak{p}^{\epsilon}(\ell)=\sum_{j=1}^{n}\left(\mathfrak{l}_{j}^{\epsilon}\right)^{\ell} \cap \mathfrak{l}_{j}^{\epsilon}$ be the corresponding complex Vergne polarization at ℓ.

Lemma 3.2. For each $\ell \in \Omega^{\epsilon}, \mathfrak{p}^{\epsilon}(\ell)$ is a positive polarization at ℓ.
Proof. Let $\ell \in \Omega^{\epsilon}$ and let $Y \in \mathfrak{p}^{\epsilon}(\ell)$. By Lemma 1.4 we have $Y=W+$ $\sum_{k \in K_{3}} a_{k} \rho_{k-1}\left(Z_{i_{k}}^{\epsilon}, \ell\right)$ where $W \in \mathfrak{p}^{\epsilon}(\ell) \cap \overline{\mathfrak{p}^{\epsilon}(\ell)}, a_{k} \in \mathbb{C}$. Now $\overline{\rho_{k-1}\left(Z_{i_{k}}^{\epsilon}, \ell\right)}=$ $\rho_{k-1}\left(\bar{Z}_{i_{k}}^{\epsilon}, \ell\right)$ and

$$
\begin{aligned}
i \ell\left[\rho_{k-1}\left(Z_{i_{k}}^{\epsilon}, \ell\right), \rho_{k-1}\left(\bar{Z}_{i_{k}}^{\epsilon}, \ell\right)\right] & =\epsilon_{k} i \ell\left[\rho_{k-1}\left(Z_{i_{k}}, \ell\right), \rho_{k-1}\left(\bar{Z}_{i_{k}}, \ell\right)\right] \\
& =\left|\ell\left[\rho_{k-1}\left(Z_{i_{k}}, \ell\right), \rho_{k-1}\left(\bar{Z}_{i_{k}}, \ell\right)\right]\right|
\end{aligned}
$$

Since $\mathfrak{p}^{\epsilon}(\ell) \cap \overline{\mathfrak{p}^{\epsilon}(\ell)} \subset\left(\mathfrak{p}^{\epsilon}(\ell)+\overline{\mathfrak{p}^{\epsilon}(\ell)}\right)^{\ell}$ and for $k \neq k^{\prime} \in K_{3}$,

$$
\ell\left[\rho_{k-1}\left(Z_{i_{k}}^{\epsilon}, \ell\right), \rho_{k^{\prime}-1}\left(\bar{Z}_{i_{k^{\prime}}}^{\epsilon}, \ell\right)\right]=0
$$

then we have

$$
\begin{aligned}
i \ell[Y, \bar{Y}] & =\ell\left[W+\sum_{k \in K_{3}} a_{k} \rho_{k-1}\left(Z_{i_{k}}^{\epsilon}, \ell\right), \bar{W}+\sum_{k \in K_{3}} \overline{a_{k}} \rho_{k-1}\left(\bar{Z}_{i_{k}}^{\epsilon}, \ell\right)\right] \\
& =\sum_{k \in K_{3}}\left|a_{k}\right|^{2} i \ell\left[\rho_{k-1}\left(Z_{i_{k}}^{\epsilon}, \ell\right), \rho_{k-1}\left(\bar{Z}_{i_{k}}^{\epsilon}, \ell\right)\right] \\
& =\sum_{k \in K_{3}}\left|a_{k}\right|^{2}\left|\ell\left[\rho_{k-1}\left(Z_{i_{k}}, \ell\right), \rho_{k-1}\left(\bar{Z}_{i_{k}}, \ell\right)\right]\right|>0
\end{aligned}
$$

We set $\Lambda^{\epsilon}=\Lambda \cap \Omega^{\epsilon}$ and $\Sigma^{\epsilon}=\Sigma \cap \Omega^{\epsilon}$. For each $\lambda \in \Lambda^{\epsilon}, H \lambda \cap \Sigma \subset \Sigma^{\epsilon}$, so F leaves Σ^{ϵ} invariant, and so if Σ_{0} is a fundamental domain for Σ / F, then $\Sigma_{0}^{\epsilon}=\Sigma_{0} \cap \Sigma^{\epsilon}$ is a fundamental domain for Σ^{ϵ} / F.

Now fix $\lambda \in \Lambda^{\epsilon}$. Set $\mathfrak{d}(\lambda)_{\mathbb{C}}=\mathfrak{p}^{\epsilon}(\lambda) \cap \overline{\mathfrak{p}^{\epsilon}(\lambda)}, \mathfrak{d}(\lambda)=\mathfrak{d}(\lambda)_{\mathbb{C}} \cap \mathfrak{n}$ and $\mathfrak{e}(\lambda)=\left(\mathfrak{p}^{\epsilon}(\lambda)+\overline{\mathfrak{p}^{\epsilon}(\lambda)}\right) \cap \mathfrak{n}$. Note that $\mathfrak{d}(\lambda)$ and $\mathfrak{e}(\lambda)$ are independent of $\epsilon(\lambda)$ and as is well-known, $[\mathfrak{e}(\lambda), \mathfrak{e}(\lambda)] \subset \mathfrak{d}(\lambda)$. Let $D(\lambda)$ and $E(\lambda)$ the corresponding analytic subgroups of N. We realize the irreducible representation corresponding to the N-orbit of λ by an explicit version of holomorphic induction as follows.

First we define complex coordinates on $E(\lambda)$. Let $\alpha_{\lambda}^{\circ}: \mathbb{C}^{m} \times D(\lambda) \rightarrow E(\lambda)$ be defined by

$$
\alpha_{\lambda}^{\circ}(w, d)=\exp \left(\Re\left(w_{1} \overline{W_{1}(\lambda)}\right)+\cdots+\Re\left(w_{m} \overline{W_{m}(\lambda)}\right)\right) d
$$

For each $\epsilon \in\{ \pm 1\}^{m}$ and $1 \leq l \leq m$, set $W_{l}^{\epsilon}(\lambda)=\rho_{h_{l}-1}\left(Z_{i_{h_{l}}}^{\epsilon}, \lambda\right)$ and

$$
\xi_{l}^{\epsilon}(\lambda)=\epsilon_{l} \xi_{l}(\lambda)=\frac{i}{2} \lambda\left[W_{l}^{\epsilon}(\lambda), \bar{W}_{l}^{\epsilon}(\lambda)\right]
$$

Note that $\mathfrak{p}^{\epsilon}(\lambda)=\mathfrak{d}(\lambda)_{\mathbb{C}}+\mathbb{C}$-span $\left\{W_{l}^{\epsilon}(\lambda): 1 \leq l \leq m\right\}$. Writing $w_{l}=x_{l}+i y_{l}$, define the usual complex derivative by

$$
\partial_{l}=\frac{1}{2}\left(\frac{\partial}{\partial x_{l}}-i \frac{\partial}{\partial y_{l}}\right)
$$

and put $\partial_{l}^{\epsilon_{l}}=\partial_{l}$ or $\bar{\partial}_{l}$, if $\epsilon_{l}=1$ or -1 , respectively. Define the algebra $\mathcal{A}^{\epsilon}\left(\mathbb{C}^{m}\right)$ of " ϵ-holomorphic" functions on \mathbb{C}^{m} by

$$
\mathcal{A}^{\epsilon}\left(\mathbb{C}^{m}\right)=\left\{p \in C^{\infty}\left(\mathbb{C}^{m}\right) \mid \partial_{l}^{-\epsilon_{l}} p=0,1 \leq l \leq m\right\}
$$

Now set $\epsilon=\epsilon(\lambda)$ so that $\xi_{l}^{\epsilon}(\lambda)>0,1 \leq l \leq m$. Define $\mathcal{H}_{\lambda}^{\circ}=\left(\mathcal{A}^{\epsilon}\left(\mathbb{C}^{m}\right),\|\cdot\|_{\lambda}\right)$ where

$$
\|p\|_{\lambda}^{2}=\int_{\mathbb{C}^{m}}|p(w)|^{2} \exp \left(-\frac{1}{2} \sum_{l} \xi_{l}^{\epsilon}(\lambda)\left|w_{l}\right|^{2}\right) d w d \bar{w}
$$

Write $w_{l}^{\epsilon_{l}}=w_{l}$ or $w_{l}^{\epsilon_{l}}=\bar{w}_{l}$ according as $\epsilon_{l}=+1$ or $\epsilon_{l}=-1$ respectively. Let $k=\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ be a multi-index of non-negative integers and put

$$
\psi_{\lambda}^{k}(w)=c_{\lambda}^{k}\left(w_{1}^{\epsilon_{1}}\right)^{k_{1}}\left(w_{2}^{\epsilon_{2}}\right)^{k_{2}} \cdots\left(w_{m}^{\epsilon_{m}}\right)^{k_{m}}
$$

where c_{λ}^{k} is a normalizing constant. Then $\left\{\psi_{\lambda}^{k} \mid k_{l} \geq 0,1 \leq l \leq m\right\}$ is a complete orthonormal set in $\mathcal{H}_{\lambda}^{\circ}$. Define the unitary representation π_{λ}° of $E(\lambda)$ in $\mathcal{H}_{\lambda}^{\circ}$ by

$$
\begin{aligned}
& \left(\pi_{\lambda}^{\circ}\left(w^{\prime}, d^{\prime}\right) p\right)(w)= \\
& \left.\quad p\left(w-w^{\prime}\right) \chi_{\lambda}\left(d^{\prime}\right) \exp \left(\frac{1}{2} \sum_{l} \xi_{l}^{\epsilon}(\lambda) \bar{w}_{l}^{\prime} w_{l}\right) \exp \left(-\frac{1}{4} \sum_{l} \xi_{l}^{\epsilon}(\lambda)\right)\left|w_{l}^{\prime}\right|^{2}\right) .
\end{aligned}
$$

We show that for $\lambda \in \Lambda^{\epsilon}$, the representation π_{λ}° is isomorphic with the representation obtained from $\mathfrak{p}^{\epsilon}(\lambda)$ via holomorphic induction. For $X \in \mathfrak{e}(\lambda)$ define the differential operator $R(X)$ on $E(\lambda)$ by

$$
R(X) \phi=\left.\frac{d}{d t}\right|_{t=0} \phi(\cdot \exp (t X)) .
$$

We can then define $R(W)$ for $W \in \mathfrak{e}(\lambda)_{\mathbb{C}}$ by extending in the obvious way.
Proposition 3.1. The unitary representation π_{λ}° is irreducible and its equivalence class corresponds to the $E(\lambda)$-coadjoint orbit of $\left.\lambda\right|_{E(\lambda)}$.

Proof. In terms of the preceding coordinates and notations, we find that

$$
R\left(W_{l}^{\epsilon}(\lambda)\right)=2 \partial_{l}^{-\epsilon_{l}}+\frac{i}{2} \epsilon_{l} w_{l}^{\epsilon_{l}} R\left(Z_{l}^{\epsilon}(\lambda)\right)
$$

where $Z_{l}^{\epsilon}(\lambda)=\frac{i}{2}\left[W_{l}^{\epsilon}(\lambda), \bar{W}_{l}^{\epsilon}(\lambda)\right]$. Define

$$
\psi_{0}(w, d)=\chi_{\lambda}(d)^{-1} \exp \left(-\frac{1}{4} \sum_{l=1}^{m} \xi_{l}^{\epsilon}(\lambda)\left|w_{l}\right|^{2}\right) .
$$

We compute easily that $R\left(W_{l}^{\epsilon_{l}}(\lambda)\right) \psi_{0}(w, d)=0,1 \leq l \leq m$. It follows that $\psi_{0} \circ\left(a_{\lambda}^{\circ}\right)^{-1}$ belongs to the Hilbert space $\mathcal{H}\left(E(\lambda), D(\lambda), \chi_{\lambda}, \mathfrak{p}(\lambda)\right)$ for holomorphic induction. Recall that $\mathcal{H}\left(E(\lambda), D(\lambda), \chi_{\lambda}, \mathfrak{p}^{\epsilon}(\lambda)\right)$ is the completion of the subset $\mathcal{D}\left(E(\lambda), D(\lambda), \chi_{\lambda}, \mathfrak{p}^{\epsilon}(\lambda)\right)$ consisting of all smooth functions ϕ on $E(\lambda)$ satisfying $R(W) \phi=-i \lambda(W) \phi$ for all $W \in \mathfrak{p}^{\epsilon}(\lambda)$, and

$$
\int_{\mathbb{C}^{m}} \mid \phi\left(\left.\alpha_{\lambda}^{\circ}(w, e)\right|^{2} d w d \bar{w}<\infty\right.
$$

Moreover (see for example [2, Theorem I.2.7]), one has

$$
\begin{aligned}
& \mathcal{H}\left(E(\lambda), D(\lambda), \chi_{\lambda}, \mathfrak{p}(\lambda)\right) \\
& \quad=\left\{\phi \in \mathcal{H}\left(E, D, \chi_{\lambda}\right) \mid \phi\left(a_{\lambda}^{\circ}(w, d)\right)=p(w) \psi_{0}(w, d) \text { for some } p \in \mathcal{A}^{\epsilon}\left(\mathbb{C}^{m}\right)\right\}
\end{aligned}
$$

Thus $\mathcal{H}_{\lambda}^{\circ}$ is naturally isomorphic with $\mathcal{H}\left(E(\lambda), D(\lambda), \chi_{\lambda}, \mathfrak{p}(\lambda)\right)$ via the map

$$
p \mapsto\left(p \psi_{0}\right) \circ\left(a_{\lambda}^{\circ}\right)^{-1}
$$

and it is a standard calculation to show that π_{λ}° is isomorphic with the holomorphically induced representation.

The irreducible representation π_{λ} of N associated with λ will be induced from π_{λ}°. Just as with π_{λ}° we realize π_{λ} by a precise construction.

First we identify indices belonging to the sequence \mathbf{j} which are "supplementary" to the subalgebras $\mathfrak{e}(\lambda)$. Let \mathbf{j}^{\prime} denote the subsequence of \mathbf{j} consisting of the indices $\left\{j=j_{k} \in \mathbf{j} \cap I \mid k \notin K_{3}\right\} \cup\{j \in \mathbf{j} \mid j \notin I, j+1 \notin \mathbf{j}\}$ and write

$$
\begin{equation*}
\mathbf{j}^{\prime}=\left\{j_{k_{1}}, j_{k_{2}}, \ldots, j_{k_{p}}\right\} \tag{3.1}
\end{equation*}
$$

We decompose \mathbf{j}^{\prime} into disjoint subsequences \mathbf{j}^{r} and \mathbf{j}^{c} where \mathbf{j}^{c} consists of those indices $j \in \mathbf{j}^{\prime}$ such that $j-1 \notin I$ (and hence $j-1 \in \mathbf{j}$).

Next, let $O \in \mathcal{C}$ be a covering set, as defined in Lemma 1.2. We use the continuous N-invariant functions ϕ_{k}^{O} of Lemma 1.2 to define an N-invariant, smoothly-varying supplementary basis for $\mathfrak{e}(\lambda)$ in \mathfrak{n}. Fix $1 \leq l \leq p$ and $j=j_{k_{l}}$. If $j \in I$, then set $X_{l}^{O}(\lambda)=Z_{j}$. If $j \notin I$ (and hence $j+1 \notin \mathbf{j}$), then, referring to notations of Lemma 1.2 and to the comments following it, set

$$
X_{l}^{O}(\lambda)=\phi_{k}^{O}(\lambda)^{-1} \frac{Z_{j}(\lambda)}{\left|\ell\left[Z_{j}(\lambda), V_{k}(\lambda)\right]\right|^{1 / 2}}
$$

where k is the subindex for j in \mathbf{j}. From Lemma 1.2, we have that $X_{l}^{O}(\lambda)$ is real, and from Lemma 1.5, we have that $X_{l}^{O}(\lambda)$ is N-invariant.

Now from the definition of the sequence \mathbf{j}, and the construction of the elements $X_{l}^{O}(\lambda)$, it is clear that the set

$$
\left\{X_{l}^{O}(\lambda), \overline{X_{l}^{O}(\lambda)} \mid 1 \leq l \leq p\right\} \cup\left\{\rho_{k-1}\left(Z_{j_{k}}, \lambda\right) \mid k \in K_{3}\right\}
$$

is a basis of $\mathfrak{n}_{\mathbb{C}}$ modulo $\mathfrak{p}(\lambda)$. By Lemma 1.4 we have

$$
\left\{\rho_{k-1}\left(Z_{j_{k}}, \lambda\right) \mid k \in K_{3}\right\}
$$

is a basis for $\mathfrak{e}(\lambda)_{\mathbb{C}}=\mathfrak{p}(\lambda)+\overline{\mathfrak{p}(\lambda)}$ modulo $\mathfrak{p}(\lambda)$. Hence $\left\{X_{l}^{O}(\lambda), \overline{X_{l}^{O}(\lambda)} \mid 1 \leq l \leq p\right\}$ is a basis for $\mathfrak{n}_{\mathbb{C}}$ modulo $\mathfrak{e}(\lambda)_{\mathbb{C}}$, and $\left\{\Re\left(X_{l}^{O}(\lambda)\right), \Im\left(X_{l}^{O}(\lambda)\right) \mid 1 \leq l \leq p\right\}$ is a basis for \mathfrak{n} modulo $\mathfrak{e}(\lambda)$.

Now fix $1 \leq l \leq p$ and $j=j_{k_{l}}$. If $j \in \mathbf{j}^{r}$, put

$$
\alpha_{\lambda, l}^{O}(x)=\exp \left(x X_{l}^{O}(\lambda)\right), x \in \mathbb{R},
$$

while if $j \in \mathbf{j}^{c}$ then set

$$
\alpha_{\lambda, l}^{O}(x)=\exp \left(\Re\left(x Z_{j}\right)\right), x \in \mathbb{C} .
$$

Set

$$
\mathcal{X}=\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right) \mid x_{l} \in \mathbb{C} \text { if } j_{k_{l}} \in \mathbf{j}^{c}, \text { and } x_{l} \in \mathbb{R} \text { otherwise }\right\}
$$

and define $\alpha_{\lambda}^{O}: \mathcal{X} \rightarrow N$ by

$$
\alpha_{\lambda}^{O}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\alpha_{\lambda, 1}^{O}\left(x_{1}\right) \alpha_{\lambda, 2}^{O}\left(x_{2}\right) \cdots \alpha_{\lambda, p}^{O}\left(x_{p}\right)
$$

Since N is nilpotent the following is immediate.

Lemma 3.3. The map

$$
x \mapsto \alpha_{\lambda}^{O}(x) E(\lambda)
$$

is a diffeomorphism of \mathcal{X} onto $N / E(\lambda)$.

Write $d x$ for the Lebesgue measure on \mathcal{X}. Define the measure $d \nu_{\lambda}(\dot{n})$ on $N / E(\lambda)$ by

$$
\int_{N / E(\lambda)} f(\dot{n}) d \nu_{\lambda}(\dot{n})=\int_{\mathcal{X}} f\left(\alpha_{\lambda}^{O}(x)\right) d x
$$

Suppose that O^{\prime} is another covering set containing λ. Then it follows from the definition of the continuous functions $\phi_{k}^{O}(\lambda)$ (see [7]) that when $j=j_{k} \notin I$ and $j+1 \notin \mathbf{j}$, then $\phi_{k}^{O^{\prime}}(\lambda)^{-1} Z_{j_{k}}(\lambda)= \pm \phi_{k}^{O}(\lambda)^{-1} Z_{j_{k}}(\lambda)$. Hence $\alpha_{\lambda, l}^{O_{l}^{\prime}}(x)=\alpha_{\lambda, l}^{O}(\pm x)$ and the definition of $d \nu_{\lambda}(\dot{n})$ is independent of the covering set O.

Now for each $a \in H$ define $c_{\lambda}(a): N / E(\lambda) \rightarrow N / E(a \lambda)$ by $c_{\lambda}(a)(n E(\lambda))=$ $a n a^{-1} E(a \lambda)$. We now compute a positive, multiplicative character $\left|\delta^{1}\right|$ on H such that

$$
\int_{N / E(\lambda)} f\left(c_{\lambda}(a) \dot{n}\right)\left|\delta^{1}(a)\right| d \nu_{\lambda}(\dot{n})=\int_{N / E(a \lambda)} f(\dot{n}) d \nu_{a \lambda}(\dot{n}) .
$$

Fix $\lambda \in \Lambda, a \in H$ and choose covering sets O and O^{\prime} such that $\lambda \in O$ and $a \lambda \in O^{\prime}$. We must compute the determinant of the Jacobian matrix for the map $\varphi(a): \mathcal{X} \rightarrow \mathcal{X}$ defined by

$$
\varphi(a)=\left(\alpha_{a \lambda}^{O^{\prime}}\right)^{-1} \circ c_{\lambda}(a) \circ \alpha_{\lambda}^{O} .
$$

Fix $1 \leq l \leq p$ and $j=j_{k_{l}}$; if $j \in I$, then $a \alpha_{\lambda, l}^{O}(x) a^{-1}=\alpha_{\lambda, l}^{O}\left(\delta_{j}(a) x\right)$. If $j \notin I$, then we use Lemma 1.6. With k the subindex for j in \mathbf{j}, we have complex numbers $\nu_{i_{k}}(a)$ and $\nu_{j}(a)$ such that $a^{-1} \cdot V_{k}(a \lambda)=\nu_{i_{k}}(a) V_{k}(\lambda)$ and $a^{-1} \cdot Z_{j}(a \lambda)=\nu_{j}(a) Z_{j}(\lambda)$ where $\nu_{j}(a)=\nu_{i_{k}}(a)\left|\delta_{j}(a)\right|^{-2}$. Hence $a^{-1} \cdot X_{l}(a \lambda)$

$$
\begin{aligned}
& =\phi_{k}^{O^{\prime}}(a \lambda)^{-1} \frac{a^{-1} \cdot Z_{j}(a \lambda)}{\left|a \lambda\left[Z_{j}(a \lambda), V_{k}(a \lambda)\right]\right|^{1 / 2}} \\
& =\phi_{k}^{O^{\prime}}(a \lambda)^{-1} \frac{\nu_{j}(a) Z_{j}(\lambda)}{\left|\nu_{i_{k}}(a) \nu_{j}(a) \lambda\left[Z_{j}(\lambda), V_{k}(\lambda)\right]\right|^{1 / 2}} \\
& =\phi_{k}^{O^{\prime}}(a \lambda)^{-1} \nu_{j}(a)\left|\nu_{i_{k}}(a) \nu_{j}(a)\right|^{-1 / 2} \frac{Z_{j}(\lambda)}{\left|\lambda\left[Z_{j}(\lambda), V_{k}(\lambda)\right]\right|^{1 / 2}} \\
& =\phi_{k}^{O^{\prime}}(a \lambda)^{-1} \operatorname{sign}\left(\nu_{i_{k}}(a)\right)\left|\delta_{j}(a)\right|^{-1} \frac{Z_{j}(\lambda)}{\left|\lambda\left[Z_{j}(\lambda), V_{k}(\lambda)\right]\right|^{1 / 2}} \\
& =\left(\phi_{k}^{O^{\prime}}(a \lambda)^{-1} \phi_{k}^{O}(\lambda) \operatorname{sign}\left(\nu_{i_{k}}(a)\right)\right)\left|\delta_{j}(a)\right|^{-1} \phi_{k}^{O}(\lambda)^{-1} \frac{Z_{j}(\lambda)}{\left|\lambda\left[Z_{j}(\lambda), V_{k}(\lambda)\right]\right|^{1 / 2}} \\
& = \pm\left|\delta_{j}(a)\right|^{-1} X_{l}(\lambda)
\end{aligned}
$$

where we have also used the fact that $a^{-1} \cdot X_{l}(a \lambda)$ is real. Hence in this case

$$
\begin{equation*}
a \alpha_{\lambda, l}^{O}(x) a^{-1}=\alpha_{a \lambda, l}^{O^{\prime}}\left(\pm\left|\delta_{j}(a)\right| x\right) \tag{3.2}
\end{equation*}
$$

Hence $\varphi(a)=\operatorname{diag}\left(\varphi(a)_{1}, \varphi(a)_{2}, \ldots, \varphi(a)_{p}\right)$ where $\left|\varphi(a)_{l}\right|=\left|\delta_{j_{k_{l}}}(a)\right|$ in each of the preceding cases.

Now set $\delta^{1}(a)=\prod_{k \notin K_{3}} \delta_{j_{k}}(a), a \in H$. The above shows that

$$
\left|\delta^{1}(a)\right|=\prod_{j \in \mathbf{j}^{r}}\left|\delta_{j}(a)\right| \times \prod_{j \in \mathbf{j}^{\mathbf{c}}}\left|\delta_{j}(a)\right|^{2}
$$

is the determinant of the Jacobian matrix for $\varphi(a)$. Hence

$$
\begin{aligned}
\int_{N / E(\lambda)} f\left(c_{\lambda}(a) \dot{n}\right)\left|\delta^{1}(a)\right| d \nu_{\lambda}(\dot{n}) & =\int_{\mathcal{X}}\left(f \circ c_{\lambda}(a) \circ \alpha_{\lambda}^{O}\right)(x)\left|\delta^{1}(a)\right| d x \\
& =\int_{\mathcal{X}}\left(f \circ \alpha_{a \lambda}^{O^{\prime}} \circ \varphi(a)\right)(x)\left|\delta^{1}(a)\right| d x \\
& =\int_{\mathcal{X}}\left(f \circ \alpha_{a \lambda}^{O^{\prime}}\right)(x) d x \\
& =\int_{N / E(h \lambda)} f(\dot{n}) d \nu_{a \lambda}(\dot{n}) .
\end{aligned}
$$

For each $\lambda \in \Lambda$, having fixed the relatively invariant measure $d \nu_{\lambda}$ on $N / E(\lambda)$, let π_{λ} be the representation of N induced from π_{λ}°, acting in the Hilbert space $\mathcal{H}_{\lambda}=L^{2}\left(N, E(\lambda), \mathcal{H}_{\lambda}^{\circ}, \pi_{\lambda}^{\circ}, d \nu_{\lambda}\right)$. We make two observations here about the explicit constructions above and the action of the stabilizer K.

Lemma 3.4. For each $a \in K$ define the map $\varphi(a)=\left(\alpha_{\lambda}^{O}\right)^{-1} \circ c_{\lambda}(a) \circ \alpha_{\lambda}^{O}$: $\mathcal{X} \rightarrow \mathcal{X}$. Then $\varphi: K \rightarrow G L(\mathcal{X})$ is a representation of K that is isomorphic with the natural linear action of K on $\mathfrak{n} / \mathfrak{e}(\lambda)$. Moreover, $\varphi_{l}=\delta_{j_{k}}, 1 \leq l \leq p$; in particular, φ is independent of the choice of covering set and of λ.

Proof. The map $\beta_{\lambda}^{O}: \mathcal{X} \rightarrow \mathfrak{n} / \mathfrak{e}(\lambda)$ defined by

$$
\beta_{\lambda}^{O}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\sum_{l=1}^{p} \log \left(\alpha_{\lambda, l}^{O}\left(x_{l}\right)\right)+\mathfrak{e}(\lambda)
$$

is the indicated isomorphism. To show that $\varphi_{l}=\delta_{j_{k_{l}}}$, we need only consider the case where $j=j_{k_{l}} \notin I$. For this we apply preceding computation that resulted in equation (3.2):

$$
\varphi(a)_{l}=\operatorname{sign}\left(\nu_{i_{k}}(a)\right)^{-1}\left|\delta_{j}(a)\right|
$$

where $j=j_{k}$. From Lemma 1.7 we know that $\nu_{i_{k}}(a)$ and $\delta_{j}(a)=\nu_{j_{k}}(a)^{-1}$ are both positive. The result follows.

Thus φ defines an action of K on \mathcal{X} which is independent of λ and O. We define the unitary representation $\gamma^{\mathcal{X}}$ of K on $L^{2}(\mathcal{X})$ by

$$
\gamma^{\mathcal{X}}(a) f(x)=f\left(\varphi(a)^{-1} x\right) \cdot\left|\delta^{1}(a)\right|^{-1 / 2}
$$

Lemma 3.5. Given a choice of covering set O containing λ, we have a natural isomorphism of \mathcal{H}_{λ} with $L^{2}(\mathcal{X}) \otimes \mathcal{H}_{\lambda}^{\circ}$.

Proof. Given $f \in \mathcal{H}_{\lambda}$, we define $\tilde{A}_{\lambda}^{O}(f)$ as follows. For $v \in \mathcal{H}_{\lambda}^{\circ}$, and for a.e. $x \in \mathcal{X}$ put

$$
\left(\tilde{A}_{\lambda}^{O}(f)(v)\right)(x)=\left\langle f\left(\alpha_{\lambda}^{O}(x)\right), v\right\rangle
$$

then the Cauchy-Schwartz inequality gives

$$
\int_{\mathcal{X}}\left|\left\langle f\left(\alpha_{\lambda}^{O}(x)\right), v\right\rangle\right|^{2} d x \leq \int_{\mathcal{X}}\left\|f\left(\alpha_{\lambda}^{O}(x)\right)\right\|^{2}\|v\|^{2} d x=\|f\|^{2}\|v\|^{2}
$$

so $\tilde{A}_{\lambda}^{O}(f) v$ defines an element of $L^{2}(\mathcal{X})$ and accordingly we have a linear map $\tilde{A}_{\lambda}^{O}(f): \mathcal{H}_{\lambda}^{\circ} \rightarrow L^{2}(\mathcal{X})$. Let $\left\{v_{j}\right\}$ be an orthonormal basis for $\mathcal{H}_{\lambda}^{\circ}$: then

$$
\begin{aligned}
\sum_{j}\left\|\tilde{A}_{\lambda}^{O}(f) v_{j}\right\|^{2} & =\sum_{j} \int_{\mathcal{X}}\left|\left\langle f\left(\alpha_{\lambda}^{O}(x)\right), v_{j}\right\rangle\right|^{2} d x \\
& =\int_{\mathcal{X}} \sum_{j}\left|\left\langle f\left(\alpha_{\lambda}^{O}(x)\right), v_{j}\right\rangle\right|^{2} d x \\
& =\int_{\mathcal{X}}\left\|f\left(\alpha_{\lambda}^{O}(x)\right)\right\|^{2} d x=\|f\|^{2}
\end{aligned}
$$

showing that $\tilde{A}_{\lambda}^{O}(f)$ is Hilbert-Schmidt and that \tilde{A}_{λ}^{O} is an isometry.
Given an elementary tensor $g \otimes v \in L^{2}(\mathcal{X}) \otimes \mathcal{H}_{\lambda}^{\circ}$, define $f \in \mathcal{H}_{\lambda}$ as follows. For each $n \in N$, we have a unique point $x(n) \in \mathcal{X}$ and $e(n) \in E(\lambda)$ such that $n=\alpha_{\lambda}^{O}(x(n)) e(n)$. Put

$$
f(n)=g(x(n)) \pi_{\lambda}^{\circ}(e(n))^{-1} v
$$

Then $f \in \mathcal{H}_{\lambda}$ and $\tilde{A}_{\lambda}^{O}(f)=g \otimes v$. It follows that \tilde{A}_{λ}^{O} is surjective.
Hence we may regard \mathcal{H}_{λ} as a closed subspace of $L^{2}\left(\mathcal{X} \times \mathbb{C}^{m}\right)$ where the norm is given by
$\|F\|^{2}=\int_{\mathcal{X}} \int_{\mathbb{C}^{m}}|F(x, w)|^{2} \exp \left(-\frac{1}{2} \sum_{l=1}^{m} \xi_{l}^{\epsilon}(\lambda)\left|w_{l}\right|^{2}\right) d w d \bar{w} d x, F \in L^{2}\left(\mathcal{X} \times \mathbb{C}^{m}\right)$.
We now describe the action of H on \hat{N} in terms of the preceding explicit data. Let $a \in H$. Let $\mathbf{j}^{\prime \prime}$ be the subsequence of \mathbf{j} defined by $\mathbf{j}^{\prime \prime}=\left\{j_{k} \in \mathbf{j}\right.$: $\left.k \in K_{3}\right\}$; note that $\mathbf{j}^{\prime \prime}$ is disjoint from \mathbf{j}^{\prime}, and recall the notation $K_{3}=\left\{h_{1}<\right.$ $\left.h_{2}<\cdots<h_{m}\right\}$. Put $\delta_{l}^{\circ}=\delta_{j_{h}}, 1 \leq l \leq m$ and set $\delta^{\circ}=\left(\delta_{1}^{\circ}, \delta_{2}^{\circ}, \ldots, \delta_{m}^{\circ}\right)$ and $\left|\delta^{\circ}\right|=\prod_{l=1}^{m}\left|\delta_{l}^{\circ}\right|$. Let $\left(\pi_{\lambda}^{\circ}\right)^{a}$ be the irreducible representation of $E(a \lambda)$ defined by $\left(\pi_{\lambda}^{\circ}\right)^{a}(n)=\pi_{\lambda}\left(a^{-1} n a\right)$ and let $B(a, \lambda): \mathcal{H}_{\lambda}^{\circ} \rightarrow \mathcal{H}_{a \lambda}^{\circ}$ be the map

$$
(B(a, \lambda) p)(w)=p\left(\delta^{\circ}(a)^{-1} w\right)\left|\delta^{\circ}(a)\right|^{-1}=p\left(\delta_{1}^{\circ}(a)^{-1} w_{1}, \ldots, \delta_{m}^{\circ}(a)^{-1} w_{m}\right)\left|\delta^{\circ}(a)\right|^{-1}
$$

Lemma 3.6. The operators $B(a, \lambda)$ are unitary and for each $a \in H, \lambda \in \Lambda$, $B(a, \lambda)$ intertwines the representations $\left(\pi_{\lambda}^{\circ}\right)^{a}$ and $\pi_{a \lambda}^{\circ}$. Moreover they satisfy the relation

$$
B(a, b \lambda) \circ B(b, \lambda)=B(a b, \lambda)
$$

for each $a, b \in H, \lambda \in \Lambda$.

Proof. By Lemma 1.6 we have

$$
(a \lambda)\left(W_{l}(a \lambda)\right)=\delta_{i_{h_{l}}}(a)^{-1} \lambda\left(W_{l}(\lambda)\right)=\overline{\delta_{l}^{\circ}}(a)^{-1} \lambda\left(W_{l}(\lambda)\right)
$$

so

$$
(a \lambda)\left[W_{l}(a \lambda), \overline{W_{l}(a \lambda)}\right]=\left|\delta_{l}^{\circ}(a)\right|^{-2} \lambda\left[W_{l}(\lambda), \overline{W_{l}(\lambda)}\right]
$$

and hence $\xi_{l}(a \lambda)=\left|\delta_{l}^{\circ}(a)\right|^{-2} \xi_{l}(\lambda)$. It follows that for each $a \in H, B(a, \lambda)$ is unitary:

$$
\begin{aligned}
& \|B(a, \lambda) p\|_{a \lambda}^{\circ}{ }^{2} \\
& =\int_{\mathbb{C}^{m}}\left|p\left(\delta_{1}^{\circ}(a)^{-1} w_{1}, \ldots, \delta_{m}^{\circ}(a)^{-1} w_{m}\right)\right|^{2}\left|\delta^{\circ}(a)\right|^{-2} \exp \left(-\frac{1}{2} \sum_{l} \xi_{l}(a \lambda)\left|w_{l}\right|^{2}\right) d w d \bar{w} \\
& =\int_{\mathbb{C}^{m}}\left|p\left(\delta_{1}^{\circ}(a)^{-1} w_{1}, \ldots, \delta_{m}^{\circ}(a)^{-1} w_{m}\right)\right|^{2}\left|\delta^{\circ}(a)\right|^{-2} \\
& =\int_{\mathbb{C}^{m}}\left|p\left(w_{1}, \ldots, w_{m}\right)\right|^{2}\left|\delta^{\circ}(a)\right|^{-2} \exp \left(-\frac{1}{2} \sum_{l}\left|\delta_{l}^{\circ}(a)\right|^{-2} \xi_{l}(\lambda)\left|w_{l}\right|^{2}\right) d w d \bar{w} \\
& \exp \left(-\frac{1}{2} \sum_{l}\left|\delta_{l}^{\circ}(a)\right|^{-2} \xi_{l}(\lambda)\left|\delta_{l}^{\circ}(a) w_{l}\right|^{2}\right)\left|\delta^{\circ}(a)\right|^{2} d w d \bar{w} \\
& =\int_{\mathbb{C}^{m}}\left|p\left(w_{1}, \ldots, w_{m}\right)\right|^{2} \exp \left(-\frac{1}{2} \sum_{l} \xi_{l}(\lambda)\left|w_{l}\right|^{2}\right) d w d \bar{w} \\
& =\|p\|_{\lambda}^{\circ} .
\end{aligned}
$$

It is easy to check that $B(a, \lambda) \pi_{\lambda}^{\circ}\left(a^{-1}(w, d) a\right)=\pi_{a \lambda}^{\circ}(w, d) B(a, \lambda)$ holds for all $(w, d) \in \mathbb{C}^{m} \times D(\lambda)$ and that $B(a, b \lambda) \circ B(b, \lambda)=B(a b, \lambda)$.

Denote the unitary representation $\left.B(\cdot, \lambda)\right|_{K}$ of K acting in $\mathcal{H}_{\lambda}^{\circ}$ by γ_{λ}°. Recall that by part (b) of Lemma 1.7, each δ_{l}°, when restricted to K, is a unitary character, $1 \leq l \leq m$. The unitary representation $\delta^{\circ}: K \rightarrow D(m, \mathbb{C})$ is equivalent to the linear action of K on $\mathfrak{e}(\lambda) / \mathfrak{d}(\lambda)$ via the map $\mathbb{C}^{m} \rightarrow \log \alpha_{\lambda}^{\circ}+\mathfrak{d}(\lambda)$. For any $p \in \mathcal{H}_{\lambda}^{\circ}$,

$$
\left(\gamma_{\lambda}^{\circ}(a) p\right)(w)=p\left(\delta^{\circ}(a)^{-1} w\right), a \in K
$$

Let μ_{λ}° denote a Borel measure on \hat{K} and m_{λ}° the non-vanishing multiplicity function associated with γ_{λ}° so that

$$
\gamma_{\lambda}^{\circ} \simeq \int_{\hat{K}}^{\oplus} m_{\lambda}^{\circ}(\eta) \eta d \mu_{\lambda}^{\circ}(\eta)
$$

Then μ_{λ}° is supported on $\hat{K}^{\prime \prime}$ (where $\hat{K}^{\prime \prime} \subset \hat{K}$ in the usual way.)
Lemma 3.7. The class of the measure μ_{λ}° and the multiplicity function m_{λ}° associated with γ_{λ}° depend only upon the sign index $\epsilon(\lambda)$.

Proof. The monomials

$$
\left\{\left(w^{\epsilon}\right)^{k}=\left(w_{1}^{\epsilon_{1}}\right)^{k_{1}}\left(w_{2}^{\epsilon_{2}}\right)^{k_{2}} \cdots\left(w_{m}^{\epsilon_{m}}\right)^{k_{m}} \mid k_{1} \geq 0, k_{2} \geq 0, \ldots, k_{m} \geq 0\right\}
$$

are a complete set of eigenfunctions for $\gamma_{\lambda}^{\circ}(a), a \in K$:

$$
\gamma_{\lambda}^{\circ}(a)\left(\left(w^{\epsilon}\right)^{k}\right)=\delta_{1}^{\circ}(a)^{-\epsilon_{1} k_{1}} \delta_{2}^{\circ}(a)^{-\epsilon_{2} k_{2}} \cdots \delta_{m}^{\circ}(a)^{-\epsilon_{m} k_{m}}\left(w^{\epsilon}\right)^{k}, a \in K .
$$

Hence, if η belongs to the support of μ_{λ}°, then the multiplicity $m_{\lambda}^{\circ}(\eta)$ of a character $\eta \in \hat{K}$ in the irreducible decomposition of γ_{λ}° is just

$$
m_{\lambda}^{\circ}(\eta)=\left|\left\{\left(k_{1}, k_{2}, \ldots, k_{m}\right) \mid\left(\delta_{1}^{\circ}\right)^{-\epsilon_{1} k_{1}}\left(\delta_{2}^{\circ}\right)^{-\epsilon_{2} k_{2}} \cdots\left(\delta_{m}^{\circ}\right)^{-\epsilon_{m} k_{m}}=\eta\right\}\right| .
$$

For each $a \in H$ define $\pi_{\lambda}^{a}=\pi_{\lambda}\left(a^{-1} \cdot a\right)$. For $f \in \mathcal{H}_{\lambda}$, define $C(a, \lambda) f$ by

$$
(C(a, \lambda) f)(n)=B(a, \lambda)\left(f\left(a^{-1} n a\right)\right) \delta^{1}(a)^{-1 / 2} .
$$

Lemma 3.8. The operator $C(a, \lambda)$ is a unitary operator from \mathcal{H}_{λ} to $\mathcal{H}_{a \lambda}$ and intertwines π_{λ}^{a} and $\pi_{a \lambda}$. Moreover, the operators $C(a, \lambda)$ satisfy

$$
\begin{equation*}
C(a, b \lambda) \circ C(b, \lambda)=C(a b, \lambda) \tag{3.3}
\end{equation*}
$$

Proof. For $y \in E(a \lambda)$, we have $a^{-1} y a \in E(\lambda)$. For $f \in \mathcal{H}_{\lambda}$ we have

$$
\begin{aligned}
(C(a, \lambda) f)(n y) & =B(a, \lambda)\left(f\left(a^{-1} n a a^{-1} y a\right)\right) \delta^{1}(a)^{-1 / 2} \\
& =B(a, \lambda)\left(\pi_{\lambda}^{\circ}\left(a^{-1} y a\right)^{-1} f\left(a^{-1} x h\right)\right) \delta^{1}(a)^{-1 / 2} \\
& =\pi_{a \lambda}^{\circ}(y)^{-1} B(a, \lambda) f\left(a^{-1} x a\right) \delta^{1}(a)^{-1 / 2} \\
& =\pi_{a \lambda}^{\circ}(y)^{-1}(C(a, \lambda) f)(x) .
\end{aligned}
$$

It follows that $C(a, \lambda)$ maps \mathcal{H}_{λ} into $\mathcal{H}_{a \lambda}$. To see that $C(a, \lambda)$ is unitary,

$$
\begin{aligned}
\int_{N / E(a \lambda)}\|C(a, \lambda) f(n)\|^{2} d \nu_{a \lambda}(\dot{n}) & =\int_{N / E(a \lambda)}\left\|f\left(a^{-1} n a\right)\right\|^{2} \delta^{1}(a)^{-1} d \nu_{a \lambda}(\dot{n}) \\
& =\int_{N / E(\lambda)}\|f(n)\|^{2} d \nu_{\lambda}(\dot{n})
\end{aligned}
$$

and it is easily seen that $C(a, \lambda)$ intertwines π_{λ}^{a} and $\pi_{a \lambda}$.

The following is immediate from the preceding.
Corollary 3.2. Denote by ι the natural injection $\iota: \Lambda \rightarrow \hat{N}$ so that $\iota(\lambda)=\left[\pi_{\lambda}\right]$. Then ι is equivariant with respect to the actions of H on Λ and \hat{N}. Hence for each $\lambda \in \Lambda, H_{\left[\pi_{\lambda}\right]}=H_{\lambda}=K$.

4. Decomposition of the quasiregular representation

In this section we show how the explicit orbital parameters and realizations are combined with results in [9] to obtain an explicit decomposition of the quasiregular representation of $G=N \rtimes H$ induced from H. We begin by recalling the group Fourier transform on N in terms of the parameter set Λ and the realizations π_{λ}. For each $\lambda \in \Lambda$ and $f \in L^{1}(N) \cap L^{2}(N)$, set

$$
\mathcal{F}(f)(\lambda)=\int_{N} f(n) \pi_{\lambda}(n) d n
$$

Then $\mathcal{F}(f)(\lambda)$ belongs to the space $\mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda}$ of Hilbert-Schmidt operators on \mathcal{H}_{λ}. Now let μ be the Plancherel measure on Λ as in Proposition 1.5. Then $\left\{\mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda}\right\}_{\lambda \in \Lambda}$ is a measurable field of Hilbert spaces and we set

$$
\mathbb{H}=\int_{\Lambda}^{\oplus} \mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda} d \mu(\lambda) .
$$

Now $\lambda \rightarrow \pi_{\lambda}$ is a Borel function from Λ to $\operatorname{Irr}(N), \mathcal{F}(\psi)$ belongs to \mathbb{H}, and the map

$$
\mathcal{F}: L^{1}(N) \cap L^{2}(N) \rightarrow \mathbb{H}
$$

as defined above extends to all of $L^{2}(N)$ as a unitary isomorphism. For $f \in L^{2}(N)$ we use the notation $\hat{f}(\lambda)=\mathcal{F}(f)(\lambda), \lambda \in \Lambda$.

Next we recall the quasiregular representation τ of G in $L^{2}(N)$. Let G have the Haar measure $d \nu_{G}(n a)=d n|\delta(a)|^{-1} d a$. We realize τ on $L^{2}(N)$ as follows. For $f \in L^{2}(N)$, set

$$
\begin{aligned}
& (\tau(a) f)\left(n_{0}\right)=f\left(a^{-1} n_{0} a\right)|\delta(a)|^{-1 / 2}, a \in H \\
& (\tau(n) f)\left(n_{0}\right)=f\left(n^{-1} n_{0}\right), n \in N .
\end{aligned}
$$

The representation $\hat{\tau}:=\mathcal{F} \circ \tau \circ \mathcal{F}^{-1}$ is described in terms of the usual action of H on \hat{N}.

For $a \in H$ and $\lambda \in \Lambda^{1}$, let $D(a, \lambda): \mathcal{B}\left(\mathcal{H}_{\lambda}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{a \lambda}\right)$ be defined by

$$
D(a, \lambda)(T)=C(a, \lambda) \circ T \circ C(a, \lambda)^{-1}
$$

A simple computation shows the following.
Proposition 4.1. Let $f \in L^{1}(N) \cap L^{2}(N), a \in H, n \in N$. Then for each $\lambda \in \Lambda$, one has
(i) $(\hat{\tau}(a) \hat{f})(\lambda)=D\left(a, a^{-1} \lambda\right)\left(\hat{f}\left(a^{-1} \lambda\right)\right)|\delta(a)|^{1 / 2}$, and
(ii) $(\hat{\tau}(n) \hat{f})(\lambda)=\pi_{\lambda}(n) \circ \hat{f}(\lambda)$.

Denote the unitary representation $\left.C(\cdot, \lambda)\right|_{K}$ of K by γ_{λ}. Recall that given a covering set O containing λ, we have a natural isomorphism $\tilde{A}_{\lambda}^{O}: \mathcal{H}_{\lambda} \rightarrow$ $L^{2}(\mathcal{X}) \otimes \mathcal{H}_{\lambda}^{\circ}$. It is easy to check that for each $a \in K$,

$$
\tilde{A}_{\lambda}^{O} \circ \gamma_{\lambda}(a) \circ\left(\tilde{A}_{\lambda}^{O}\right)^{-1}=\gamma^{\mathcal{X}}(a) \otimes \gamma_{\lambda}^{\circ}(a) .
$$

We propose to write γ_{λ} as an outer tensor product of representations $\gamma_{\lambda}^{\prime}$ of K^{\prime} and $\gamma_{\lambda}^{\prime \prime}$ of $K^{\prime \prime}$. Recall that we have decomposed \mathbf{j}^{\prime} into disjoint subsequences \mathbf{j}^{r} and \mathbf{j}^{c} where \mathbf{j}^{c} consists of those indices $j \in \mathbf{j}^{\prime}$ such that $j-1 \notin I$ (and hence $j-1 \in \mathbf{j})$. Write

$$
\mathbf{j}^{c}=\left\{j_{k_{1}^{\prime \prime}}, j_{k_{2}^{\prime \prime}}, \cdots, j_{k_{q}^{\prime \prime}}\right\}
$$

and let U be the open subset of \mathbb{R}^{p} defined by

$$
U=\left\{y \in \mathbb{R}^{p} \mid y_{l}>0 \text { if } x_{l} \text { is complex }\right\} .
$$

Use polar coordinates for the complex coordinates of \mathcal{X} by setting $y_{l}(x)=x_{l}$ if x_{l} is real, and $y_{l}(x)=\left|x_{l}\right|$ if x_{l} is complex, $1 \leq l \leq p$, while $z_{l}(x)=\operatorname{sign}\left(x_{k_{l}^{\prime \prime}}\right), 1 \leq l \leq$ q. Thus for $x=\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in \mathcal{X}$, define $\sigma(x) \in U \times \mathbb{T}^{q}$ by $\sigma(x)=(y(x), z(x))$. We have the resulting obvious isomorphism $S: L^{2}(\mathcal{X}) \rightarrow L^{2}\left(U, y^{\prime \prime} d y\right) \otimes L^{2}\left(\mathbb{T}^{q}\right)$ defined by

$$
S f(y, z)=f\left(\sigma^{-1}(y, z)\right)
$$

where $y^{\prime \prime}=y_{k_{1}^{\prime \prime}} y_{k_{2}^{\prime \prime}} \cdots y_{k_{q}^{\prime \prime}}$. Writing $a \in K$ as $a=b c, b \in K^{\prime}, c \in K^{\prime \prime}$, we have

$$
\sigma(\varphi(b c) x)=\left(\varphi^{\prime}(b) y(x), \varphi^{\prime \prime}(c) z(x)\right)
$$

where $\varphi^{\prime}: K^{\prime} \rightarrow D(p, \mathbb{R})$ and $\varphi^{\prime \prime}: K^{\prime \prime} \rightarrow D(q, \mathbb{C})$ are defined by $\varphi^{\prime}=\left.\varphi\right|_{K^{\prime}}$ and

$$
\varphi_{l}^{\prime \prime}(c)=\varphi_{k_{l}^{\prime \prime}}(c), 1 \leq l \leq q
$$

Note that by Lemma 3.4, the characters $\varphi_{l}^{\prime \prime}$ are just the characters $\delta_{j}, j \in \mathbf{j}^{c}$. Define the representation γ^{\prime} of K^{\prime} in $L^{2}\left(U, y^{\prime \prime} d y\right)$ by

$$
\gamma^{\prime}(b) F(y)=F\left(\varphi^{\prime}(b)^{-1} y\right) \delta^{1}(b)^{-1 / 2}, b \in K^{\prime}
$$

Similarly we have the representation $\gamma^{\prime \prime}$ of $K^{\prime \prime}$ in $L^{2}\left(\mathbb{T}^{q}\right)$ defined by

$$
\left.\gamma^{\prime \prime}(c) G(z)\right)=G\left(\varphi^{\prime \prime}(c)^{-1} z\right)
$$

and it is clear that

$$
S \circ \gamma^{\mathcal{X}} \circ S^{-1}=\gamma^{\prime} \otimes \gamma^{\prime \prime}
$$

Moreover, since $K^{\prime} \subset \operatorname{ker}\left(\gamma_{\lambda}^{\circ}\right)$, we can regard γ_{λ}° as a representation of $K^{\prime \prime}$. Set $\mathcal{H}^{\prime}=L^{2}\left(U, y^{\prime \prime} d y\right)$ and

$$
\mathcal{H}_{\lambda}^{\prime \prime}=L^{2}\left(\mathbb{T}^{q}\right) \otimes \mathcal{H}_{\lambda}^{\circ}
$$

Let $g: L^{2}\left(U, y^{\prime \prime} d y\right) \otimes L^{2}\left(\mathbb{T}^{q}\right) \otimes \mathcal{H}_{\lambda}^{\circ} \rightarrow \mathcal{H}^{\prime} \otimes \mathcal{H}_{\lambda}^{\prime \prime}$ be the operation of reassociation: $g((F \otimes G) \otimes \psi)=F \otimes(G \otimes \psi)$. Thus, for a fixed covering set O, we have $B_{\lambda}^{O}: \mathcal{H}_{\lambda} \rightarrow \mathcal{H}^{\prime} \otimes \mathcal{H}_{\lambda}^{\prime \prime}$ defined by $B_{\lambda}^{O}=g \circ S \otimes I \circ \tilde{A}_{\lambda}^{O}$,

$$
B_{\lambda}^{O}: \mathcal{H}_{\lambda} \xrightarrow{\tilde{A}_{\lambda}^{O}} L^{2}(\mathcal{X}) \otimes \mathcal{H}_{\lambda}^{\circ} \xrightarrow{S \otimes I}\left(L^{2}\left(U, y^{\prime \prime} d y\right) \otimes L^{2}\left(\mathbb{T}^{q}\right)\right) \otimes \mathcal{H}_{\lambda}^{\circ} \xrightarrow{g} \mathcal{H}_{\lambda}^{\prime} \otimes \mathcal{H}_{\lambda}^{\prime \prime}
$$

and it follows that

$$
\begin{equation*}
B_{\lambda}^{O} \circ \gamma_{\lambda} \circ\left(B_{\lambda}^{O}\right)^{-1}=\gamma^{\prime} \otimes\left(\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}\right) \tag{4.1}
\end{equation*}
$$

Let $\eta \in \hat{K}$ and write $\eta=\xi \otimes \zeta$ where $\xi \in \hat{K}^{\prime}$ and $\zeta \in \hat{K}^{\prime \prime}$. Let m_{λ} be the multiplicity function for γ_{λ} on \hat{K}; by (4.1), we have

$$
\begin{equation*}
m_{\lambda}(\eta)=m_{\lambda}(\xi \otimes \zeta)=m^{\prime}(\xi) m_{\lambda}^{\prime \prime}(\zeta) \tag{4.2}
\end{equation*}
$$

where m^{\prime} and $m_{\lambda}^{\prime \prime}$ are the multiplicity functions for γ^{\prime} and $\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}$, respectively. We have already seen that the multiplicity function for γ_{λ}° depends only upon $\epsilon(\lambda)$; since γ^{\prime} and $\gamma^{\prime \prime}$ are independent of λ, the following is immediate.
Proposition 4.2. The measure class μ_{λ} and the positive multiplicity function m_{λ} on \hat{K} for the irreducible decomposition of γ_{λ} depend only upon $\epsilon(\lambda)$.

When $\epsilon=\epsilon(\lambda)$ we shall also write $m_{\lambda}=m_{\epsilon}$ and $m_{\lambda}^{\prime \prime}=m_{\epsilon}^{\prime \prime}$. Let T_{λ} : $\mathcal{H}_{\lambda}^{\prime} \otimes \mathcal{H}_{\lambda}^{\prime \prime} \rightarrow \int_{\hat{K}}^{\oplus} \mathbb{C}^{m_{\lambda}(\eta)} d \mu_{\lambda}(\eta)$ be an isomoorphism effecting the irreducible decomposition of γ_{λ}. Then

$$
\begin{equation*}
A_{\lambda}^{O}=T \circ B_{\lambda}^{O}: \mathcal{H}_{\lambda} \rightarrow \int_{\hat{K}}^{\oplus} \mathbb{C}^{m_{\lambda}(\eta)} d \mu_{\lambda}(\eta) \tag{4.3}
\end{equation*}
$$

is a unitary isomorphism such that for $b \in K^{\prime}, c \in K^{\prime \prime}$,

$$
A_{\lambda}^{O} \circ \gamma_{\lambda}(b c) \circ\left(A_{\lambda}^{O}\right)^{-1}=\int_{\hat{K}^{\prime} \times \hat{K}^{\prime \prime}} m^{\prime}(\xi) m_{\epsilon}^{\prime \prime}(\zeta) \cdot \xi(b) \otimes \zeta(c) d \mu(\xi \otimes \zeta)
$$

We now digress to recall two facts. First, suppose that \mathcal{H} is a Hilbert space and that $\left\{\mathcal{K}_{s}\right\}_{s \in S}$ is a measurable field of Hilbert spaces over a measure space (S, ν). Then there is a unique ν-measurable field structure on $\left\{\mathcal{H} \otimes \mathcal{K}_{s}\right\}_{s \in S}$ for which $\left\{v_{s}\right\}_{s \in S}$ measurable in $\left\{\mathcal{K}_{s}\right\}_{s \in S}$ implies $\left\{u \otimes v_{s}\right\}_{s \in S}$ is measurable in $\left\{\mathcal{H} \otimes \mathcal{K}_{s}\right\}_{s \in S}$. Setting $\mathcal{K}=\int_{S}^{\oplus} \mathcal{K}_{s} d \nu(s)$, one has a canonical isomorphism

$$
\begin{equation*}
\mathcal{H} \otimes \mathcal{K} \simeq \int_{S}^{\oplus} \mathcal{H} \otimes \mathcal{K}_{s} d \nu(s) \tag{4.4}
\end{equation*}
$$

that takes the elementary tensor $u \otimes\left\{v_{s}\right\}_{s \in S}$ to the vector field $\left\{u \otimes v_{s}\right\}_{s \in S}$. In a similar way, tensor products distribute over direct sums on the right as well.

Second, let H be any separable, locally compact group and K a closed subgroup of H. Let $d \nu(\dot{a})$ be a Borel measure on $H / K, \mathcal{V}$ a Hilbert space, and γ a unitary representation of K acting in \mathcal{V}. Let $L^{2}(H, K, \mathcal{V}, \gamma, d \nu)$ be the Hilbert space of Borel functions $f: H \rightarrow \mathcal{V}$ which satisfy

$$
f(a b)=\gamma_{\lambda}(b)^{-1} f(a), a \in H, b \in K
$$

and

$$
\int_{H / K}\|f(a)\|^{2} d \nu(\dot{a})<\infty
$$

Let \mathcal{W} be a Hilbert space; then γ also acts in $\mathcal{V} \otimes \mathcal{W}$ in the obvious way. We have the following.

Lemma 4.1. There is a canonical isomorphism

$$
L^{2}(H, K, \mathcal{V}, \gamma, d \nu) \otimes \mathcal{W} \simeq L^{2}(H, K, \mathcal{V} \otimes \mathcal{W}, \gamma, d \nu)
$$

Proof. Elementary tensors in $L^{2}(H, K, \mathcal{V}, \gamma, d \nu) \otimes \mathcal{W}$ map naturally and isometrically into $L^{2}(H, K, \mathcal{V} \otimes \mathcal{W}, \gamma, d \nu)$: for each $u \in L^{2}(H, K, \mathcal{V}, \gamma, d \nu)$ and $v \in \mathcal{V}$, define $f(u \otimes v)(a)=u(a) \otimes v, a \in H$. The mapping f extends to an isometry on $L^{2}(H, K, \mathcal{V}, \gamma, d \nu) \otimes \mathcal{W}$. Now choose an orthonormal basis $\left\{e_{j}\right\}$ for \mathcal{W} and for $U \in L^{2}(H, K, \mathcal{V} \otimes \mathcal{W}, \gamma, d \nu)$, define $U_{j} \in L^{2}(H, K, \mathcal{V}, \gamma, d \nu)$ by $U_{j}(a)=U(a)\left(e_{j}\right), a \in H$. Then $\|U(a)\|_{H S}^{2}=\sum\left\|U_{j}(a)\right\|^{2}$ and it is easy to check that

$$
U=f\left(\sum_{j} U_{j} \otimes e_{j}\right)
$$

As is well-known, π_{λ} extends to a representation $\tilde{\pi}_{\lambda}$ of $N K$ defined by the prescription

$$
\tilde{\pi}_{\lambda}(n a)=\pi_{\lambda}(n) \gamma_{\lambda}(a), n \in N, a \in K,
$$

and for each character $\eta \in \hat{K}$, the representation $\operatorname{ind}_{N K}^{G}\left(\tilde{\pi}_{\lambda} \otimes \eta\right)$ is irreducible and isomorphic with the representation ρ_{λ}^{η} defined as follows. We realize ρ_{λ}^{η} in the Hilbert space $\mathcal{H}_{\rho_{\lambda}^{\eta}}=L^{2}\left(H, K, \mathcal{H}_{\lambda}, \gamma_{\lambda} \otimes \eta,|\delta(a)|^{-1} d \dot{a}\right)$. For $f \in \mathcal{H}_{\rho_{\lambda}^{\eta}}$ and $a \in H$,

$$
\rho_{\lambda}^{\eta}(b) f=f\left(b^{-1} a\right)|\delta(b)|^{1 / 2}, b \in H
$$

and

$$
\rho_{\lambda}^{\eta}(n) f(a)=\pi_{\lambda}^{a}(n) f(a), n \in N
$$

The following is an concrete form of [9, Theorem 7.1], specialized to the present context. (See also [11].)
Theorem 4.3. Let $G=N \rtimes H$ be an algebraic solvable group with N connected, simply connected nilpotent and H is a connected, abelian Levi factor in G. Let Λ be parameters for coadjoint orbits in \mathfrak{n}^{*} as constructed above with $\Sigma_{0} \subset \Lambda$ a fundamental domain for $\Sigma / F \simeq \Lambda / H$. Let $\tilde{\mu}$ be the explicit measure on Σ_{0} defined above, and let $\left\{\pi_{\lambda}\right\}_{\lambda \in \Sigma_{0}}$ be the explicit field of irreducible representations of N constructed above. Write $\Sigma_{0}=\cup_{\epsilon} \Sigma_{0}^{\epsilon}$ where $\Sigma_{0}^{\epsilon}=\left\{\lambda \in \Sigma_{0} \mid \epsilon(\lambda)=\epsilon\right\}$. For
each sign index ϵ for which $\Sigma_{0}^{\epsilon} \neq \emptyset$, let m_{ϵ} be the positive multiplicity function (as in Proposition 4.2) and μ_{ϵ} a measure on \hat{K} such that for each $\lambda \in \Sigma_{0}^{\epsilon}$,

$$
\gamma_{\lambda} \simeq \int_{\hat{K}} m_{\epsilon}(\eta) \cdot \eta d \mu_{\epsilon}(\eta)
$$

Then we have the decomposition

$$
\tau \simeq \bigoplus_{\epsilon} \int_{\Sigma_{0}^{\epsilon}}^{\otimes} \int_{\hat{K}}^{\otimes} m_{\epsilon}(\eta) \cdot \rho_{\lambda}^{\bar{\eta}} d \mu_{\epsilon}(\eta) d \tilde{\mu}(\lambda)
$$

implemented by an explicit isomorphism Φ.
Proof. For each $\lambda \in \Sigma_{0}$ with \mathcal{O}_{λ} the H-orbit of λ, put

$$
\mathbb{H}_{\lambda}=\int_{\mathcal{O}_{\lambda}}^{\oplus} \mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda} d \omega_{\lambda}(\lambda)
$$

By Proposition 2.3 we have an obvious and explicit isomorphism

$$
\mathbb{H} \simeq \int_{\Sigma_{0}}^{\oplus} \mathbb{H}_{\lambda} d \tilde{\mu}(\lambda)
$$

The formula for $\hat{\tau}$ obtains a unitary representation $\hat{\tau}_{\lambda}$ on \mathbb{H}_{λ} and thus we have the decomposition:

$$
\tau \simeq \int_{\Sigma_{0}}^{\oplus} \hat{\tau}_{\lambda} d \tilde{\mu}(\lambda)
$$

Put

$$
\mathcal{K}_{\epsilon}=\int_{\hat{K}}^{\oplus} \mathbb{C}^{m_{\epsilon}(\eta)} d \mu_{\epsilon}(\eta)
$$

and

$$
\mathcal{L}_{\lambda}^{\epsilon}=\mathcal{H}_{\lambda} \otimes \overline{\mathcal{K}}_{\epsilon}
$$

Fix a covering set O and for $\lambda \in \Sigma_{0}^{\epsilon} \cap O$, let

$$
A_{\lambda}=A_{\lambda}^{O}: \mathcal{H}_{\lambda} \rightarrow \mathcal{K}_{\epsilon}
$$

be the intertwining operator for γ_{λ} defined above. To construct Φ we must construct, for each $\lambda \in \Sigma_{0}^{\epsilon} \cap O$, an isomorphism

$$
\Phi_{\lambda}: \mathbb{H}_{\lambda} \rightarrow \int_{\hat{K}}^{\oplus} \mathcal{H}_{\rho_{\lambda}^{\bar{\eta}}} \otimes \mathbb{C}^{m_{\epsilon}(\eta)} d \mu_{\epsilon}(\eta)
$$

that intertwines $\hat{\tau}_{\lambda}$ and $\int_{\hat{K}}^{\oplus} \rho_{\lambda}^{\bar{\eta}} \otimes 1_{n_{\epsilon}(\eta)} d \mu_{\epsilon}(\eta)$.
Fix $\lambda \in \Sigma_{0}^{\epsilon} \cap O$ and let $T=\left\{T_{\lambda^{\prime}}\right\}$ be a measurable field belonging to \mathbb{H}_{λ}.
For each $a \in H$ define

$$
f^{T}(a)=C(a, \lambda)^{-1} T_{a \cdot \lambda} C(a, \lambda) A_{\lambda}^{-1}
$$

Note that $f^{T}(a) \in \mathcal{L}_{\lambda}^{\epsilon}$, which we identify with

$$
\int_{\hat{K}} \mathcal{H}_{\lambda} \otimes \overline{\mathbb{C}}^{m_{\epsilon}(\eta)} d \mu_{\epsilon}(\eta)
$$

via (4.4). Thus for $a \in H$ we write $f^{T}(a)=\left\{f^{T}(a)_{\eta}\right\}_{\eta \in \hat{K}}$. Now put

$$
\tilde{\gamma}=\int_{\hat{K}}^{\oplus} \gamma_{\lambda} \otimes \bar{\eta} d \mu_{\epsilon}(\eta)
$$

acting in $\mathcal{L}_{\lambda}^{\epsilon}$. We claim that $f^{T}: H \rightarrow \mathcal{L}_{\lambda}^{\epsilon}$ belongs to

$$
\mathcal{M}_{\lambda}:=L^{2}\left(H, K, \hat{\mathcal{L}_{\lambda}^{\epsilon}}, \tilde{\gamma},|\delta(a)|^{-1} d \dot{a}\right)
$$

and that $\left\|f^{T}\right\|=\|T\|$. It is clear that f^{T} is Borel. To check the appropriate covariance property we use (3.3); for $b \in K$,

$$
f^{T}(a b)=\gamma_{\lambda}(b)^{-1} f^{T}(a) A_{\lambda} \gamma_{\lambda}(b) A_{\lambda}^{-1}
$$

and hence

$$
f_{\eta}^{T}(a b)=\gamma_{\lambda}(b)^{-1} f_{\eta}^{T}(a) \eta(b)=\left(\gamma_{\lambda}(b) \otimes \bar{\eta}(b)\right)^{-1}\left(f_{\eta}^{T}(a)\right) .
$$

To check $\left\|f^{T}\right\|$, choose an orthonormal basis $\left\{z^{(j)}\right\}$ for \mathcal{K}^{ϵ}, set $v^{(j)}=A_{\lambda}^{-1} z^{(j)}$, and calculate that

$$
\begin{aligned}
\int_{H}\left\|f^{T}(a)\right\|^{2}|\delta(a)|^{-1} d \dot{a} & =\int_{H} \sum_{j} \| f^{T}(a)\left(z^{(j)} \|_{H S}^{2}|\delta(a)|^{-1} d \dot{a}\right. \\
& =\int_{H} \sum_{j}\left\|C(a, \lambda)^{-1} T_{a \cdot \lambda} C(a, \lambda) v^{(j)}\right\|^{2}|\delta(a)|^{-1} d \dot{a} \\
& =\int_{H} \sum_{j}\left\|T_{a \cdot \lambda} C(a, \lambda) v^{(j)}\right\|^{2}|\delta(a)|^{-1} d \dot{a} \\
& =\int_{H}\left\|T_{a \cdot \lambda}\right\|_{H S}^{2}|\delta(a)|^{-1} d \dot{a}=\|T\|^{2}
\end{aligned}
$$

and the claim is verified. Now by (4.4) and Lemma 4.1, we have the canonical isomorphism

$$
\mathcal{M}_{\lambda} \simeq \mathcal{H}_{\rho_{\lambda}^{\bar{\pi}}} \otimes \overline{\mathcal{K}}^{\epsilon} \simeq \int_{\hat{K}}^{\oplus} \mathcal{H}_{\rho_{\lambda}^{\bar{\pi}}} \otimes \overline{\mathbb{C}}^{n_{\epsilon}(\eta)} d \mu_{\epsilon}(\eta)
$$

It remains to verify that the map $\Phi_{\lambda}: T \mapsto f^{T}$ has the appropriate intertwining property. Let $b \in H$, then for any $a \in H$ we have (again using (3.3))

$$
\begin{aligned}
f^{\hat{\tau}_{\lambda}(b) T}(a) & =C(a, \lambda)^{-1}\left(\hat{\tau}_{\lambda}(b) T\right)_{a \cdot \lambda} C(a, \lambda) A_{\lambda}^{-1}|\delta(b)|^{1 / 2} \\
& =C(a, \lambda)^{-1} C\left(b, b^{-1} a \lambda\right) T_{b^{-1} a \cdot \lambda} C\left(b, b^{-1} a \lambda\right)^{-1} C(a, \lambda) A_{\lambda}^{-1}|\delta(b)|^{1 / 2} \\
& =C\left(b^{-1} a, \lambda\right)^{1} T_{b^{-1} a \cdot \lambda} C\left(b^{-1} a, \lambda\right) A_{\lambda}^{-1}|\delta(b)|^{1 / 2} \\
& =f^{T}\left(b^{-1} a\right)|\delta(b)|^{1 / 2} .
\end{aligned}
$$

For $n \in N$, we have for any $a \in H$,

$$
\begin{aligned}
f^{\hat{\tau}_{\lambda}(n) T}(a) & =C(a, \lambda)^{-1}\left(\hat{\tau}_{\lambda}(n) T\right)_{a \cdot \lambda} C(a, \lambda) A_{\lambda}^{-1} \\
& =C(a, \lambda)^{-1} \pi_{a \cdot \lambda}(n) T_{a \cdot \lambda} C(a, \lambda) A_{\lambda}^{1} \\
& =\pi_{\lambda}^{a}(n) C(a, \lambda)^{-1} T_{a \cdot \lambda} C(a, \lambda) A_{\lambda}^{-1} \\
& =\pi_{\lambda}^{a}(n) f^{T}(a) .
\end{aligned}
$$

5. Multiplicities

In this section we study the multiplicity function m_{ϵ} for the decomposition of τ, given in Theorem 4.3. For each sign index ϵ we have the positive multiplicity function m_{ϵ} and a measure μ_{ϵ} on \hat{K} that give a decomposition of $\gamma_{\lambda}, \lambda \in \Sigma_{0}^{\epsilon}$. Recall that by (4.1) we have $\gamma_{\lambda} \simeq \gamma^{\prime} \otimes\left(\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}\right)$ as an outer tensor product, and by (4.2) and Theorem 4.3 we have $m_{\epsilon}\left(\rho_{\lambda}^{\bar{\eta}}\right)=m_{\epsilon}(\eta)=m^{\prime}(\xi) m_{\epsilon}^{\prime \prime}(\zeta)$ where $\eta=\xi \otimes \zeta$ with $\xi \in \hat{K}^{\prime}$ and $\zeta \in \hat{K}^{\prime \prime}$. Since $\hat{K}^{\prime \prime}$ is countable discrete, then we may choose the measure μ_{ϵ} so that for some Borel subset Z^{ϵ} of $\hat{K}^{\prime \prime}$ and measure μ^{\prime} on $\hat{K}^{\prime}, \mu_{\epsilon}$ is supported on $\hat{K}^{\prime} \times Z^{\epsilon}$ and given on each piece $\hat{K}^{\prime} \times\{\zeta\}, \zeta \in Z^{\epsilon}$ by μ^{\prime}. With this in mind we study the multiplicity functions m^{\prime} and $m_{\epsilon}^{\prime \prime}$ separately.

Recall that the representation γ^{\prime} of K^{\prime} is given by

$$
\left(\gamma^{\prime}(a) f\right)(y)=f\left(\varphi^{\prime}(a)^{-1} y\right)\left|\delta^{1}(a)\right|, a \in K^{\prime}, f \in \mathcal{H}_{\lambda}^{\prime} .
$$

On the other hand, the representation $\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}$ of the compact subgroup $K^{\prime \prime}$ acts in $\mathcal{H}_{\lambda}^{\prime \prime}=L^{2}\left(\mathbb{T}^{q}\right) \otimes \mathcal{A}^{\epsilon}\left(\mathbb{C}^{m}\right)$: for $h \in L^{2}\left(\mathbb{T}^{q}\right)$ and $p \in \mathcal{A}^{\epsilon}\left(\mathbb{C}^{m}\right)$,

$$
\left(\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}\right)(b)(h(z) \otimes p(w))=h\left(\varphi^{\prime \prime}(b)^{-1} z\right) \otimes p\left(\delta^{\circ}(b)^{-1} w\right), b \in K^{\prime \prime}
$$

We simplify notation here and just denote elements of $\mathcal{H}^{\prime \prime} \otimes \mathcal{H}_{\lambda}^{\circ}$ as $F(z, w)$ and write $\varphi_{q+l}^{\prime \prime}=\delta_{l}^{\circ}, 1 \leq l \leq m$. Thus we have the homomorphism $\varphi^{\prime \prime}: K^{\prime \prime} \rightarrow D(p, \mathbb{C})$ such that

$$
\left(\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}\right)(b)(F(z, w))=F\left(\varphi^{\prime \prime}(b)^{-1}(z, w)\right.
$$

The components of φ^{\prime} are given by characters δ_{j} where $j \in \mathbf{j}^{\prime}=\left\{j_{k_{1}}, j_{k_{2}}, \ldots, j_{k_{p}}\right\}$, the subsequence of \mathbf{j} defined in Section 3. Recall that \mathbf{j}^{\prime} is decomposed into the disjoint subsequences \mathbf{j}^{r} and \mathbf{j}^{c} where \mathbf{j}^{c} consists of those indices $j \in \mathbf{j}^{\prime}$ such that $j-1 \notin I$, and that q is the number of indices belonging to \mathbf{j}^{c}. We also have $\mathbf{j}^{\prime \prime}$, the subsequence of \mathbf{j} consisting of those indices $j=j_{k}$ where $k \in K_{3}$; recall that we have written $\mathbf{j}^{\prime \prime}=\left\{j_{h_{1}}, j_{h_{2}}, \ldots, j_{h_{m}}\right\}$. With this notation and referring to Lemma 3.4, we have that φ^{\prime} is isomorphic with the linear action of K^{\prime} on $\mathfrak{n} \mathfrak{e}(\lambda),\left(\varphi_{1}^{\prime \prime}, \ldots, \varphi_{q}^{\prime \prime}\right)$ is isomorphic with the linear action of $K^{\prime \prime}$ on $\mathfrak{n} / \mathfrak{e}(\lambda)$, and $\left(\varphi_{q+1}^{\prime \prime}, \ldots, \varphi_{q+m}^{\prime \prime}\right)$ is isomorphic with the linear action of $K^{\prime \prime}$ on $\mathfrak{e}(\lambda) / \mathfrak{d}(\lambda)$.

If $\operatorname{dim}\left(\varphi^{\prime}\left(K^{\prime}\right)\right)=p$, then we shall say that " K^{\prime} acts with full rank". We have the following.

Lemma 5.1. If K^{\prime} acts with full rank, then $m^{\prime}=2^{p-q}$ holds μ^{\prime}-a.e.. Otherwise, $m^{\prime}=\infty$ holds μ^{\prime}-a.e.

Proof. We proceed by induction on p : if $p=1$, and $\operatorname{dim}\left(\varphi^{\prime}\left(K^{\prime}\right)\right)=0$, then $\gamma^{\prime}=1$ and the result is trivial (note that here ν^{\prime} is point mass measure at 1). Suppose that $\operatorname{dim}\left(\varphi^{\prime}\left(K^{\prime}\right)\right)=1=p$. Choose $A \in \mathfrak{k}^{\prime}$ such that $\varphi^{\prime}(A)=1$, and let $K_{1}^{\prime}=\operatorname{ker}\left(\varphi^{\prime}\right)$. Write $p: K^{\prime} \rightarrow K^{\prime} / \operatorname{ker}\left(\varphi^{\prime}\right) \simeq \mathbb{R}$ for the canonical map and put $\gamma^{\prime}=\tilde{\gamma}^{\prime} \circ p$. We consider two cases: Case 1: $p=1$ and $q=0$, and Case 2: $p=1$ and $q=1$.
Case 1. For each $t \in \mathbb{R}$, we have

$$
\left(\tilde{\gamma}^{\prime}(\exp (t A)) f\right)(y)=f\left(e^{-t} y\right) e^{-t / 2}, y \in \mathbb{R}
$$

which is isomorphic to two copies of the regular representation of \mathbb{R}, and hence in this case $m^{\prime}\left(\eta^{\prime}\right)=2$ a.e..

Case 2. For each $t \in \mathbb{R}$, we have

$$
\left(\tilde{\gamma}^{\prime}(\exp (t A) t) f\right)(s)=f\left(e^{-t} s\right) e^{-t}, s \in \mathbb{S}
$$

(recall that we are using the measure $s d s$ on \mathbb{S} here.) It is clear that $\tilde{\gamma}^{\prime}$ is equivalent to the regular representation of \mathbb{R} and so $m^{\prime}\left(\eta^{\prime}\right)=1$ a.e..

Suppose then that $p>1$. We first assume that $p>q$. Choose an index l such that y_{l} runs through \mathbb{R}, and let

$$
V=\left\{v \in \mathbb{R}^{p-1} \mid v=\left(y_{1}, y_{2}, \ldots, y_{l-1}, y_{l+1}, \ldots, y_{p}\right), y \in U\right\}
$$

so that $U \simeq \mathbb{R} \times V$ and $\mathcal{H}^{\prime} \simeq L^{2}(\mathbb{R}) \otimes L^{2}\left(V, v^{\prime \prime} d v\right)$. Let $J=\operatorname{ker} \varphi_{l}^{\prime}$, and let $\mu: J \rightarrow D(p-1, \mathbb{R})$ be defined by

$$
\mu=\left(\left.\varphi_{1}^{\prime}\right|_{J},\left.\varphi_{2}^{\prime}\right|_{J}, \ldots,\left.\varphi_{l-1}^{\prime}\right|_{J},\left.\varphi_{l+1}^{\prime}\right|_{J}, \ldots,\left.\varphi_{p}^{\prime}\right|_{J}\right)
$$

For $a \in J$ and $g \in L^{2}\left(V, v^{\prime \prime} d v\right)$, define

$$
\gamma_{\mu}^{\prime}(a) g(v)=g\left(\mu(a)^{-1} v\right) \operatorname{det}(\mu(a))^{-1 / 2}, a \in J
$$

By induction the result holds for γ_{μ}^{\prime}. If $J=K^{\prime}$, then $\operatorname{dim}\left(\varphi^{\prime}\left(K^{\prime}\right)\right)<p, \gamma^{\prime}=1 \otimes \gamma_{\mu}^{\prime}$ and $m^{\prime}=\infty m_{\mu}^{\prime}=\infty$. If $J \neq K^{\prime}$, then choose $A \in \mathfrak{k}$ such that $\varphi_{l}^{\prime}(A)=1$ and $\mu(A)=0$. For $h \in L^{2}(\mathbb{R})$ put

$$
\gamma_{1}^{\prime}\left(\exp (t A) h(u)=h\left(e^{-t} u\right) e^{-t / 2}, t \in \mathbb{R} ;\right.
$$

so that $\gamma^{\prime}=\gamma_{1}^{\prime} \otimes \gamma_{\mu}^{\prime}$ and $m^{\prime}=m_{1}^{\prime} m_{\mu}^{\prime}$. Now if $\operatorname{dim}\left(\varphi^{\prime}\left(K^{\prime}\right)\right)<p$ in this case, then $\operatorname{dim}(\mu(J))<p-1$, and so by induction $m_{\mu}^{\prime}=\infty$ and hence $m^{\prime}=\infty$ a.e.. If
$\operatorname{dim}\left(\varphi^{\prime}\left(K^{\prime}\right)\right)=p$, then $\operatorname{dim}(\mu(J))=p-1$ and so by induction $m_{\mu}^{\prime}=2^{p-q-1}$ a.e.; but $m_{1}^{\prime}=2$ a.e., so we are done.

Finally, if $p=q$, then repeat the above argument except that in this case γ_{1}^{\prime} acts in $L^{2}(\mathbb{S}, s d s)$, and

$$
\gamma_{1}^{\prime}\left(\exp (t A) h(s)=h\left(e^{-t} s\right) e^{-t}, t \in \mathbb{R}\right.
$$

has multiplicity 1.
We turn next to the representation $\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}$ of the compact subgroup $K^{\prime \prime}$.
Lemma 5.2. The unitary homomorphism $\varphi^{\prime \prime}$ is injective.
Proof. Let $b \in K^{\prime \prime}$ such that $\varphi_{l}^{\prime \prime}(b)=1$ for $1 \leq l \leq q+m$. Since we have assumed that δ is injective, then it is enough to show that $\delta_{j}(b)=1$ holds for all $1 \leq j \leq n$. Now by definition of K, we have $\delta_{j}(b)=1$ for all $\mathbf{j} \notin \mathbf{e}$. If j is a value in $\mathbf{j}^{\prime \prime}$, then by definition of $\varphi^{\prime \prime}$ and $\mathbf{j}^{\prime \prime}$ we have $\delta_{j}(b)=1$. If $j \in \mathbf{j}$ but j is not a value in $\mathbf{j}^{\prime \prime}$, then either $j \in I$ or $j \notin I$ and $j+1 \notin \mathbf{e}$. But now parts (c) and (d) of Lemma 1.7 imply that $\delta_{j}(b)=1$ in these cases also. Hence by part (a) of Lemma 1.7, we have $\delta_{j}(b)=1$ for all $j \in \mathbf{e}$.

Write $K^{\prime \prime}=(F \cap K) \cdot K_{\circ}^{\prime \prime}$, and write $F \cap K=G_{1} G_{2} \cdots G_{r}$ as a direct product where G_{j} is finite cyclic of order m_{l}. For $b \in K \cap F$ write $b=b_{1} b_{2} \cdots b_{r}$ where $b_{j} \in G_{j}$. Choose a basis $\left\{C_{1}, \ldots, C_{s}\right\}$ for $\mathfrak{k}^{\prime \prime}$ consisting of integral elements and such that for each $k, \operatorname{ker}\left(\left.\exp \right|_{\mathbb{R} C_{k}}\right)=2 \pi \mathbb{Z}$. Put $K_{k}^{\prime \prime}=\exp \left(\mathbb{R} C_{k}\right)$ so that $K_{0}^{\prime \prime}=K_{1}^{\prime \prime} K_{2}^{\prime \prime} \cdots K_{s}^{\prime \prime}$. Accordingly we write an element $c \in K^{\prime \prime}$ as $c=c_{1} c_{2} \cdots c_{s}$.

Let $\phi_{n_{1}, n_{2}, \ldots, n_{q}}, n \in \mathbb{Z}^{q}$ be the canonical complete orthogonal system for $L^{2}\left(\mathbb{T}^{q}\right)$. Using the monomials described in the proof of Lemma 3.7, we have the natural complete orthogonal system for $\mathcal{H}_{\lambda}^{\prime \prime}$:

$$
\Psi_{n}=\phi_{n_{1}, n_{2}, \ldots, n_{q}} \otimes \psi_{n_{q+1}, n_{q+2}, \ldots, j_{q+m}},
$$

where

$$
\psi_{n_{q+1}, n_{q+2}, \ldots, j_{q+m}}=\left(w_{1}^{\epsilon_{1}}\right)^{n_{q+1}}\left(w_{2}^{\epsilon_{2}}\right)^{n_{q+2}} \cdots\left(w_{m}^{\epsilon_{m}}\right)^{n_{q+m}} .
$$

Here $n=\left(n_{1}, n_{2}, \ldots, n_{q+m}\right)$ belongs to the set

$$
J=\left\{\left(n_{1}, n_{2}, \ldots, n_{q+m}\right) \in \mathbb{Z}^{q+m} \mid n_{q+l} \geq 0,1 \leq l \leq m\right\}
$$

and

$$
m_{\epsilon}^{\prime \prime}(\zeta)=\left|\left\{n \in J \mid\left(\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}\right)(b) \Psi_{n}=\zeta(b) \Psi_{n}, b \in K^{\prime \prime}\right\}\right| .
$$

Now take $\zeta=\zeta_{g, h} \in \hat{K}^{\prime \prime}$ where $g_{i} \in \mathbb{Z} / m_{i} \mathbb{Z}, 1 \leq i \leq r$ and $h \in \mathbb{Z}^{s}$, so that

$$
\zeta_{g, h}\left(b_{1} b_{2} \cdots b_{r}\right)=b_{1}^{g_{1}} b_{2}^{g_{2}} \cdots b_{r}^{g_{r}}, b \in K \cap F,
$$

and

$$
\zeta_{g, h}\left(c_{1} c_{2} \cdots c_{s}\right)=c_{1}^{h_{1}} c_{2}^{h_{2}} \cdots c_{s}^{h_{s}}, c \in K_{0}^{\prime \prime} .
$$

Since the elements $C_{k} \in \mathfrak{k}^{\prime \prime}$ are integral we have integers $p_{k, l}, 1 \leq k \leq s, 1 \leq l \leq$ $q+m$, such that

$$
\varphi_{l}^{\prime \prime}\left(c_{k}\right)^{-1}=c_{k}^{p_{k, l}} .
$$

Indeed, the integers $p_{k, l}$ are also defined by

$$
p_{k, l}=-\Im\left(\mathbf{d} \varphi_{l}^{\prime \prime}\left(C_{k}\right)\right)=i \mathbf{d} \varphi_{l}^{\prime \prime}\left(C_{k}\right)
$$

(here \mathbf{d} denotes the differential.) We shall say that P is the action matrix for $K_{0}^{\prime \prime}$. Write $n^{\epsilon}=\left[n_{1}, n_{2}, \ldots, n_{q}, \epsilon_{1} n_{q+1} \ldots, \epsilon_{m} n_{q+m}\right]$ and observe that

$$
\left(\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}\right)\left(c_{k}\right) \Psi_{n}=c_{k}^{p_{k} \cdot n^{\epsilon}} \Psi_{n}
$$

where
$p_{k} \cdot n^{\epsilon}=p_{k, 1} n_{1}+p_{k, 2} n_{2}+\cdots+p_{k, q} n_{q}+p_{k q+1} \epsilon_{1} n_{q+1}+p_{k, q+2} \epsilon_{2} n_{q+2}+\cdots+p_{k, q+m} \epsilon_{m} n_{q+m}$.
Similarly, we have integers $q_{i, l}, 1 \leq i \leq r, 1 \leq l \leq q+m$, such that

$$
\varphi_{l}^{\prime \prime}\left(b_{i}\right)^{-1}=b_{i}^{q_{i, l}},
$$

and we have

$$
\left(\gamma^{\prime \prime} \otimes \gamma_{\lambda}^{\circ}\right)\left(b_{i}\right) \Psi_{n}=b_{i}^{q_{i} \cdot n^{\epsilon}} \Psi_{n}
$$

Put $P=\left[p_{k, l}\right], Q=\left[q_{i, l}\right]$, and $J^{\epsilon}=\left\{n^{\epsilon} \mid n \in J\right\}$. Writing n as a column vector, we see that the mulitplicity of ζ is equal to the number of common solutions for the diophantine systems $Q n=g$ and $P n=h$ that belong to J^{ϵ}. Now denote the solution set (in \mathbb{R}^{q+m}) for $P x=h$ by $\mathcal{S}(P, h)$, and the (integer point) solution set for the system $Q n=g$ by $\mathcal{Z}(Q, g)$. We have

$$
\begin{equation*}
m_{\epsilon}^{\prime \prime}(\zeta)=\left|\mathcal{Z}(Q, g) \cap \mathcal{S}(P, h) \cap J^{\epsilon}\right| \tag{5.1}
\end{equation*}
$$

We shall see that the more important role is played by the set $\mathcal{S}(P, h)$.
Lemma 5.3. \quad There are matrices $L \in S L_{s}(\mathbb{Z})$ and $R \in S L_{q+m}(\mathbb{Z})$ such that

$$
L P R=\left[\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & & \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Proof. It is well known that there are matrices L and R as above such that

$$
L P R=\left[\begin{array}{cccccccc}
r_{1} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & r_{2} & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & & & \\
0 & 0 & \cdots & r_{s} & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where $r_{1}, r_{2}, \ldots, r_{s}$ integers, and for some $s^{\prime}, 0<r_{a} \mid r_{a+1}, 1 \leq a<s^{\prime}$, and $r_{a}=0, s^{\prime}<a \leq s$. Now suppose that the result is false. Then we have $t=$ $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$ where $t L P R \in \mathbb{Z}^{q+m}$ but not all t_{j} are integers. Set $u=t L$. Then not all coordinates u_{k} of u are integers (since $L \in S L_{s}(\mathbb{Z})$) but $u P=(t L P R) R^{-1}$ belongs to \mathbb{Z}^{q+m} and so

$$
u_{1} p_{1, l}+u_{2} p_{2, l}+\cdots+u_{s} p_{s, l} \in \mathbb{Z}
$$

holds for $1 \leq l \leq q+m$. Let $c_{k}=\exp \left(2 \pi u_{k} C_{k}\right) \in K_{k}^{\prime \prime}, 1 \leq k \leq s$. Then $c=c_{1} c_{2} \cdots c_{s} \neq 1$, but

$$
\varphi_{l}^{\prime \prime}(c)=e^{-2 \pi i\left(u_{1} p_{1, l}+u_{2} p_{2, l}+\cdots+u_{s} p_{s, l}\right)}=1,1 \leq l \leq q+m
$$

This contradicts Lemma 5.2.
Let \mathcal{N} be the nullspace for P; then $\mathcal{N}=R(\mathcal{T})$ where $\mathcal{T} \subset \mathbb{R}^{q+m}$ is the nullspace for $L P R$. Of course

$$
\mathcal{T}=\left\{x \in \mathbb{R}^{q+m} \mid x_{j}=0,1 \leq j \leq s\right\} .
$$

For any subset \mathcal{S} of \mathbb{R}^{q+m} put $\mathcal{S}_{\mathbb{Z}}=\mathcal{S} \cap \mathbb{Z}^{q+m}$.
Lemma 5.4. One has $\mathcal{N}_{\mathbb{Z}}=R\left(\mathcal{T}_{\mathbb{Z}}\right)$.
Proof. This follows immediately from the fact that both R and R^{-1} have integer entries and $\mathcal{T}=R^{-1}(\mathcal{N})$.

We say that " $K^{\prime \prime}$ acts with full rank" (on $\left.\mathfrak{n} / \mathfrak{d}(\lambda)\right)$ if $\operatorname{dim}\left(\varphi^{\prime \prime}\left(K^{\prime \prime}\right)\right)=$ $q+m$. We are now ready to dispense with this case. Define $\iota: \mathbb{R}^{s} \rightarrow \mathbb{R}^{q+m}$ by $\iota\left(x_{1}, \ldots, x_{s}\right)=\left(x_{1}, \ldots, x_{s}, 0,0, \ldots, 0\right)$. Then ι is a right inverse for $L P R$, and it follows that

$$
z^{\circ}=z^{\circ}(h)=R(\iota(L h))
$$

belongs to $S(P, h)_{\mathbb{Z}}$. The following is proved in a different form in [11, Theorem 3.2].

Proposition 5.1. One has $\operatorname{dim}\left(\varphi^{\prime \prime}\left(K^{\prime \prime}\right)\right)=q+m$ if and only if $s=q+m$. In this case, $m_{\epsilon}^{\prime \prime}=1$ and the support Z^{ϵ} of $\mu_{\epsilon}^{\prime \prime}$ is $Z^{\epsilon}=\left\{\zeta_{g, h} \in \hat{K}^{\prime \prime} \mid z^{\circ}(h) \in \mathcal{Z}(Q, g) \cap J^{\epsilon}\right\}$.

Proof. We have $\operatorname{dim}\left(\varphi^{\prime \prime}\left(K^{\prime \prime}\right)\right)=\operatorname{dim}\left(\varphi^{\prime \prime}\left(K_{0}^{\prime \prime}\right)\right)=\operatorname{rank}(P)$. By Lemma 5.3, $s=q+m$ if and only if $\operatorname{rank}(P)=q+m$. In this case P is invertable and hence $\mathcal{S}(P, h)=\left\{z^{\circ}(h)\right\}$ so that the result follows from equation (5.1).

Now define the cone E^{ϵ} in \mathbb{R}^{q+m} by

$$
E^{\epsilon}=\left\{\left[x_{1}, x_{2}, \ldots, x_{q+m}\right]^{t} \mid \epsilon_{l} x_{q+l} \geq 0 \text { holds for all } 1 \leq l \leq m\right\}
$$

It is clear that for any subset \mathcal{S} of \mathbb{R}^{q+m}, we have $\mathcal{S} \cap J^{\epsilon}=\mathcal{S}_{\mathbb{Z}} \cap E^{\epsilon}$. Hence if $\mathcal{S}(P, h) \cap E^{\epsilon}$ is bounded, then

$$
m^{\prime \prime}(\zeta)=\left|\mathcal{Z}(Q, g) \cap \mathcal{S}(P, h) \cap J^{\epsilon}\right| \leq\left|\mathcal{S}(P, h) \cap J^{\epsilon}\right|=\left|\mathcal{S}(P, h)_{\mathbb{Z}} \cap E^{\epsilon}\right|<\infty
$$

We claim that the boundedness of $\mathcal{S}(P, h) \cap E^{\epsilon}$ is necessary for finite multiplicity as well.

Lemma 5.5. \quad Suppose that $\mathcal{S}(P, h) \cap E^{\epsilon}$ is unbounded. Then $\mathcal{S}(P, h) \cap J^{\epsilon}$ is infinite.

Proof. Set $\|y\|=\sup _{1 \leq j \leq q+m}\left|y_{j}\right|, y \in \mathbb{R}^{q+m}$, and

$$
\|R\|=\sup _{\|y\|=1}\|R y\| .
$$

Choose any $M \geq\|R\|$. Since $\mathcal{S}(P, h) \cap E^{\epsilon}$ is unbounded, the coordinates $\epsilon_{j} z_{j}$ are arbitrarily large as z runs through $\mathcal{S}(P, h) \cap E^{\epsilon}$, so we have $z \in \mathcal{S}(P, h) \cap E^{\epsilon}$ such that $\left\|z-z^{\circ}\right\|>M$ and $\epsilon_{l}\left(z_{q+l}-z_{q+l}^{\circ}\right)>M$ for $1 \leq l \leq m$. Then $x:=z-z^{\circ}$ belongs to $\mathcal{N} \cap E^{\epsilon}$; put $y=R^{-1} x \in \mathcal{T}$. Then the cube C with edge length 1 centered at y must contain points of $\mathcal{I}_{\mathbb{Z}}$, and so by Lemma 5.4, the neighborhood $R(C)$ of x is contained in E^{ϵ} and must contain elements $u \in \mathcal{N}$ 友. These elements satisfy $\|u\| \geq M-\|R\|$.

Since M was arbitrary we see that $\mathcal{N}_{\mathbb{Z}} \cap E^{\epsilon}$ is unbounded and hence infinite. Hence there are infinitely many $x \in \mathcal{N}_{\mathbb{Z}} \cap E^{\epsilon}$ such that $\epsilon_{j}\left(x_{j}+z_{j}^{\circ}\right)>0$ holds for all j and for such $x, z^{\circ}+x \in \mathcal{S}(P, h) \cap E^{\epsilon}$.

The following shows that the question of finite multiplicity is not affected by the set $\mathcal{Z}(Q, g)$.

Lemma 5.6. Let $g \in \mathbb{Z}^{e}$ and $h \in \mathbb{Z}^{d}$ such that $\mathcal{Z}(Q, g) \cap \mathcal{S}(P, h) \neq \emptyset$. If $\mathcal{S}(P, h) \cap J^{\epsilon}$ is infinite, then $\mathcal{Z}(Q, g) \cap \mathcal{S}(P, h) \cap J^{\epsilon}$ is infinite.

Proof. Observe that if $\mathcal{Z}(Q, g) \neq \emptyset$, say $n=\left[n_{1}, \ldots, n_{q+m}\right]^{t} \in \mathcal{Z}(Q, g)$, then for any point $n^{\circ} \in \mathbb{R}^{q+m}$

$$
\left\{n+m_{1} m_{2} \cdots m_{s} k n^{\circ} \mid k \in \mathbb{Z}\right\} \subset \mathcal{Z}(Q, g)
$$

Let $n \in \mathcal{Z}(Q, g) \cap \mathcal{S}(P, h)$ and suppose that $\mathcal{S}(P, h) \cap J^{\epsilon}$ is infinite. By the proof of Lemma 5.5 we have $n^{\circ} \in \mathcal{N} \cap J^{\epsilon}=\mathcal{N}_{\mathbb{Z}} \cap E^{\epsilon}$, and there is $k_{0} \in \mathbb{Z}$ such that $\left\{n+m_{1} m_{2} \cdots m_{s} k n^{\circ} \mid k \geq k_{0}\right\} \subset J^{\epsilon}$. Hence

$$
\left\{n+m_{1} m_{2} \cdots m_{s} k n^{\circ} \mid k \geq k_{0}\right\} \subset \mathcal{S}(P, h) \cap \mathcal{Z}(Q, g) \cap J^{\epsilon} .
$$

We combine the preceding lemmas to obtain the following.
Proposition 5.2. Let ϵ be a sign index and let $\zeta=\zeta_{g, h} \in \hat{K}^{\prime \prime}$. Then $m_{\epsilon}^{\prime \prime}(\zeta)<\infty$ if and only if $\mathcal{S}(P, h) \cap E^{\epsilon}$ is bounded.

Proof. \quad Suppose that $m_{\epsilon}^{\prime \prime}(\zeta)<\infty$, so that $\mathcal{S}(P, h) \cap \mathcal{Z}(Q, \bar{k}) \cap J^{\epsilon}$ is finite. By Lemma 5.6, we have $\mathcal{S}(P, h) \cap J^{\epsilon}$ is finite, and hence by Lemma 5.5, $\mathcal{S}(P, h) \cap E^{\epsilon}$ is bounded. On the other hand, suppose that $\mathcal{S}(P, h) \cap E^{\epsilon}$ is bounded. Again by Lemma 5.5 we have $\mathcal{S}(P, h) \cap J^{\epsilon}$ is finite, so that $\mathcal{S}(P, h) \cap \mathcal{Z}(Q, \bar{k}) \cap J^{\epsilon}$ is finite.

We have seen that when P is invertable, then $m_{\epsilon}^{\prime \prime}=1$ holds. Let P_{0} be the submatrix consisting of the the first q columns of P :

$$
P_{0}=\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1, q} \\
p_{21} & p_{22} & \cdots & p_{2, q} \\
\vdots & \vdots & & \vdots \\
p_{s 1} & p_{s 2} & \cdots & p_{s, q}
\end{array}\right] .
$$

Thus P_{0} describes the action of $K_{0}^{\prime \prime}$ in the direction of the indices belonging to \mathbf{j}^{c}, that is, the action of $K_{\circ}^{\prime \prime}$ on $\mathfrak{n} / \mathfrak{e}(\lambda)$ (for each λ). If $\operatorname{rank}\left(P_{0}\right)=q$, then we shall say that $K^{\prime \prime}$ acts on $\mathfrak{n} / \mathfrak{e}(\lambda)$ with full rank.

Write $\mathbb{R}^{q+m}=\mathcal{Q} \oplus \mathcal{M}$ where $\mathcal{Q}=\left\{\left(x \in \mathbb{R}^{q+m} \mid x_{j}=0, q+1 \leq j \leq m\right\} \simeq \mathbb{R}^{q}\right.$ and $\mathcal{M}=\left\{\left(x \in \mathbb{R}^{q+m} \mid x_{j}=0,1 \leq j \leq q\right\} \simeq \mathbb{R}^{m}\right.$.

Lemma 5.7. Suppose that $K^{\prime \prime}$ does not act on $\mathfrak{n} / \mathfrak{e}(\lambda)$ with full rank. Then $m_{\epsilon}^{\prime \prime}(\zeta)=\infty$ holds for all $\zeta \in \hat{K}^{\prime \prime}$ and for all sign indices ϵ.

Proof. Let $\zeta=\zeta_{g, h} \in \hat{K}^{\prime \prime}$; observe that for each sign index ϵ,

$$
\mathcal{S}(P, h) \cap \mathcal{Q} \subset \mathcal{S}(P, h) \cap E^{\epsilon}
$$

holds. Now $\operatorname{rank}\left(P_{0}\right)<q$ means that $\mathcal{S}(P, h) \cap \mathcal{Q}$ has positive dimension, and hence is unbounded. Proposition 5.2 now says that $m_{\epsilon}^{\prime \prime}(\zeta)=\infty$.

We sum up our results so far as follows.
Proposition 5.3. If K acts with full rank on $\mathfrak{n} / \mathfrak{d}(\lambda)$, then $m_{\epsilon}=1$. On the other hand, if K does not act on $\mathfrak{n} / \mathfrak{e}(\lambda)$ with full rank, then $m_{\epsilon}=+\infty$.

We turn to the case where K acts with full rank on $\mathfrak{n} / \mathfrak{e}(\lambda)$ but not with full rank on $\mathfrak{n} / \mathfrak{d}(\lambda)$. Hence we must consider the case where K^{\prime} acts with full rank and $K^{\prime \prime}$ acts on $\mathfrak{n} / \mathfrak{e}(\lambda)$ with full rank, but $K^{\prime \prime}$ does not act with full rank on $\mathfrak{e}(\lambda) / \mathfrak{d}(\lambda)$. We begin with an algebraic criterion in order that $\mathcal{S}(h, P) \cap E^{\epsilon}$ is bounded. Set

$$
\mathcal{C}^{\epsilon}=E^{\epsilon} \cap \mathcal{M}
$$

and observe that $E^{\epsilon}=\mathcal{Q} \oplus \mathcal{C}^{\epsilon}$. We can identify \mathcal{C}^{ϵ} with a "generalized quadrant" in $\mathbb{R}^{m}: \mathcal{C}^{\epsilon}=\left\{x \in \mathbb{R}^{m} \mid \epsilon_{l} x_{l} \geq 0,1 \leq l \leq m\right\}$. Set int $\left(\mathcal{C}^{\epsilon}\right)=\left\{x \in \mathcal{C}^{\epsilon} \mid x_{q+l} \epsilon_{l}>\right.$ $0,1 \leq l \leq m\}$; so that when the above identification is made, $\operatorname{int}\left(\mathcal{C}^{\epsilon}\right)$ is the interior of \mathcal{C}^{ϵ}.

Lemma 5.8. Let \mathcal{W} be a subspace of \mathbb{R}^{m} and let \mathcal{C} be a generalized quadrant in \mathbb{R}^{m}. Then for any $y \in \mathbb{R}^{m}, y+\mathcal{W}$ meets \mathcal{C} if and only if $y \in \mathcal{C}+\mathcal{W}$. Moreover, $(y+\mathcal{W}) \cap \mathcal{C}$ is bounded for all y if and only if

$$
\mathcal{W}^{\perp} \cap \operatorname{int}(\mathcal{C}) \neq \emptyset
$$

Proof. The first statement is obvious. As for the second, note first that $v \cdot w>0$ for all $v, w \in \operatorname{int}(\mathcal{C})$ so $\mathcal{W}^{\perp} \cap \operatorname{int}(\mathcal{C}) \neq \emptyset$ implies $\mathcal{W} \cap \operatorname{int}(\mathcal{C})=\emptyset$.

Suppose that $\mathcal{W}^{\perp} \cap \operatorname{int}(\mathcal{C}) \neq \emptyset$, and let $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathcal{W}^{\perp} \cap \operatorname{int}(\mathcal{C})$. Set $\alpha=\min \left\{\left|x_{j}\right| \mid 1 \leq j \leq m\right\}>0$ and $c=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{m} y_{m}$. For any $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right) \in(y+\mathcal{W}) \cap \mathcal{C}$ we have

$$
x \cdot u=x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{m} u_{m}=c,
$$

but also $x_{j} u_{j} \geq 0$ for all j so

$$
\left|u_{j}\right| \leq \frac{c}{\alpha}, 1 \leq j \leq m
$$

Hence $(y+\mathcal{W}) \cap \mathcal{C}$ is bounded.
To finish the proof it is enough to show that if $\mathcal{W} \cap \mathcal{C}=\{0\}$, then $\mathcal{W}^{\perp} \cap \operatorname{int}(\mathcal{C}) \neq \emptyset$. Suppose that $\mathcal{W} \cap \mathcal{C}=\{0\}$; we may assume that $\mathcal{W} \neq\{0\}$. I claim that in any finite dimensional real vector space \mathcal{U}, for any convex cone $S \subset \mathcal{U}$ with $0 \notin S$ and any subspace \mathcal{W} such that $\mathcal{W} \cap S=\emptyset$, there is a hyperplane $\mathcal{V} \subset \mathcal{U}$ such that $\mathcal{W} \subset \mathcal{V}$ and $\mathcal{V} \cap S=\emptyset$ also.

Assume for the moment that this claim holds. Then we have a hyperplane \mathcal{V} in \mathbb{R}^{m} such that $\mathcal{W} \subset \mathcal{V}$, and $\mathcal{V} \cap \mathcal{C} \backslash\{0\}=\emptyset$. There is $b \in \mathbb{R}^{m}$ such that

$$
\sup _{z \in \mathcal{V}}\langle b, z\rangle \leq \inf _{z \in \operatorname{int}(\mathcal{C})}\langle b, z\rangle
$$

(see for example [3, Chapter IV, Theorem 3.7]). Now since \mathcal{V} is a subspace and 0 is a limit point of $\operatorname{int}(\mathcal{C})$ we have $b \in \mathcal{V}^{\perp} \subset \mathcal{W}^{\perp}$ and $\langle b, z\rangle \geq 0$ holds for all
$z \in \mathcal{C}$. It follows that $b \in \operatorname{int}(\mathcal{C}):$ clearly $\epsilon_{l} b_{l} \geq 0$ holds for all $1 \leq l \leq m$, and if $b_{l}=0$ for some l then $\left(0,0, \ldots, 0,1\left(l^{\text {th }}\right.\right.$ position $\left.), 0, \ldots, 0\right)$ belongs to $\{b\}^{\perp}=\mathcal{V}$, contradicting the claim.

Finally, we verify the claim by induction on m, the claim being obvious if $m=1$. Suppose that the claim is true for $m^{\prime}, m^{\prime}<m$, and let $Q: \mathcal{U} \rightarrow \mathcal{U} / \mathcal{W}$ be the canonical map. Then $Q(S)$ is a convex cone in $\mathcal{U} / \mathcal{W}$, and $0 \notin Q(S)$ since $\mathcal{W} \cap S=\emptyset$. By induction we have \mathcal{V}_{0} a hyperplane in $\mathcal{U} / \mathcal{W}$ such that $\mathcal{V}_{0} \cap Q(S)=\emptyset$. Then $\mathcal{V}=Q^{-1}\left(\mathcal{V}_{0}\right)$ is a hyperplane in \mathcal{U} and $\mathcal{V} \cap S=\emptyset$.

We are now ready to describe a precise criterion for finiteness of $m_{\epsilon}^{\prime \prime}(\zeta)$. Recall that we already know that a necessary condition for finiteness of $m_{\epsilon}^{\prime \prime}(\zeta)$ is that $K^{\prime \prime}$ acts with full rank on $\mathfrak{n} / \mathfrak{e}(\lambda)$. Let \mathcal{R} denote the row space of P. We shall state the criterion first in terms of the row space \mathcal{R}.

Lemma 5.9. Fix a sign index ϵ and suppose that $K^{\prime \prime}$ acts on $\mathfrak{n} / \mathfrak{e}(\lambda)$ with full rank. Then $\mathcal{S}(h, P) \cap E^{\epsilon}$ is bounded if and only if $\mathcal{R} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \neq \emptyset$.

Proof. Denote the projection of \mathcal{N} into \mathcal{M} by $\mathcal{N}_{\mathcal{M}}$. Then the projection of $\mathcal{S}(P, h) \cap E^{\epsilon}$ is

$$
\left(y+\mathcal{N}_{\mathcal{M}}\right) \cap \mathcal{C}^{\epsilon}
$$

where y is the projection of $z^{\circ}(h)$. Now since $\operatorname{rank}\left(P_{0}\right)=q$, the projection of \mathcal{N} into \mathcal{M} is injective, whence the projection of $\mathcal{S}(P, h) \cap E^{\epsilon}$ into \mathcal{M} is injective also. The image of $\mathcal{S}(P, h) \cap E^{\epsilon}$ under this projection is $\left(y+\mathcal{N}_{\mathcal{M}}\right) \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right)$.

Suppose that $\mathcal{S}(P, h) \cap E^{\epsilon}$ is bounded. Then $\left(y+\mathcal{N}_{\mathcal{M}}\right) \cap \mathcal{C}^{\epsilon}$ is bounded, and so by Lemma 5.8 , we have $\left(\mathcal{N}_{\mathcal{M}}\right)^{\perp} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \neq \emptyset$. But now

$$
\left(\mathcal{N}_{\mathcal{M}}\right)^{\perp} \cap \mathcal{M} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \subset \mathcal{N}^{\perp} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right)=\mathcal{R} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right)
$$

and hence $\mathcal{R} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \neq \emptyset$.
Suppose then that $\mathcal{R} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \neq \emptyset$. It is easily seen that

$$
\mathcal{R} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right)=\mathcal{N}^{\perp} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \subset \mathcal{N}_{\mathcal{M}}^{\perp} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) .
$$

Hence $\mathcal{N}_{\mathcal{M}}^{\perp} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \neq \emptyset$ and Lemma 5.8 says that $\left(y+\mathcal{N}_{\mathcal{M}}\right) \cap \mathcal{C}^{\epsilon}$ is bounded. Since the projection of $\mathcal{S}(h, P) \cap E^{\epsilon}$ onto $\left(y+\mathcal{N}_{\mathcal{M}}\right) \cap \mathcal{C}^{\epsilon}$ is a bijection of affine sets, then $\mathcal{S}(P, h) \cap E^{\epsilon}$ must be bounded as well.

Lemma 5.10. Suppose that K acts with full rank on $\mathfrak{n} / \mathfrak{e}(\lambda)$, $K^{\prime \prime}$ does not act with full rank on $\mathfrak{e}(\lambda) / \mathfrak{d}(\lambda)$, and $\mathcal{R} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \neq \emptyset$. Then $m_{\epsilon}^{\prime \prime}$ is unbounded.

Proof.

Here we have $\operatorname{rank}(P)<q+m$. Let $\zeta \in \hat{K}^{\prime \prime}$ such that $m_{\epsilon}^{\prime \prime}(\zeta)>0$ and write $\zeta=\zeta_{g, h}$. Then

$$
\mathcal{Z}(Q, g) \cap \mathcal{S}(P, h) \cap J^{\epsilon} \neq \emptyset
$$

We claim that

$$
\sup _{h}\left|\mathcal{S}(P, h) \cap J^{\epsilon}\right|=\infty
$$

Now for each h,

$$
\mathcal{S}(P, h) \cap J^{\epsilon}=\bigcup_{g \in \widehat{K \cap F}} \mathcal{Z}(Q, g) \cap \mathcal{S}(P, h) \cap J^{\epsilon}
$$

so that it is clear that the claim is sufficient. Now for each positive integer M, set $\mathcal{T}^{M}=\left\{t \in \mathcal{T} \mid M t \in \mathbb{Z}^{q+m}\right\}$ and

$$
\mathcal{S}(P, h)^{M}=\left\{v \in \mathcal{S}(P, h) \mid M v \in \mathbb{Z}^{q+m}\right\}
$$

Then $\mathcal{S}(P, h)^{M} \supset z^{\circ}+R\left(\mathcal{T}^{M}\right)$ and so

$$
\sup _{M}\left|\mathcal{S}(P, h)^{M} \cap E^{\epsilon}\right|=\infty
$$

But

$$
\mathcal{S}(P, M h) \cap J^{\epsilon}=\mathcal{S}(P, M h)_{\mathbb{Z}} \cap E^{\epsilon} \supset M \mathcal{S}(P, h)^{M} \cap E^{\epsilon}
$$

and the claim is proved.
We have a natural map $r: \mathfrak{k}^{\prime \prime} \rightarrow \mathcal{R}$ defined by

$$
r(C)=i \mathbf{d} \varphi^{\prime \prime}(C)=\left[i \mathbf{d} \varphi_{1}^{\prime \prime}(C), i \mathbf{d} \varphi_{2}^{\prime \prime}(C), \ldots, i \mathbf{d} \varphi_{q+m}^{\prime \prime}(C)\right] ;
$$

observe that this map is surjective. Let us say that an element $C \in \mathfrak{k}$ "acts on $\mathfrak{e}(\lambda) / \mathfrak{d}(\lambda)$ with $\operatorname{sign} \epsilon^{\prime \prime}$ if $i \mathbf{d} \varphi_{l}^{\prime \prime}(C)=0,1 \leq l \leq q$ (that is, C acts trivially on $\mathfrak{n} / \mathfrak{e}(\lambda))$, and $\operatorname{sign}\left(i \mathbf{d} \varphi_{q+l}^{\prime \prime}(C)\right)=\epsilon_{l}, 1 \leq l \leq m$. Observe that \mathfrak{k}, hence $\mathfrak{k}^{\prime \prime}$, has an element that acts with $\operatorname{sign} \epsilon$ if and only if $\mathcal{R} \cap \operatorname{int}\left(\mathcal{C}^{\epsilon}\right) \neq \emptyset$. We sum up the results of this section in these terms.
Theorem 5.4. Let $G=N \rtimes H$ be an algebraic solvable Lie group with N simply connected nilpotent and H a connected Levi factor in G acting faithfully on N, and let K be the generic stabilizer in H. Let τ be the quasiregular representation of G induced from H, and let $\tau=\oplus_{\epsilon} \tau_{\epsilon}$ be the decomposition of Theorem 4.3. Then one of the following obtains.
(1) If K acts with full rank on $\mathfrak{n} \mathfrak{d}(\lambda)$, then for each sign index $\epsilon, \tau_{\epsilon}$ has uniform multiplicity 2^{r}, where r is the split rank of K.
(2) If K does not act with full rank on $\mathfrak{n} / \mathfrak{e}(\lambda)$, then for each sign index $\epsilon, \tau_{\epsilon}$ is infinite.
(3) If K acts with full rank on $\mathfrak{n} / \mathfrak{e}(\lambda)$, but not with full rank on $\mathfrak{n} / \mathfrak{d}(\lambda)$, then τ_{ϵ} has finite multiplicity if and only if \mathfrak{k} contains an element that acts on $\mathfrak{e}(\lambda) / \mathfrak{d}(\lambda)$ with sign ϵ. Otherwise, τ_{ϵ} is infinite.

6. Examples

We conclude with several examples to illustrate the notations and conclusions of the preceding. We begin with the classical oscillator group.
Example 6.1. Let $N=\mathbb{C} \times R$ be the three-dimensional Heisenberg group: $(w, z)\left(w^{\prime}, z^{\prime}\right)=\left(w+w^{\prime}, z+z^{\prime}+\Im\left(\bar{w} w^{\prime}\right)\right.$ and $H=\mathbb{T}$ acting by $a \cdot(w, z)=\left(a^{-1} w, z\right)$. The usual basis for \mathfrak{n} is $\{Z, Y, X\}$ where $[X, Y]=Z$ and where the exponential mapping is just

$$
z Z+y Y+x X=z Z+\Re((x+i y)(X-i Y)) \mapsto(x+i y, z)
$$

An adaptable basis for \mathfrak{l} consisting of eigenvectors is $Z_{1}=Z, Z_{2}=X+i Y, Z_{3}=$ $X-i Y$ and we have $\delta_{1}(a)=1$, while $\delta_{3}(a)=\overline{\delta_{2}}(a)=a^{-1}$. The generic layer Ω consists of all $\ell \in \mathfrak{n}^{*}$ with $\ell(Z) \neq 0$, where for such ℓ we have $\mathbf{i}=\{2\}$ and $\mathbf{j}=\mathbf{j}^{\prime \prime}=\{3\}$. Now $H=K=K^{\prime \prime}$ and $\Lambda=\Sigma=\Sigma_{0}$, and for $\lambda \in \Lambda$, $\epsilon(\lambda)=\operatorname{sign}(\lambda(Z))$ and $\Lambda=\Lambda^{+1} \cup \Lambda^{-1}$ accordingly. Put $\xi=\lambda(Z)$. The generic irreducible representations of N are $\pi_{\xi}:=\pi_{\lambda}=\pi_{\lambda}^{\circ}$, realized in the space of holomorphic functions if $\xi>0$ and anti-holomorphic functions if $\xi<0$. Recall also that the Plancherel measure is (a constant multiple of) $|\xi| d \xi$.

Now $\varphi^{\prime \prime}(a)^{-1}=\delta_{3}(a)^{-1}=a$ and the action matrix P is given by $P=[1]$. For $\epsilon=1, J^{\epsilon}=\{0,1,2, \ldots\}$ and $Z^{\epsilon}=J^{\epsilon}$ with $m_{\epsilon}\left(\eta_{h}\right)=m_{\epsilon}^{\prime \prime}\left(\eta_{h}\right)=1$ for $h=0,1,2, \ldots$. If $\epsilon=-1, J^{\epsilon}=\{0,-1,-2, \ldots\}$ and $Z^{\epsilon}=J^{\epsilon}$ with $m_{\epsilon}\left(\eta_{h}\right)=$ $m_{\epsilon}^{\prime \prime}\left(\eta_{h}\right)=1$ on Z^{ϵ} also. Thus $\tau=\tau_{+1} \oplus \tau_{-1}$ where for $\epsilon= \pm 1$,

$$
\tau_{\epsilon} \simeq \int_{\Lambda^{\epsilon}}^{\oplus} \oplus_{\epsilon h=0}^{\infty} \tilde{\pi}_{\xi} \otimes \overline{\eta_{h}}|\xi| d \xi .
$$

The next example exhibits a cross-section that is not flat.
Example 6.2. Let $N=\mathbb{C} \times \mathbb{R} \times \mathbb{C}$ with

$$
(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right)\right)
$$

and $H=\mathbb{T}$ acting as $a \cdot(w, y, z)=\left(a^{-1} w, y, a^{-1} z\right)$. The natural basis for \mathfrak{n} is $\left\{E_{1}, E_{2}, Y, X_{1}, X_{2}\right\}$ with $\left[X_{j}, Y\right]=E_{j}, j=1,2$, and where the exponential mapping is

$$
z_{1} E_{1}+z_{2} E_{2}+y Y+x_{1} X_{1}+x_{2} X_{2} \mapsto\left(x_{1}+i x_{2}, y, z_{1}+i z_{2}\right) .
$$

Write $Z=E_{1}+i E_{2}$ and $X=X_{1}+i X_{2}$, and for $\ell \in \mathfrak{n}^{*}$ write $\xi=\ell(Z)$ and $\beta=\ell(X)$. The adaptable basis is $Z_{1}=Z, Z_{2}=\bar{Z}, Z_{3}=Y, Z_{4}=X, Z_{5}=\bar{X}$ and $\delta_{2}(a)=\overline{\delta_{1}}(a)=\delta_{5}(a)=\overline{\delta_{4}}(a)=a^{-1}$. The generic layer here is $\Omega=\{\ell \in$ $\left.\mathfrak{n}^{*} \mid \ell(Z) \neq 0\right\}$, with index sequences $\mathbf{i}=\{3\}$ and $\mathbf{j}=\{4\}$. The H-invariant cross-section is determined by the conditions $\ell(Y)=0$, and $\ell\left(Z_{4}(\ell)\right)=0$ where $Z_{4}(\ell)=\frac{1}{2}(\ell[\bar{X}, Y] X+\ell[X, Y] \bar{X})$. Precisely,

$$
\Lambda=\{\ell \in \Omega \mid \beta \neq 0, \Re(\bar{\xi} \beta)=0\} .
$$

Now K and F are trivial here and $\Sigma=\left\{(\xi, 0, \beta) \mid \xi>0, \beta \in i \mathbb{R}^{*}\right\}$. Each irreducible representation $\pi_{\xi, \beta}:=\pi_{\lambda}$ of N is induced from the variable (but real) polarization

$$
\mathfrak{p}(\lambda)=\mathbb{C}-\operatorname{span}\left\{Z, \bar{Z}, Y, \frac{1}{2}(\ell[\bar{X}, Y] X-\ell[X, Y] \bar{X})\right\}
$$

Note that the supplementary basis for $\mathfrak{p}(\lambda) \cap \mathfrak{n}$ in \mathfrak{n} is $X(\lambda)=Z_{4}(\lambda) /|\xi|$, and $X(a \cdot \lambda)=a \cdot X(\lambda)$. Since the stabilizer K is trivial (while N is not abelian) the muliplicity is infinite, and (again up to a constant multiple) $d \tilde{\mu}(\lambda)=|\operatorname{Pf}(\lambda)| d \lambda$ where $\operatorname{Pf}(\lambda)=\xi$. Hence our formula reads

$$
\tau \simeq \int_{\Sigma} \infty \cdot \rho_{\xi, \beta} d \tilde{\mu}(\xi, \beta)=\int_{-\infty}^{\infty} \int_{0}^{\infty} \infty \cdot \rho_{\xi, i t} \xi d \xi d t
$$

where $\rho_{\xi, \beta}=\operatorname{ind}_{N}^{G}\left(\pi_{\xi, \beta}\right)$.
In the following the finite subgroup F used in the parametrization $\Lambda / H \simeq$ Σ / F is non-trivial.
Example 6.3. Let N be the 8-dimensional real Lie group realized as $N=\mathbb{C}^{4}$ with

$$
(w, x, y, z)\left(w^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(w+w^{\prime}, x+x^{\prime}, y+y^{\prime}-x w^{\prime}, z+z^{\prime}+x y^{\prime}-\frac{x^{2} w^{\prime}}{2}\right)
$$

and with $H=\mathbb{T}$ acting on \mathfrak{n} by $a \cdot(w, x, y, z)=\left(a w, a x, a^{2} y, a^{3} z\right)$. A suitable adaptable basis (listed in the order of Z_{1}, Z_{2}, etc.) is $\{Z, \bar{Z}, Y, \bar{Y}, X, \bar{X}, W, \bar{W}\}$ with brackets $[W, X]=Y,[W, \bar{X}]=0,[X, Y]=Z,[X, \bar{Y}]=0$. (Note that the brackets of the real basis for \mathfrak{n} consisting of real and imaginary parts of the preceding basis can be recovered from the above; the exponential mapping is exactly as in the preceding, for example $(w, 0,0,0)=\exp (\Re(w \bar{W}))$, etc..) The generic layer is $\left\{\ell \in \mathfrak{n}^{*} \mid \ell(Z) \neq 0\right\}$ with $\mathbf{i}=\{3,4\}, \mathbf{j}=\{5,6\}$. Writing $\ell(Z)=\xi, \ell(W)=\beta$, we have $\Lambda=\{\ell \in \Omega \mid \ell(Y)=\ell(X)=0, \beta \neq 0\}$ and accordingly we write $\lambda=(\xi, \beta)$. Now $\chi_{1}(a)=\delta_{1}(a)^{-1}=a^{3}$, so H acts by rotations in the ξ-direction and $\Sigma=\{(\xi, \beta) \in \Lambda \mid \xi>0\}$. On the other hand, $F=\operatorname{ker}\left(\chi_{1}\right)=\mathbb{F}(3)$, and for $t \in F,(\xi, \beta) \in \Sigma, t \cdot(\xi, \beta)=(\xi, t \beta)$. We put $\Sigma_{0}=\left\{(\xi, \beta) \in \Sigma \mid \operatorname{sign}(\beta)=e^{i \theta}\right.$ with $\left.0 \leq \theta<2 \pi / 3\right\}$. Now as in Example 6.2, K is trivial and τ is infinite. Here $\operatorname{Pf}(\xi, \beta)=\xi^{2}$, so

$$
\tau \simeq \int_{\Sigma_{0}} \infty \cdot \rho_{\xi, \beta} \xi^{2} d \xi d \bar{\xi} d \beta d \bar{\beta}
$$

We close with an example where K acts on $\mathfrak{n} / \mathfrak{e}(\lambda)$ with complex roots, and where τ decomposes into finite unbounded and infinite subrepresentations.
Example 6.4. Let N be the 10 -dimensional real Lie group realized as $N=\mathbb{C}^{5}$ with

$$
\begin{aligned}
& \left(x, y, w_{1}, w_{2}, z\right)\left(x^{\prime}, y^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, z^{\prime}\right)= \\
& \left(x+x^{\prime}, y+y^{\prime}, w_{1}+w_{1}^{\prime}, w_{2}+w_{2}^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right)+\frac{1}{2}\left(\Im\left(\overline{w_{1}} w_{1}^{\prime}\right)+i \Im\left(\overline{w_{2}} w_{2}^{\prime}\right)\right)\right.
\end{aligned}
$$

Let $H=S \times T_{1} \times T_{2}$ where $S=\mathbb{R}_{+}^{*}, T_{k}=\mathbb{T}$, and so that for $a \in S, b_{k} \in T_{k}$,

$$
a b_{1} b_{2}\left(x, y, w_{1}, w_{2}, z\right)=\left(a b_{1} x, a^{-1} b_{1}^{-1} y, b_{2}^{-1} w_{1}, b_{2}^{-1} w_{2}, z\right) .
$$

We choose the adaptable basis (listed in order): $\left\{Z, \bar{Z}, W_{1}, \overline{W_{1}}, W_{2}, \overline{W_{2}}, Y, \bar{Y}, X, \bar{X}\right\}$ with brackets $[X, Y]=Z,[X, \bar{Y}]=0,\left[W_{1}, \overline{W_{1}}\right]=-2 i \Re(Z),\left[W_{2}, \overline{W_{2}}\right]=-2 i \Im(Z)$ and so that $\delta_{1}\left(a b_{1} b_{2}\right)=\delta_{1}\left(a b_{1} b_{2}\right)=1, \delta_{4}\left(a b_{1} b_{2}\right)=\overline{\delta_{3}}\left(a b_{1} b_{2}\right)=\delta_{6}\left(a b_{1} b_{2}\right)=$ $\overline{\delta_{5}}\left(a b_{1} b_{2}\right)=b_{2}^{-1}$, while $\delta_{8}=\overline{\delta_{7}}\left(a b_{1} b_{2}\right)=a^{-1} b_{1}^{-1}$ and $\delta_{10}=\overline{\delta_{9}}\left(a b_{1} b_{2}\right)=a b_{1}$. (Definition of the exponential mapping follows the convention of the preceding.)

The generic layer is $\left\{\ell \in \mathfrak{n}^{*} \mid \ell(Z) \neq 0\right\}$ with jump sequences $\mathbf{i}=$ $\{3,5,7,8\}, \mathbf{j}=\{4,6,9,10\}$. We have $\Lambda=\left\{\ell \in \Omega \mid \ell\left(W_{1}\right)=\ell\left(W_{2}\right)=\ell(Y)=\right.$ $\ell(X)=0\}$ and for $\lambda \in \Lambda$ we write $\lambda=\xi$ where $\ell(Z)=\xi$. Hence $K=H$ in this example, so $\Sigma=\Lambda$ and $F=\{1\}$. Put $\xi_{1}(\lambda)=\xi_{1}=\lambda(\Re(Z))$ and $\xi_{2}(\lambda)=\xi_{2}=$ $\lambda(\Im(Z))$ and $\epsilon_{k}(\lambda)=\operatorname{sign}\left(\xi_{k}\right), \mathfrak{k}=1,2$. Note that $\Omega^{\epsilon}=\{\ell \in \Omega \mid \epsilon(\lambda)=\epsilon\}$ is non-empty for each sign index $\epsilon \in\{ \pm 1\}^{2}$. The polarization $\mathfrak{p}(\lambda)$ for each $\lambda \in \Lambda$ obtained from the adaptable basis is a positive polarization only for those λ for which $\epsilon(\lambda)=(1,1)$, and for sign indices $\epsilon=\left(\epsilon_{1}, \epsilon_{2}\right)$ we have

$$
\mathfrak{p}^{\epsilon}(\lambda)=\mathbb{C}-\operatorname{span}\left\{Z,\left\{Z, \bar{Z}, W_{1}^{\epsilon_{1}}, W_{2}^{\epsilon_{2}}, Y, \bar{Y}\right\}\right.
$$

is a positive polarization when $\epsilon=\epsilon(\lambda)$. Let $E \subset N$ be the subgroup

$$
E=\left\{\left(0, y, w_{1}, w_{2}, z\right) \mid y, w_{1}, w_{2}, z \in \mathbb{C}\right\}
$$

Then $\pi_{\lambda}=\operatorname{ind}_{E}^{N}\left(\pi_{\lambda}^{\circ}\right)$ where π_{λ}° acts in the Hilbert space $\left(\mathcal{A}^{\epsilon}\left(\mathbb{C}^{2}\right),\|\cdot\|_{\lambda}\right)$ of $\epsilon(\lambda)-$ holomorphic functions in the variables w_{1}, w_{2}. Now $\mathcal{X}=\mathbb{C}=U \times \mathbb{T}$ where U is the set of positive reals and $\mathcal{H}_{\lambda} \simeq \mathcal{H}_{\lambda}^{\prime} \otimes \mathcal{H}_{\lambda}^{\prime \prime}$ where $\mathcal{H}_{\lambda}^{\prime}=L^{2}(U, s d s)$ and $\mathcal{H}_{\lambda}^{\prime \prime}=L^{2}(\mathbb{T}) \otimes \mathcal{A}^{\epsilon}\left(\mathbb{C}^{2}\right)$. With regard to the action of K, we have $\mathbf{j}^{\prime}=\mathbf{j}^{c}=\{9\}$ and K acts with full rank on $\mathfrak{n} / \mathfrak{e}$ (via S and T_{1}), but $K^{\prime \prime}$ acts with rank one on $\mathfrak{e} / \mathfrak{d}$ (via $\left.T_{2}\right)$. We have $\varphi^{\prime \prime}\left(b_{1} b_{2}\right)^{-1}=\left(b_{1}, b_{2}, b_{2}\right)$. so the action matrix is

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

and we are in the situation (3) of Theorem 5.4. We have $\operatorname{int}\left(\mathcal{C}^{\epsilon}\right)=\left\{\left(0, x_{2}, x_{3}\right) \mid \epsilon_{1} x_{2}>0, \epsilon_{2} x_{3}>0\right\}$ and the row space of P meets $\operatorname{int}\left(\mathcal{C}^{\epsilon}\right)$ exactly when $\epsilon=(1,1)$ or $\epsilon=(-1,-1)$. Hence we have $\tau=\oplus_{\epsilon} \tau_{\epsilon}$ where $\tau_{(1,1)}$ and $\tau_{(-1,-1)}$ have finite unbounded multiplicity, and τ_{ϵ} is infinite otherwise. We exhibit the finite unbounded subrepresentations $\tau_{(\pm 1, \pm 1)}$.

Since $\mathbf{j}^{\prime}=\mathbf{j}^{c}$ and K^{\prime} acts with full rank, then $m_{\epsilon}=m_{\epsilon}^{\prime \prime}$. For $\epsilon=(1,1)$, and for $h \in \mathbb{Z}$, we find that $m_{\epsilon}^{\prime \prime}\left(\zeta_{h}\right)=0$ if $h<0$ while for $h \geq 0$,

$$
m_{\epsilon}^{\prime \prime}\left(\zeta_{h}\right)=\left|\left\{\left(n_{1}, n_{2}\right) \mid n_{k} \in\{0,1,2, \ldots\}, n_{1}+n_{2}=h\right\}\right|=h+1
$$

Similarly, for $\epsilon=(-1,-1), m_{\epsilon}^{\prime \prime}\left(\zeta_{h}\right)=0$ if $h>0$ while for $h \leq 0$,

$$
m_{\epsilon}^{\prime \prime}\left(\zeta_{h}\right)=\left|\left\{\left(n_{1}, n_{2}\right) \mid n_{k} \in\{0,-1,-2, \ldots\}, n_{1}+n_{2}=h\right\}\right|=h+1
$$

Hence

$$
\tau_{(\pm 1, \pm 1)} \simeq \int_{\Lambda^{\epsilon}}^{\oplus} \oplus_{ \pm h=0}^{\infty}(h+1) \tilde{\pi}_{\xi} \otimes \overline{\eta_{h}}|\mathbf{P f}(\xi)| d \xi
$$

and one computes that $\operatorname{Pf}(\xi)=\xi_{1} \xi_{2}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)$.

References

[1] Arnal, D., B. Currey, and B. Dali, Construction of canonical coordinates for exponential Lie groups, Trans. Amer. Math. Soc. 361 (2009), 6283-6348.
[2] Auslander, L., B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354.
[3] Conway, J. " A Course in Functional Analysis," Second Edition, Springer, New York, 1990.
[4] Currey, B., Admissibility for a class of quasiregular representations, Can. Jour. Math. 59 (2007), 917-942.
[5] -, Explicit orbital parameters and the Plancherel measure for exponential Lie groups, Pac. Jour. Math. 219 (2005), 101-142.
[6] -, Smooth decomposition of finite multiplicity monomial representations for a class of completely solvable homogeneous spaces, Pac. Jour. Math. 170 (1995), 429-460.
[7] -, The structure of the space of coadjoint orbits of an exponential solvable Lie group, Trans. Amer. Math. Soc. 332 (1992), 241-269.
[8] Fujiwara, H., Representations monomiales des groupes de Lie resolubles exponentiels, Progress in Math. 82 (1990), 61-84.
[9] Lipsman, R., Orbital parameters for induced and restricted representations, Trans. Amer. Math. Soc. 313 (1989), 433-473.
[10] -, Induced representations of completely solvable Lie groups, Ann. Scuola Norm. Sup. 17 (1990), 127-164.
[11] -, Harmonic anaylsis on exponential solvable homogeneous spaces: the algebraic or symmetric cases, Pac. Jour. Math. 140 (1989), 117-147.
[12] Pukanszky, L., On the unitary representations of exponential Lie groups, J. Funct. Anal. 2 (1968), 73-113.
[13] -, On the characters and the Plancherel formula of nilpotent Lie groups, J. Funct. Anal. 1 (1967), 255-280.

Bradley N. Currey
Department of Mathematics and Computer Science
Saint Louis University
St. Louis, MO, 63103, USA
curreybn@slu.edu

Received April 12, 2009
and in final form September 19, 2009

