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Abstract. Kontsevich has proven that the Lie homology of the Lie algebra

of symplectic vector fields can be computed in terms of the homology of a

graph complex. We prove that the Leibniz homology of this Lie algebra can be

computed in terms of the homology of a variant of the graph complex endowed

with an action of the symmetric groups. The resulting isomorphism is shown to

be a Zinbiel-associative bialgebra isomorphism.
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In his papers [8] and [9], Kontsevich proved that the homology of the Lie
algebra sp(Com) of symplectic vector fields on a formal manifold can be computed
through graph homology: there exists a canonical co-commutative commutative
bialgebra isomorphism

H∗(sp(Com)) ∼= Λ(H∗(connected graph complex)) .

In the literature, we can find another theorem of similar nature due to
Loday, Quillen and Tsygan cf. [13, 20]. It states that the homology of the Lie
algebra of matrices on an associative algebra can be computed as the exterior
power of cyclic homology: there exists a canonical co-commutative commutative
bialgebra isomorphism

H∗(gl(A)) ∼= Λ(HC∗−1(A)) .

These two theorems are closely linked since the cyclic homology of an algebra can
be seen as the graph homology of polygons labelled by elements of the algebra.

Another similar theorem involving Leibniz homology HL and Hochschild
homology HH has been proven by Cuvier and Loday (cf. [3, 10]): there exists a
vector space isomorphism

HL∗(gl(A)) ∼= T (HH∗−1(A)) .
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The Leibniz homology is the homology of the chain complex built over the tensor
power T (g), whereas the chain complex considered for the Lie homology is the
exterior power Λ(g) (quotient of T (g) by the symmetric group action).

The aim of this paper is to compute the Leibniz homology of the Lie
algebra sp(Com). We construct a variant of Kontsevich graph complex, called
the symmetric graph complex. In dimension n it is equipped with an action of the
symmetric group Σn . Its quotient by this action gives Kontsevich graph complex.
We show that there exists an isomorphism :

HL∗(sp(Com)) ∼= T (H∗(connected symmetric graph complex)) . (1)

On the left-hand side the direct sum of matrices induces an associative
algebra structure, and the diagonal induces a Zinbiel coalgebra structure. They
make HL∗(sp(Com)) into a Zinbiel-associative bialgebra. On the right-hand
side there is an obvious free-cofree Zinbiel-associative bialgebra structure. Our
isomorphism is shown to be an isomorphism of Zinbiel-associative bialgebras.

Under quotienting by the action of the symmetric groups our proof gives,
as an immediate corollary, a proof of Kontsevich theorem. Moreover, the two
isomorphisms are related by a commutative diagram :

HL∗(sp(Com))

( )Σn

��

∼= T (H∗(connected symmetric graph complex))

( )Σn

��

H∗(sp(Com)) ∼= Λ(H∗(connected graph complex)) .

Kontsevich theorem leads to many types of generalisations. Hamilton and
Lazarev proved it in the orthosymplectic context, cf. [6],[7]. Mahajan extended
it for reversible operads in [14] and Conant and Vogtmann extended Konstevich
proof to any cyclic operad, cf. [2]. We intend to show in a sequel to this paper,
that such generalisations are possible in the Leibniz homology context too.

The paper is constructed as follows : the first section sets the notations for
Lie and Leibniz homology. The second section introduces the notion of symmetric
graphs used in section three to state the main theorem. The next sections are
devoted to the proof of this theorem. Section five is the first step of the proof
known as the Koszul trick, section six is devoted to recalls on co-invariant theory for
the symplectic algebra, that are then applied to the Leibniz complex of sp(Com).
The next section introduces chord diagrams with a little digression to describe
the chain complex of chord diagrams. Section eight mimicks Kontsevich’s idea to
produce an isomorphism between the classes of chord diagrams under a symmetric
action and graphs. But here the graphs that arise are labelled. In section ten,
we reduce the computation of the homology of connected graphs to the homology
of connected graphs with no bivalent vertices. Then, in the last section we show
that the isomorphism of the main theorem is an isomorphism of Zinbiel-associative
bialgebras. The appendix of this paper is devoted to a rigidity theorem, analogous
to Hopf-Borel, for Zinbiel-associative bialgebras and its dual version.

In the sequel K denotes a field of characteristic zero.
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1. Leibniz and Lie homology

In order to set the notations, we recall the basic notions of Leibniz and Lie chain
complexes, adjoint representation and co-invariants.

Definition 1.1. A Leibniz algebra L is a vector space over a field K endowed
with a bilinear map L× L→ L, denoted (x, y) 7→ [x, y] and called the bracket of
x and y , verifying the Leibniz identity :

[[x, y], z] = [[x, z], y] + [x, [y, z]] for all x, y, z ∈ L .

This identity means that the operation [−, z] is a derivation with respect
to the bracket.

Definition 1.2. A vector space g over a field K, endowed with an operation
g× g → g, denoted (x, y) 7→ [x, y], is called a Lie algebra over K if g is a Leibniz
algebra and if the bracket verifies moreover that

[x, x] = 0 for all x ∈ g .

It is clear that the axiom [x, x] = 0 for all x ∈ g implies the anti-
commutativity axiom, i.e. [x, y] = −[y, x] for all x, y ∈ g, by applying the
bilinearity hypothesis to the element [x+ y, x+ y]. Moreover the identity satisfied
by the Leibniz algebra implies the Jacobi identity :

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0 for all x, y, z ∈ L ,

under the assumption of anti-commutativity.

Let g be a Lie algebra over K. The Chevalley-Eilenberg chain complex is
defined as follows:

· · ·
d

−→ Λng
d

−→ Λn−1g
d

−→ · · ·
d

−→ Λ1g
d

−→ K ,

where Λng is the nth exterior power of g over K, and the map d is given by the
classical formula :

d(g1 ∧ · · · ∧ gn) :=
∑

1≤i<j≤n

(−1)i+j+1[gi, gj] ∧ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝj ∧ · · · ∧ gn ,

where ĝi means that gi has been deleted. The homology of the Chevalley-Eilenberg
chain complex is denoted H∗(g,K) or H∗(g) if no confusion occurs with this
notation.

Let g be a Leibniz algebra over K. The Leibniz chain complex CL∗(g) has
been defined by J.-L. Loday in [11] as a lifting of the Chevalley-Eilenberg complex
by:

· · ·
d

−→ g⊗n d
−→ g⊗n−1 d

−→ · · ·
d

−→ g
d

−→ K

where g⊗n is the nth tensor power of g over K, and where the map d is given by
the following formula :

d(g1 ⊗ · · · ⊗ gn) :=
∑

1≤i<j≤n

(−1)jg1 ⊗ · · · ⊗ gi−1 ⊗ [gi, gj] ⊗ gi+1 ⊗ · · · ⊗ ĝj ⊗ · · · ⊗ gn .
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In this paper we denote the homology of the Leibniz chain complex by HL∗(g,K)
or HL∗(g) if it doesn’t lead to any confusion.

2. Symmetric graph homology

We introduce the notion of symmetric graph complex which gives rise to symmetric
graph homology. The graphs that we consider are labelled by integers and endowed
with an action of the symmetric groups on the labellings. We show moreover that
the chain complex and the homology of graphs admit a structure of generalised
bialgebra, namely a Zinbiel-associative bialgebra structure.

Definition 2.1. Let m be an integer. An oriented symmetric graph G is a
triplet made of the ordered set V (G) := {1, . . . , m} of vertices, a set of edges
E(G) and a map αG : E(G) → V (G)× V (G). The symmetric graph G is said to
be non-oriented if αG : E(G) → S2(V (G)) := (V (G) × V (G))/Σ2 .

To ease the writing the set V (G) is referred to the set of vertices of G, and
the set E(G) is referred to the set of edges of G. A vertex v ∈ V (G) has valency
n if the cardinality of the set {e ∈ E(G)|∃a ∈ V (G) : αG(e) = (a, v) or (v, a)} is
n. The elements of αG(e) are called the incident half-edges of e. An edge whose
composite half-edges are incident to the same vertex is called a loop.

A labelled graph is a graph G together with a map from the set of vertices
V (G) to the set of labellings {p1, q1, . . .} .

The symmetric group Σm acts on the graph G = ({1, . . . , m}, {ei}, αG) as
follows : let αG(ei) = (i1, i2)

σ · (V (G), E(G), αG) := sgn(σ)(V (G), E(G), σ · αG) ,

where (σ · αG)(ei) = (σ(i1), σ(i2)) , and sgn(σ) is the sign of the permutation.

Definition 2.2. Two graphs G1 and G2 are said to be isomorphic if :

1. V (G1) = V (G2),

2. |E(G1)| = |E(G2)| ,

3. ImαG1 = ImαG2 .

In the sequel, we will consider isomorphic classes of non-oriented symmetric
graphs without loops, and isomorphic classes of oriented symmetric graphs without
loops (unless otherwise stated). We will refer to them as graphs and oriented
graphs respectively.

Notation 2.1. The set of all finite graphs will be denoted G , and the set of

finite oriented graphs is denoted
→

G . The set of finite graphs with m vertices (i.e.
every graph G such that |V (G)| = m) is denoted Gm . The set of graphs such that
the valence of their vertices is respecctively k1, . . . , km is denoted Gk1,...,km

.
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Example 2.3. The connected graph G = (V (G), E(G), αG) with V (G) =
{1, 2, 3} , E(G) = {e1, . . . , e4} and αG(e1) = {1, 3}, αG(e2) = {1, 2}, αG(e3) =
{1, 2}, αG(e4) = {2, 3} can be represented geometrically as in figure 1.

3

1

2

Figure 1: Geometric interpretation of the graph G

Definition 2.4. Let G1 and G2 be two graphs with V (Gi) = {1, . . . , ni} ,
E(Gi) = {ej}1≤j≤ri

. The ordered disjoint union of two graphs G1 · G2 is defined
as follows:

V (G1 ·G2) := {1, . . . , n1 + n2} ,

E(G1 ·G2) := {e′j}1≤j≤r1+r2 ,

αG1·G2(e
′
j) :=

{
αG1(ej) if j ≤ r1 ,
αG2(ej−r1) if j ≥ r1 + 1 .

This operation endows the vector space K[G] with a structure of associative (non-
commutative) algebra.

A graph G is connected if for any graph U, V ∈ G , U · V 6= G. We denote
Gc the set of connected graphs. We will denote G3

c the set of connected graphs
such that every vertex is of valence at least 3.

It is to be noted that in our definition there is a notion of order on the
connected components of a graph. Indeed let G1 and G2 be two components of a
graph G, then G1 is greater than G2 if the minimum of the labels of the vertices
in G1 is greater than the minimum of the labels of the vertices in G2 . This gives
rise to a vector space isomorphism between the tensor module T (K[Gc]) and K[G].

The definition of graphs of definition 2.1 encodes non-necessarily connected
graphs, as illustrated in the following example.

Example 2.5. Let H = (V (H), E(H), αH) be the graph defined as V (H) =
{1, 2, 3, 4} , E(H) = {e1, . . . , e4} and αH(e1) = {1, 2}, αH(e2) = {1, 2}, αH(e3) =
{3, 4}, αH(e4) = {4, 3} . This graph can be represented geometrically as in figure
2, taking into account the order of the components.

This graph is the disjoint union of H1 ·H1 , where H1 is the graph defined
by V (H1) := {1, 2} , E(H1) = {e1, e2} and αH1 satisfies :

αH1(e1) = {1, 2} αH1(e2) = {1, 2} .

Since H is a class of isomorphic symmetric graphs, we can write H as
follows V (H) = {1, 2, 3, 4} and ImαH = {{1, 2}, {1, 2}, {3, 4}, {4, 3}} for sake of
simplicity. Therefore with this notation H1 is defined as ({1, 2}, {{1, 2}, {1, 2}}).
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Figure 2: Geometric interpretation of the graph H

Proposition 2.6. The associative algebra (K[G], ·) is isomorphic to the free
associative algebra T (K[Gc]).

Proof. Any non-connected graph can be seen as the ordered disjoint union
of some uniquely determined non-empty connected graphs. The ordered disjoint
union is an associative non-commutative operation on graphs. This gives rise to
an isomorphism between the tensor algebra over the connected graphs and the
algebra of graphs.

In order to define the differential in the graph complex, we first describe
how to contract an edge in a given graph.

Definition 2.7. Let G = ({1, . . . , m}, {ej}1≤j≤n, αG) be a graph and let e =
(i, j) be one of its edges, which we assume not being a loop. We define a new
graph G/e as follows :

1. the set of edges of G/e are the edges of G minus e,

2. the set of vertices of G/e is {1, . . . , m− 1} ,

3. the map αG/e : E(G/e) → V (G/e) × V (G/e) is defined as follows :

αG/e(e
′) = (std ⊗ std) ◦ αG(e′)

where,

std(k) =






k if k < min(i, j) ,
k − 1 if i < k and k 6= max(i, j)

min(i, j) if k = max(i, j) .

The map std is known as the standardisation map.

This definition do not depend on the representative G in the class of
isomorphic graphs.

Example 2.8. We consider the graph G, defined by V (G) = {1, . . . , 4} and
ImαG = {{1, 4}, {1, 3}, {2, 4}, {2, 3}, {3, 4}} , and the edge e = {1, 4} . The result-
ing graph G/e is defined as V (G) = {1, 2, 3} with ImαG = {{1, 3}, {2, 1}, {2, 3}, {3, 1}} .

Proposition 2.9. Let G ∈
→

G be a graph obtained by G′ ∈
→

G by a change of
orientation on a edge e = [i, j] into [j, i]. We set G ∼ −G′ .
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G/e

e

G G/e

Figure 3: Contracting vertex e in graph G.

The algebra spanned by the oriented graphs quotiented by the above equiva-
lence relation is exactly the algebra spanned by the graphs without loops.

Proof. It is clear that the loops are null. Moreover the orientation is mod out
by the sign relation on orientation.

To ease the notation we will define a sign ǫ(e) for any oriented edge e = [i, j]
which will depend on the orientation of the edge and the number associated to the
vertex of each incident half-edge.

Definition 2.10. Let G ∈
→

G be an oriented graph, and let e = [i, j] be an
oriented edge. We define the sign ǫ(e) ∈ {−1, 1} as follows :

ǫ(e) =

{
−1 if i > j ,
1 if i < j .

We are now able to describe the complex of oriented symmetric graphs
C(G, δ).

Definition 2.11. The nth chain module Cn(
→

G) is the vector space of graphs

with n vertices. The differential on the chain module is defined as follows : let
→

G
be an oriented graph,

δ(
→

G) :=
∑

e

(−1)max(i,j)ǫ(e)
→

G/e ,

where the sum runs over all edges e = [i, j].

Proposition 2.12. The chain complex C∗(
→

G) passes through the quotient by
the equivalence relation defined in proposition 2.9, defining the chain complex
associated to non-oriented graphs .

Proof. The differential does not depend on the oriented representative of the

graph G. Indeed, let
→

G be an oriented representative of the graph G. Let v be

a vertex in
→

G with orientation [i, j]. Consider the graph
→

G′ which is the same

graph as
→

G with the orientation of v being [j, i]. Therefore, direct computation
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gives :

δ(
→

G) − δ(
→

G′) = (−1)max(i,j)(ǫ(v)[
→

G/v] − ǫ(v′)[
→

G′/v′])

= (−1)max(i,j)ǫ(v)(1 − 1)[
→

G/v]

= 0 .

This end the proof as for more than one change of orientation, we will have just a
sum of the above equality.

Example 2.13. We illustrate the differential of a graph by performing the
calculation on the connected graph defined in 2.3. It gives the following sum
−2({1, 2}, {{1, 2}, {1, 2}, {1, 2}}). The sum can be reinterpreted geometrically as
in figure 4 where we have just contracted each edge but we have also to take into

1

2

−2

1

2

+2

Figure 4: Sum of contracted edges of G

account that the loops are null. Figure 5 gives the geometrical result.

1

2

−2

Figure 5: The differential of the graph G

Our aim is to prove that the graph complex admits a structure of Zinbiel-
associative bialgebra. The definition and the main properties of Zinbiel-associative
bialgebras can be found in the appendix. It includes a structure theorem stating
that a connected Zinbiel-associative bialgebra can be reconstructed from its primi-
tives. This theorem is analogous to the Milnor-Moore theorem for co-commutative
commutative bialgebras.

First, we define the Zinbiel coalgebra structure on the graph complex as the
canonical Zinbiel coproduct on the tensor module T (K[Gc]).

Definition 2.14. Let ∆≺ : C(G, δ) → C(G, δ)⊗C(G, δ) be defined as the co-half
shuffle on the ordered disjoint union of graphs. That is to say, let G = G1 . . . Gn

be the ordered disjoint union of the connected graphs Gi , for 1 ≤ i ≤ n, the
co-half shuffle is defined as :

∆≺(G) := G1⊔⊔
⋆ (G2 . . . Gn) = G1

∑

p+q=n−1

∑

i∈Shp,q

Gi2 . . . Gip ⊗Gip+1 . . . Gin

where the sum is extended over all (p, q)-shuffles i (i.e. in the multi-indices
i = (i2, . . . , in) the integers 2, . . . , p are ordered and so are p+ 1, . . . , n).
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Example 2.15. Let G be the graph defined by V (G) = {1, . . . , 8} and ImαG =
{{7, 8}{1, 3}, {4, 5}, {1, 3}, {1, 2}, {4, 5}{2, 3}, {6, 8}, {7, 8}, {6, 7}, {6, 8}} . It is clear
that G = G1 ·G2 ·G3 . Indeed, G1 = ({1, 2, 3}, {{1, 3}, {1, 3}, {1, 2}, {2, 3}}), G2 =
({1, 2}, {{1, 2}, {1, 2}}) and G3 = ({1, 2, 3}, {{1, 3}, {1, 3}, {1, 2}, {2, 3}, {1, 3}}).
Applying the coproduct to this graph gives the following :

G1 ·G2 ·G3 ⊗ 1 +G1 ⊗G2 ·G3 +G1 ·G2 ⊗G3 +G1 ·G3 ⊗G2 .

This can be geometrically interpreted as in figure 6.

+⊗1 ⊗

+ ⊗
+

⊗

∆≺

1

2
3

4

5

6

78

1

2
3

4

5

6

7
8

1

23

1

2

3

45

1

23

4

5

1

2
3

1

23

4

5
6

1

2

Figure 6: Coproduct of the graph G

The Zinbiel coalgebra can also be endowed with an associative algebra
structure. This endows the chain complex with a Zinbiel-associative bialgebra,
as shown in the following proposition.

Proposition 2.16. Let · : Cp(G) ⊗ Cq(G) → Cp+q(G) be the disjoint ordered
union of graphs. This operation endows the chain complex with an associative
algebra structure. Together with the coalgebra structure, defined in definition 2.14,
it endows the chain complex of symmetric graphs with a structure of Zinbiel-
associative bialgebra.

Proof. The operation · is clearly associative (and not commutative). The
co-half shuffle is a Zinbiel coproduct cf. appendix 10. It suffices to verify the
compatibility relation. This can be done by dualising the arguments of [1], see
appendix 11.

Proposition 2.17. The primitive part of C(G, δ,∆≺) is the subvector space
spanned by connected graphs.

Proof. It’s known that the primitive part of T (V ) for the co-half shuffle is V
(cf. appendix 11 for a proof). This remark ends the proof.
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Corollary 2.18. The homology H(G, ·, δ,∆≺) of the graph complex is isomor-
phic to the graded Zinb-As bialgebra T (H(Gc)).

Proof. It suffices to apply corollary 12.2 of appendix 12 and proposition
2.17.

3. A Kontsevich analogue for the Leibniz homology

In this section, we introduce the Lie algebra sp(Com) and state the main theorem:
The Leibniz homology of the Lie algebra sp(Com) can be computed thanks to the
homology of the symmetric graph complex defined in the previous section.

Definition 3.1. Let m be a positive integer. Let Vm be the K-vector space
generated by 2m indeterminates {p1, . . . , pm, q1, . . . , qm} endowed with the stan-
dard symplectic form ω =

∑m
i=1 dpi∧dqi . We define the Lie algebra spm(Com) as

follows : the underlying vector space is S≥2(Vm) := ⊕k≥2(V
⊗k
m )Sk

, the module of
commutative polynomials in indeterminates p1, . . . , pm, q1, . . . , qm . It is endowed
with the canonical Poisson bracket :

{F,G} =
n∑

i=1

∂F

∂pi

∂G

∂qi
−
∂G

∂pi

∂F

∂qi
,

where F and G are polynomials in indeterminates p1, . . . , pm, q1, . . . , qm .

The inductive limit of these Lie algebras is denoted sp(Com) := ∪m≥1spm(Com).

Conant and Vogtman defined in [2] a functor from cyclic operads to sym-
plectic Lie algebras. For P = Com it turns out to be the Lie algebra described
above. In a future article, we will explain the choice of the notation sp(Com).

The algebra spm(Com) is a Lie algebra. It is in particular a Leibniz algebra,
and therefore we can consider its Leibniz homology.

Our aim is to prove the following theorem :

Theorem 3.2. Let K be a characteristic zero field. There exists a canonical
Zinbiel-associative bialgebra isomorphism :

HL∗(sp(Com)) ∼= T (H∗(G
3
c ))

Proof. The proof will be decomposed into four steps as follows :

First step : quotient the chain complex CL∗(sp(Com)) by the action of the
reductive Lie algebra sp2m(K). This step is known as the Koszul trick.

Second step : apply the co-invariant theory and then mimic Kontsevich’s
idea to reduce the chain complex to a complex of graphs.

Third step : reduce the chain complex of graphs to a smaller one by
constructing explicit homotopies.

Fourth step : show that the isomorphism obtained is a Zinbiel-associative
bialgebra isomorphism.
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4. First step : Koszul trick

The Leibniz chain complex of the Lie algebra sp(Com) can be reduced by the
Koszul trick. It is quasi-isomorphic to the chain complex spanned by the symplectic
co-invariants.

4.1. Adjoint representation and Leibniz homology. In this section we
translate some well known homological properties of Lie algebras in the Leibniz
context. Most of this subsection can be found in [10].

Proposition 4.1. Let g be a Leibniz algebra. The adjoint action of g on itself
given by

[g1 ⊗ · · · ⊗ gn, g] :=
n∑

i=1

g1 ⊗ · · · ⊗ [gi, g] ⊗ · · · ⊗ gn ,

is compatible with d. The induced action on HL∗(g,K) is trivial.

Proof. The compatibility of the adjoint action with the differential is proved
in [10] lemma 10.6.3 (10.6.3.0) by induction :

d[α, g] = [dα, g] for all α ∈ g⊗n and g ∈ g .

In order to prove the second assertion, we construct a homotopy σ from the adjoint
action to zero.

For any y ∈ g let σ(y) : g⊗n −→ g⊗n+1 be the map of degree one given by :

σ(y)(α) := (−1)nα⊗ y, α ∈ g⊗n .

Then, the following equality holds :

dσ(y)(α) + σ(y)d(α) =
n+1∑

i,j=1

(−1)j+n+1α1 ⊗ · · · ⊗ [αi, αj ] ⊗ · · · ⊗ α̂j ⊗ · · ·αn ⊗ y

+

n∑

i,j=1

(−1)j+nα1 ⊗ · · · ⊗ [αi, αj] ⊗ · · · ⊗ α̂j ⊗ · · ·αn ⊗ y

= [α, y] .

This proves that σ(y) is a homotopy from [−, y] to 0, whence the assertion.

Definition 4.2. Let G be a group and V be a left K[G]-module. By definition
the vector space of invariants is

V G := {v ∈ V |g · v = v for all g ∈ G} ,

and the space of co-invariants is :

VG := V/{g·v−v} .
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When G is finite and |G| is invertible in K, there is a canonical isomorphism
VG

∼= V G given by the averaging map :

[v] 7→
1

|G|

∑

g∈G

g · v .

Proposition 4.3. Let g be a Leibniz algebra. Let h be a reductive sub-Lie
algebra of g. Then the surjective map g⊗n → (g⊗n)h induces an isomorphism on
homology,

HL∗(g,K) ∼= HL∗((g
⊗n)h, d) .

Proof. Since g is a completely reducible h-module, the module g⊗n splits, as
a representation of h, into a direct sum of isotypic components. The component
corresponding to the trivial representation is (g⊗n)h (co-invariant module). Let
us denote Ln the sum of all the other components. Since h is a sub-Lie algebra
of g it is in particular a Leibniz algebra and then proposition 4.1 implies that
d is compatible with the action of h. So there is a direct sum decomposition of
complexes :

T (g) ∼= (T (g))h ⊕ L⋆.

To finish the proof it suffices to prove that L⋆ is an acyclic complex.

Since L⋆ is made of simple modules which are not trivial h-modules, the
components of HL∗(L∗) are not trivial either. But by proposition 4.1, HL∗(g,K)
is a trivial g-module and so a trivial h-module. Therefore HL∗(L⋆) has to be
zero.

The same properties are true for Lie algebras with the Chevalley-Eilenberg
chain complex, see [10] section 10.1.8.

4.2. First step of the proof. We apply the above theory to the symplectic Lie
algebra sp(Com) with the action of the reductive symplectic Lie algebra sp(K).
First we verify that the symplectic Lie algebra sp(K) is included in the Lie algebra
sp(Com), cf [2].

Recall that sp(2n) is the set of 2n× 2n-matrices a satisfying aj + jta = 0

where j =

(
0 Id

−Id 0

)
.

Proposition 4.4 (cf. [2]). The symplectic Lie algebra S2(Vm) is isomorphic to
the Lie algebra sp2n(K).

Since sp2m(K) is contained into sp2m(Com) it acts on sp2m(Com) by the
inner action.

Corollary 4.5. The Leibniz complex of the Lie algebra sp(Com) is quasi-
isomorphic to the Leibniz complex sp(Com)sp(K) .

Proof. Apply proposition 4.3 to the Leibniz algebra g = sp2m(Com), and
the reducible algebra h = sp2m which is included in sp2m(Com) by the above
proposition. Then, take the inductive limit.
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5. The co-invariant theory for the symplectic group [10, 5, 17]

Co-invariant theory for the symplectic group is the main key to reduce our complex
to a complex of graphs. The first part of this section is devoted to some recalls
on the co-invariant theory for the symplectic group, due to Procesi [17]. Then, we
apply this theory to our Leibniz chain complex.

5.1. Recall on co-invariant theory for the symplectic group.

Definition 5.1. Let V be a vector space over K and let ω : V × V → K be
a non-degenerate skew-symmetric bilinear form. We define the symplectic group
relative to ω as a subgroup of the general linear group on V , denoted GL(V,K),
by :

Sp(V, ω) := {g ∈ GL(V,K) : ω(gx, gy) = ω(x, y), for all x, y ∈ V } ,

Definition 5.2. Consider the polynomial algebra K[yij ], where i 6= j ranges
over {1, . . . , 2n} , and where the relation yij = −yji holds. Since we are in
characteristic zero, it implies yii = 0. Define An as the subspace spanned by the
monomials yi1i2 . . . yi2n−1i2n

such that {i1, . . . , i2n} is a permutation of {1, . . . , 2n} .

Definition 5.3. The symmetric group Σn acts on the left on An by permuting
the variables as follows :

σ · yi1i2 . . . yi2n−1i2n
= yσ−1(i1)σ−1(i2) . . . yσ−1(i2n−1)σ−1(i2n) ,

for all yi1i2 . . . yi2n−1i2n
∈ An and for all σ ∈ Σn .

Dualising the assertions in [10] section 9.5, leads to the following formu-
lations of the two fundamental theorems of co-invariant theory in the symplectic
context.

Theorem 5.4 (First Fundamental Theorem for the Symplectic Group). Let V
be a finite-dimensional vector space over K and ω : V×V → K be a non-degenerate
skew-symmetric bilinear form. The map T ∗ : (V ⊗2r)Sp(V ) −→ Ar induced by :

v1 ⊗ · · · ⊗ v2r 7→
∑

yi1i2
···yi2r−1i2r

∈Ar

ω⊗r(vi1 ⊗ vi2 ⊗ · · · ⊗ vi2r−1 ⊗ vi2r
) yi1i2 · · · yi2r−1i2r

,

where the sum is over all monomials of Ar , is injective.

Theorem 5.5 (Second Fundamental Theorem for the Symplectic Group). Let
V be a finite-dimensional vector space over K and ω : V × V → K be a
non-degenerate skew-symmetric bilinear form. The co-kernel of the map T ∗ :
(V ⊗2r)Sp(V ) −→ Ar is the sum of all the isotypic components ((Ar)λ)

∗ , λ =
{λ1, · · · , λr} such that λ1 ≥ 1

2
dimV + 2. In particular T ∗ is an isomorphism

as soon as dimV ≥ 2r .

These two theorems can be summarized in the following short exact se-
quence :

0 −→ (V ⊗2r
m )Sp2m(K) −→ Ar −→ ⊕λ((Ar)λ)

∗ −→ 0 .
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Proposition 5.6. Let V be a finite-dimensional vector space over K of char-
acteristic zero and ω : V × V → K be a non-degenerate skew-symmetric bilinear
form. If n is odd, then we have (V ⊗n)Sp(V ) = 0.

Proof. This proof can be found in [5]. For (V, ρ) a representation, then define
ρn as the representation of the tensor product V ⊗n . Clearly, there are no invari-
ants : as −I ∈ sp(V ), then for all x ∈ V ⊗n we have ρn(−I)(x) = (−1)nx = −x,
since n is odd. As for finite dimensional vector spaces over a characteristic zero
field, invariants and co-invariants are isomorphic, the assertion is true.

Let M be Sp(K)-bimodule, there is a canonical structure of sp(K)-module
on M . Moreover, we have the following isomorphism of co-invariant spaces
MSp(K) = Msp(K) .

5.2. Co-invariant theory applied to the Leibniz complex of sp(Com). We
will now apply the above theory of co-invariants for the symplectic group to reduce
the Leibniz chain complex of (sp(Com))sp(K) to a more explicit chain complex. As
we focus on the inductive limit of sp(Com) the two fundamental co-invariant
theorems give rise to an isomorphism.

If we focus on the non-stable case, that is to say spm(Com) where m is
fixed, then the co-invariant theorems would only stabilise one part of each chain
module. It is very different from the Loday-Quillen case where they compute the
homology of the general linear group of an associative algebra. In their case the co-
invariant theory gives rise to an isomorphism Hn(gln(A)) ∼= Hn+1(gln(A)) ∼= . . ..
Therefore, they can compute the first obstruction to stability.

In order to apply the co-invariant theory, we have to verify first that the
action of sp(K) and of the symmetric group commute.

Proposition 5.7. Let V be a finite dimensional vector space. Let m =
∑n

i=1 ki .
The actions of sp(V ) on V ⊗m and of Σk1 × · · · × Σkn

on V ⊗m commute.

Proof. Let A ∈ sp(V ), x := x1 ⊗ · · · ⊗ xn ∈ V ⊗n , σ ∈ Σk1 × · · · × Σkn
. We

denote ρ the action of the symplectic Lie algebra. We show by direct computation
that the two actions commute.

ρ(A) ◦ σx = ρ(A) · xσ−1(1) ⊗ · · · ⊗ xσ−1(n)

=
n∑

j=0

xσ−1(1) ⊗ · · · ⊗ {xσ−1(j), A}︸ ︷︷ ︸
jth place

⊗ · · · ⊗ xσ−1(n)

=
n∑

i=0,σ(j)=i

xσ−1(1) ⊗ · · · ⊗ {xi, A}︸ ︷︷ ︸
σ−1(i)th place

⊗ · · · ⊗ xσ−1(n)

= σ ·
n∑

i=1

x1 ⊗ · · · ⊗ {xi, A} ⊗ · · · ⊗ xn

= σ ◦ ρ(A)x .

And the proof is completed.
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We then have to transform the module of chains sp2m(Com)⊗n so that the
(V ⊗n)sp(K) appears.

Lemma 5.8. Let Vm be the symplectic 2m-dimensional vector space. The
following equality holds :

(sp2m(Com)⊗n)sp2m(K) =
⊕

k1+···+kn=2r

ki≥2

((V ⊗2r
m )sp2m(K))Σk1

×···×Σkn
.

Proof. Direct calculation leads to the following equalities :

sp2m(Com)⊗n := S≥2(Vm)⊗n = (
⊕

k≥2

(V ⊗k
m )Σk

)⊗n

=
⊕

(k1,··· ,kn)

ki≥2

(V ⊗k1
m )Σk1

⊗ · · · ⊗ (V ⊗kn

m )Σkn

=
⊕

k1+···+kn=2r

ki≥2

(V ⊗2r
m )Σk1

×···×Σkn
⊕

⊕

k1+···+kn=2r+1

ki≥2

(V ⊗2r+1
m )Σk1

×···×Σkn

Then, applying proposition 5.7 to (sp2m(Com)⊗n)sp2m(K) and proposition 5.6 com-
pletes the proof.

We are now ready to apply the co-invariant theory to obtain the following
proposition :

Proposition 5.9. The chain module (sp(Com))⊗n is isomorphic to

(sp(Com)⊗n)sp(K) =
⊕

k1+···+kn=2r

ki≥2

(Ar)Σk1
×···×Σkn

.

Proof. It suffices to apply lemma 5.8 and the co-invariant theory theorems 5.4
and 5.5.

Remark 5.10. The map T (sp(Com)) → T (sp(Com))sp(K) → ⊕(Ar)Σk1
×···×Σkn

admits a splitting S induced by the following construction : to a monomial
yi1,i2 · · · yi2r−1,i2r

we associate a monomial in indeterminates {p1, q1, . . .} in V ⊗2r

such that at the place i2k−1 there is a pk and at the place i2k there is a qk .
Moreover this map is a Σn -morphism.

Example 5.11. The image by S of y14y27y35y86 is p1p2p3q1q3q4q2p4 .
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6. Second step : Chord diagrams chain complex

First, we show that the vector space Ar coming from the co-invariant theory is
isomorphic to the vector space spanned by the base pointed chord diagrams. So
we can understand the Leibniz chain complex coming from the co-invariant theory
as a chord diagram chain complex.

Definition 6.1. Let m be a positive integer. A partition c of {1, . . . , 2m} such
that every x ∈ c is a set consisting precisely of two elements will be called a (base
pointed) chord diagram, where the base point is the set with the element 1. The
set of all such chord diagrams will be denoted by Dm . A chord diagram with an
ordering of each two point set will be called an oriented chord diagram. The set

of all oriented chord diagrams will be denoted by
→

D. There is a symmetric action
on the chord diagram. Given an oriented chord diagram c := {[i1, j1], . . . , [im, jm]}

and a permutation σ ∈ S2m , the symmetric group S2m acts on
→

Dm as follows :

σ · c := {[σ−1(i1), σ
−1(j1)], . . . , [σ

−1(im), σ−1(jm)]}.

The symmetric group S2m acts on Dm in a similar way. A labelled diagram
is a diagram D ∈ Dm together with a map between {1, . . . , 2m} to the set of
labellings {p1, q1, . . .} . Any element in {1, . . . 2m} is called a vertex and any set
of two elements is called a label.

Example 6.2. There is a geometrical interpretation of a chord diagram : it’s
usual to put vertices on a circle and to draw each chord inside the disk. For
example the diagram D = {{1, 4}, {2, 7}, {3, 5}, {8, 6}} ∈ D4 can be geometrically
represented as follows : cf. figure 7.
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Figure 7: Geometric representation of the chord diagram D.

If the diagram is oriented then the orientation will be represented as some
arrows on the chords as in figure 8.

The numbering on the circle is defined as follows : determine a base point
and label it with 1 and label increasingly according to a positive orientation.

Proposition 6.3. The space Am is isomorphic as a Σn -module to the vector
space spanned by the collection of chord diagrams with m chords, denoted K[Dm].

Proof. Let β := yj1,j2 . . . yj2m−1j2m
∈ Am be a monomial. As any monomial

in Am satisfies the relation yij = −yji , β can be rewritten (up to a sign) as the
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Figure 8: Geometric representation of the oriented chord diagram D.

standard monomial yi1i2 . . . yi2m−1i2n
with i1 = 1, i2k−1 < i2k and i2k−1 < i2k+1 for

all k ∈ {1, . . . , m} . (This remark will mod out the orientation on the diagrams.)
Therefore, we can focus on ordered monomials and construct the isomorphism.

Consider γ := yi1i2 . . . yi2m−1i2m
an ordered monomial. It can be associated

to the following base-pointed diagram {{1, i2}, . . . , {min(i2m−1, i2m),max(i2n−1, i2n)}} ∈
Dm .

By linearity, this construction gives rise to a map φ : Am → K[Dm] which
is a vector space isomorphism. (The inverse map is clear).

We verify that the map φ is Σn -equivariant. The permutation σ ∈ Σ2n

acts on a standard monomial as :

σ · yi1i2 . . . yi2n−1i2n
= yσ−1(i1)σ−1(i2) . . . yσ−1(i2n−1)σ−1(i2n) .

The chord diagram φ(σ · yi1i2 . . . yi2n−1i2n
) is defined as the following partition :

{{σ−1(i1), σ
−1(i2)}, . . . , {σ

−1(i2n−1), σ
−1(i2n)}} .

This is exactly σ·φ(yi1i2 . . . yi2n−1i2n
). Therefore φ is a Σn -module isomorphism.

Example 6.4. The image of the monomial y14y27y35y86 under the map φ is the
diagram defined in example 6.2, which has the geometric representation of figure
7.

Though it is unnecessary for the proof of theorem 3.2, we will define the
chain complex of chord diagrams and then prove that this chain complex is quasi
isomorphic to the chain complex defined for sp(Com). This part can be skipped as
in the next section, we show that the chain complex sp(Com) is quasi-isomorphic
to the chain complex defined on the graphs.

Remark 6.5. Let Γ ∈ (D)Σk1
×...×Σkn

be a diagram. We will call a package the

subset of vertices on which a Σki
acts. Let D ∈

→

D be a diagram obtained by D′ ∈
→

D
by a change of orientation on a chord e = [i, j] into [j, i]. We set D ∼ −D′ .

The algebra spanned by the oriented chord diagrams quotiented by the
above equivalence relation is exactly the algebra spanned by the chord diagrams
without any chord with two incident half edges in the same package Σi .

Definition 6.6. Let D ∈ Dm be a diagram and e a chord of D . We define
the contraction of D by e as a new diagram denoted D/e ∈ Dm−1 where the set
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{1, . . . , 2(m− 1)} admits for partition the shifting of the partition c of D where
e has been deleted (standardisation).

Example 6.7. Let D be the diagram defined in example 6.2, and let e be
the edge {2, 7} . The contraction of D by the edge e is the following diagram
D/e = {{1, 3}, {2, 4}, {5, 6}} which can be geometrically represented as figure 9.
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Figure 9: Geometric representation of the chord diagram D/e.

Definition 6.8. Let D ∈
→

D be an oriented chord diagram and let c = [i, j] be
an oriented edge of D . We define the sign ǫ(c) ∈ {−1, 1} as follows :

ǫ(c) =

{
−1 if i > j ,
1 if i < j .

Definition 6.9. Denote by Cm(
→

D, δ) the chain complex defined as follows. The

nth chain module is ⊕k1+···+kr=n(
→

Dn)Σk1
×···×Σkr

. These chain modules are endowed

with the following differential : let D ∈
→

Dn , we define :

∂(
→

D) :=
∑

c

(−1)iǫ(c)
→

D/c ,

where the sum runs over all the chords c = [a, b] and i is defined such as∑i
p=1 kp ≤ max(a, b) <

∑i+1
p=1 kp .

Remark that the result of this differential lives in

⊕(
→

Dn−1)Σk1
×···Σki+kj−2×···Σ̂kj

×···×Σkr
,

where the sum is extended to all [i, j] which are chords of the diagram.

Proposition 6.10. The differential passes through the equivalence relation of
remark 6.5.

Proof. The differential does not depend on the representative oriented diagram

of D . Indeed, let
→

D be an oriented representative of the chord diagram D , and

let c = [a, b] be one of its oriented chord. Consider the oriented diagram
→

D′ with
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the same orientations as
→

D except for the chord linking a to b where we consider
the orientation [b, a] =: c′ . A direct computation ends the proof :

∂(
→

D) − ∂(
→

D′) = (−1)i(ǫ(c)[
→

D/c] − ǫ(c′)[
→

D/c])

= (−1)iǫ(c)(1 − 1)[
→

D/c]

= 0 .

Indeed, any other changes in the orientation will just lead to a sum of the above
equality.

Example 6.11. Consider the chord diagram D ∈ (D)Σ3×Σ3×Σ2 defined in
example 6.2. In order to compute its differential we will consider the representative

oriented chord diagram D̂ ∈ (
→

D)Σ3×Σ3×Σ2 also defined in the same example:

∂(D) = ∂(D̂) = (−1)3{{1, 3}, {2, 4}, {6, 5}}− (−1)3{{1, 4}, {2, 6}, {3, 5}} .

The differential is more easily expressed thanks to a geometrical representation
where we explicitly materialise the packages Σki

in the result of the differential.
In figure 10, we give the result of all contracted diagrams without taking into
account that the diagrams such that a chord is included in a package Σki

are null.
Then, we take this relation into account to give the result of the differential in
figure 11.
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Figure 10: Geometric representation of the ∂(D) without the equivalence relation.

Proposition 6.12. The differential on the chain complex of diagrams is induced
by the Leibniz differential of the chain complex of sp(Com).

Proof. See proof of proposition 7.4.

7. Second step : Kontsevich idea and symmetric graph complex

In the context of Lie homology, Kontsevich’s major contribution is to give an
isomorphism between the quotient space of chord diagrams by the action of the
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Figure 11: Geometric representation of the ∂(D).

symmetric group (K[D])Σk1
×···×Σkn

and some graphs. We will mimic this idea to
show that the graphs arising are a symmetric version of Kontsevich graphs : they
admit an labelling of the vertices. To avoid the problem of signs in the differential,
we will use a trick seen in [2], and consider the chain complex of oriented symmetric
graphs.

Proposition 7.1. Let r, k1, . . . , kn be integers satisfying the relation
∑n

i=1 ki =
2r and such that ki ≥ 2 for all 1 ≤ i ≤ n. There exists a vector space isomor-
phism :

(K[Dr])Σk1
×···×Σkn

∼= K[Gk1···kn
] .

Proof. We construct explicitly the map ϕ : (K[Dr])Σk1
×···×Σkn

→ K[Gk1···kn
].

We associate to any chord diagram D := {{1, i2}, . . . , {i2r−1, i2r}} the following
graph :

V (G) = {1, , . . . , n} ,

E(G) = {{1, norm(i2)}, . . . , {norm(i2r−1), norm(i2r)}} ,

where the map norm : {1, . . . , 2r} → {1, . . . , n} is defined as follows :

norm(j) = l, where l is defined by
l∑

i=1

ki ≤ j <
l+1∑

i=1

ki

We extend linearly this construction to define the map ϕ : (K[Dr])Σk1
×···×Σkn

→
K[Gk1···kn

] .

This map admits an inverse map defined by the following algorithm. Let
r :=

∑n
i=1 ki , let G ∈ Gk1,...,kn

be a graph with edges (ik, il). We construct a
diagram D ∈ (Dr)Σk1

×···×Σkn
. The algorithm to define the edges is the following.

Let comp = 0 , ind = 1 and D′ = {αG(e1) · · · , αG(er)} . Go through each set
(of cardinality two) of D′ if the element ix is equal to ind then we indent this
element into ix + comp . Then comp takes the value comp + 1, and we repeat
the algorithm. When, the algorithm is over all the edges, ind takes the value
ind + 1. (The counter comp should be taking the value 1 +

∑ind−1

i=1 ki .) Restart
the algorithm on the vertices that were not modified.

It is clear that the two maps are inverse to each other. Therefore φ is an
isomorphism, and thus ends the proof.
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Figure 12: From chord diagram to graphs

Remark 7.2. The fact that the diagrams with a chord included in a package
Σi are null induces that the graphs with loops are null. Indeed, let G ∈ Gk1,··· ,km

be a graph and e = (i, i) be a loop of G. Then φ−1 ◦ ϕ−1(G) is the monomial in
indeterminates ykl of the form · · · yj,j+1 · · · ∈ (Ar)Σk1

×···×Σkm
. A representative of

this monomial in (V ⊗2r)Σk1
×···×Σkm

is a monomial such that p1 is at the place j
and q1 is at the place j+1. By the symmetric action, this monomial is also equal
to the same monomial where p1 is at the place j + 1 and q1 is at the place j .
Therefore, going through T ∗ , it gives the monomial · · · yj+1,j · · · ∈ ( Ar)Σk1

×···×Σkm
.

By the equivalence relation, this monomial is exactly − · · · yj,j+1 · · · . Therefore,
we proved that graphs with loops are null.

Example 7.3. The image of the diagram D of the example 6.11 by φ is the
following graph:

({1, 2, 3}, {{1, 2}, {1, 3}, {1, 2}, {2, 3}})

It can be understood geometrically by figure 12.

Proposition 7.4. The Leibniz homology of the Lie algebra sp(Com) is isomor-
phic to the homology of the symmetric graph complex :

HLn(sp(Com)) = Hn(K[G], δ)

Proof. The first step of the proof of theorem 3.2 gives a quasi-isomorphism
between the Leibniz chain complex of sp(Com) and the Leibniz chain complex
defined for sp(Com)sp(K) . Then, propositions 5.9, 6.3 and 7.1 give a vector space
isomorphism between the Leibniz chain complex of (sp(Com))sp(K) and the vector
space of graphs, namely ϕ◦φ◦T ∗ . Therefore, it suffices to show that the differential
defined on the graphs is exactly induced by the differential of CL(sp(Com)).
In order to do so, we will consider a graph, and through splittings consider a
representative of this graph in T (sp(Com)). Then, we will explicitly describe the
differential of this representative, and we will give this result in terms of graphs
thanks to the vector space isomorphism. Since the result is exactly the differential
defined on the complex of graphs, it will end the proof.

Consider the integers k1, . . . , kn and define r :=
∑n

i=1 ki . Let G =
(V (G), E(G), αG) be a graph in Gk1,··· ,kn .

First, we construct a representative of G in T (sp(Com)) as S◦φ−1◦ϕ−1(G).
The map ϕ−1 in the proof of proposition 7.1 gives the construction of a diagram
D ∈ (Dr)Σk1

×···Σkn
. Then, to have a representative of D in (Ar)Σk1

×···Σkn
, we
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consider the monomial m := φ−1(D) , see the proof of proposition 6.3. Moreover,
this monomial admits a representative in T (sp(Com)) defined as P := S(m) (see
remark 5.10). This element P is of the form ± p1p2 . . . pk1︸ ︷︷ ︸

k1

⊗ . . .︸︷︷︸
k2

⊗ . . .⊗qi1 . . . qikn︸ ︷︷ ︸
kn

.

Then, we explicitly describe the differential of the representative. Taking
the differential of this element where each pi and each qi appear once in this
order in different factors of the tensor product gives the sum of signed elements of
graduation n − 1 where two factors have merged and one couple in this merged
factor is omitted. Indeed, let us denote

p̃i :=

{
pi if i ≤ r

qi−r si i ≥ r + 1
.

Then,

d(p̃i1 . . . p̃ik1︸ ︷︷ ︸
k1

⊗ . . .⊗ . . . pi2r︸ ︷︷ ︸
kn

) =

n∑

j<k

j=1,k=2

(−1)j p̃i1 . . . p̃ik1︸ ︷︷ ︸
k1

⊗ . . .⊗ {p̃il . . . p̃il+ki︸ ︷︷ ︸
ki

, p̃im . . . p̃im+kj︸ ︷︷ ︸
kj

} ⊗ . . .⊗ . . . pi2r︸ ︷︷ ︸
kn

,

where l =
∑i−1

s=0 ks and m =
∑j−1

s=0 ks . The only way the element of the sum is
non-trivial is that there exists at least a couple ps in the ki th factor of the tensor
product and qs the kj th factor (the case ps in the kj th factor of the tensor product
and qs in the ki th factor does not happen in our construction therefore no sign
will appear from here). As a couple (ps, qs) appears only once it is clear that the
ki and the kj factor will concatenate omitting the couple (ps, qs). The sign that
appears depends on the number j of the factor of sp(Com)⊗n where the element
qi of the couple appears (as the couple appears in this order in the tensor factors).

The result of the differential can be understood in terms of graphs thanks
to the vector space isomorphism ϕ ◦ φ ◦ T ⋆ . The number j is represented as the
j th vertex of the graph. Moreover, the omission of the couple is translated by
the disappearance of the appropriate vertex and the identification of its two edges
giving rise to the necessary changes of vertices which is exactly the contraction of
the graph with this vertex. And so, we can conclude that :

δ(G) =
∑

e=[i,j]∈E(G)

(−1)max(i,j)ǫ(i, j)G/e for all G ∈ G .

(In our construction, the oriented representative that we take is exactly the one
such that every ǫ(i, j) = 1, and therefore max(i, j) = j . )

It is exactly the differential defined on the chain complex of graphs. This
ends the proof.

Example 7.5. We sketch the idea of the proof on an example. Let G be
the graph defined as ({1, 2, 3}, {{1, 2}, {1, 3}, {1, 2}, {2, 3}}) with geometric in-
terpretation as in figure 1. This graph can be lifted into the following diagram
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{{1, 4}, {2, 5}, {3, 7}, {6, 8}} ∈ (D4)Σ3×Σ3×Σ2 which is geometrically interperted as
the diagram in figure 7. This diagram is isomorphic to the monomial y14y27y35y68

in (A4)Σ3×Σ3×Σ2 . It can be lifted as the following monomial in T (sp(Com)) :

P := p1p2p3 ⊗ q1q2p4 ⊗ q3q4

Taking the differential of this element gives the following result:

d(p1p2p3 ⊗ q1q2p4 ⊗ q3q4) = p2p3q2p4 ⊗ q3q4 + p1p3q1p4 ⊗ q3q4

−p1p2p3 ⊗ q1q2q3 − p1p2q4 ⊗ q1q2p4 .

To interpret this result in terms of graphs, we compute ϕ ◦ φ ◦ T ∗ of the result.
By the map T ∗ we obtain the sum of the following monomials in (A3)Σ4×Σ2 ⊕
(A3)Σ3×Σ3 :

2y13y25y46 − 2y14y25y36 ,

= −2y14y25y36

by the symmetric action, then the map φ gives the following diagram in (D3)Σ3×Σ3 :

(−2({1, 4}, {2, 5}, {3, 6})) ,

see figure 13, finally the map ϕ gives the sum of graphs :

−2({1, 2}, {{1, 2}, {1, 2}, {1, 2}})

see figure 5. By example 2.13 we realise that the two calculations of the differential
are identical.

1

2

3

4

5

6

-2

Figure 13: Geometrical interpretation of the diagram φ ◦ T ∗(P )

Proposition 7.6. There exists a vector space isomorphism between the Leibniz
homology of sp(Com) and the chain complex of connected graphs :

HLn(sp(Com)) ∼= T (Hn(K[Gc])) .

Proof. The above proposition ensures that HLn(sp(Com)) ∼= Hn(K[G], δ).
Moreover there is a vector space isomorphism between the tensor module over
the vector space spanned by connected graphs and the vector space spanned by
graphs : HLn(sp(Com)) ∼= Hn(T (K[Gc])). It is well-known, cf. appendix B of
Quillen [18], that the functors T and H commute. This ends the proof.
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8. Third step : explicit homotopies

This step reduces the computation of the homology of the vector space spanned by
connected graphs. As in the Kontsevich case we can reduce the computation of the
homology to the complexes of graphs which have no bivalent vertex. To avoid a
spectral sequence, we show the acyclicity of the quotient complex of the connected
graphs by the polygons and the graphs with no bivalent vertex, by producing an
explicit homotopy. Moreover, with few changes, this homotopy could be used in
the Lie context.

Let K[Gc] be the subcomplex of connected graphs. We denote by K[G3
c ] the

subcomplex of graphs with no bivalent vertex. The subcomplex of graphs with
only bivalent vertices are the polygons and is denoted by K[P ].

Proposition 8.1. The subcomplex of graphs K[Gc/P⊕G3
c
] is acyclic.

Proof. We construct a homotopy h : K[Gc/P⊕G3
c
] → K[Gc/P⊕G3

c
]. Let Lk be

the ladder graph with k bivalent vertices. Let G be a connected graph with n
vertices and with m ladders. We define G+i to be the graph G where the ladder
i with k inner vertices Lk is replaced by Lk+1 such that the added vertex is the
last one and that it is labelled with n+ 1.

h(G) :=
∑

i

(−1)n+1

m
G+i .

We verify that hd+ dh = Id. There are two cases to go through. The first
one is when h and d are adding and contracting edges of the same ladder : see
figure 14.

a1

a1

a1

a1

ak

ak

a1 ak

n

n + 1

ak

ak

ǫ1

n + 1
+

aj−1

aj−1

aj−1

aj+1

aj+1

aj+1

+standardisation

+standardisation

+standardisation

P

(−1)
aj ǫj−1

h

d

h

(−1)n+1

P

(−1)
aj ǫj−1(−1)n

P

(−1)
aj ǫj−1(−1)n+1d

+
a1 ak

Figure 14: Proof of the homotopy from Id to 0.

And therefore dh + hd = Id. The second is when d contractes an edge
which is not part of this ladder. The two actions anti-commute (because the sign
of h depends on the number of vertices which fall by one with the differential) and
therefore dh+ hd = 0 in this case.
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Proposition 8.2. The homology of the subcomplex of graphs with only bivalent
vertices is acyclic :

HL∗(K[P ]) ∼= 0 .

Proof. The complex of the symplectic Lie algebra T (S2(V )) is quasi-isomorphic
to the subcomplex of polygons. By proposition 4.4, S2(V ) is isomorphic to sp(K).
By Pirashvili [16], the Leibniz homology of sp(K) is null. This ends the proof.

Proposition 8.3. There exists a vector space isomorphism such that :

HLn(sp(Com)) ∼= T (H(K[G3
c ])) .

Proof. By proposition 7.6, we need to show that H(K[Gc]) is isomorphic
to H(K[G3

c ]). Moreover K[Gc] is the sum of the subcomplexes K[G3
c ] ⊕ K[P ] ⊕

K[Gc/P⊕G3
c
]. So, the above propositions end the proof.

9. Fourth step : Graded differential Zinbiel-associative bialgebra

We would like to prove that the isomorphism in proposition 8.3 is not only a vector
space isomorphism but a Zinbiel-associative bialgebra isomorphism. In order to
do so, we must endow both homologies with this bialgebra structure.

The Leibniz homology of any Leibniz algebra admits naturally a Zinbiel (the
Leibniz Koszul dual) coalgebra structure. The associative operation is particular
to HL∗(sp(Com)), and it is induced by the sum of the symplectic matrices. Then,
we show that the Zinbiel-associative structure on graphs, defined in definitions 2.4
and 2.11, is induced by the Zinbiel-associative structure on the Leibniz homology
HL∗(sp(Com)), giving rise to the Zinbiel-associative isomorphism :

HL∗(sp(Com)) ∼= H∗(K[G]) .

Moreover, we can state a rigidity theorem, analogous to the Hopf-Borel theorem
for co-commutative and commutative bialgebras, stating that a connected Zinbiel-
associative bialgebra can be reconstructed from its primitives (see appendix).
Therefore, we get the Zinbiel-associative isomorphism :

H∗(G) ∼= T (H∗(Gc)) .

Then, the last step is clear as the subcomplexes we consider (P , G3
c and Gc/P⊕G3

c
)

are Zinbiel-associative subcomplexes. So we have a Zinbiel-associative isomor-
phism :

HL∗(sp(Com)) ∼= H∗(K[G3
c ]) .

9.1. The Zinbiel coalgebra structure on a Leibniz chain complex CL∗(g).

Let g be a Leibniz algebra. In his thesis [15], J.-M. Oudom showed that
the diagonal map g → g× g : x 7→ (x, x) induces a coproduct in the Leibniz chain
complex of g, notably (Tg, ∂). Indeed, the diagonal map induces a differential map
Φ : (Tg, ∂) → (T (g × g), ∂). The Zinbiel coproduct is defined as the projection of
Φ on the first component Tg ⊗ Tg ⊂ T (g × g). Moreover, J.-M. Oudom showed
that this differential map is exactly the co-half shuffle.
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Proposition 9.1 (cf. [15]). Let g be a Leibniz algebra. The co-half shuffle
endows the Leibniz chain complex Tg with a differential Zinbiel coalgebra structure
with :

∆(g1 . . . gn) := g1

∑

p+q=n

∑

i∈Shp,q

gi1 . . . gip ⊗ gip+1 . . . gin ,

where the sum is extended over all (p, q)-shuffles i (i.e. the in multi-indices
i = (i1, . . . , in) the integers 1, . . . , p are ordered such as p + 1, . . . , n). Moreover
this Zinbiel coalgebra structure is preserved on the Leibniz homology.

9.2. The associative algebra structure the Leibniz chain complex CL∗(sp(Com)sp(K)).

To define the multiplication map, we consider the sum of matrices defined
as :

⊕ : sp(Com) × sp(Com) → sp(Com) : (x, y) 7→ E(x) +O(y) ,

where the maps E : sp(Com) → sp(Com) and O : sp(Com) → sp(Com) are
induced by :

E(pi) := p2i, E(qi) := q2i ,

O(pi) := p2i−1, O(qi) := q2i−1 ,

see for example [2]. This maps induces an operation on the chain Leibniz complex,
by considering the injection of the first component T (sp(Com)) ⊗ T (sp(Com)) ⊂
T (sp(Com)× sp(Com)). It can moreover be shown that this map is associative on
the Leibniz chain complex of sp(Com)sp(K) , see the proof of proposition 9.4.

Moreover, the Leibniz chain complex CL∗(sp(Com)sp(K)) and the Leibniz
homology HL∗(sp(Com)sp(K)) admit a structure of Zinbiel-associative bialgebra.
It is proven thanks to the vector space isomorphism with the chain complex of
graphs.

9.3. Zinbiel-associative bialgebra structure on the complex of graphs.
The co-half shuffle endows Cn(G, δ) with a structure of Zinbiel-associative bialge-
bra.

Proposition 9.2. The co-half shuffle defined on the graphs is induced by the
co-half shuffle on the Leibniz complex on sp(Com).

Proof. The proof will be done in two steps. We will first focus on connected
graphs. Let G be a connected graph. This graph can be seen as the inverse image
of an element w1 · · ·wn of sp(Com)⊗n as described in the proof of proposition 7.4
where wi ∈ V ⊗ki for certain ki . First, we will apply the co-half shuffle to this
element and obtain an element of sp(Com)⊗2 . Then, we have to see this element
as a graph once again under the map (φ⊗φ)◦(T ⋆⊗T ⋆) which will first give rise to a
diagram then, taking into account the action of the cartesian product of symmetric
groups leads to the graph. So, we have to determine the non-zero elements rising
from the map T ⋆⊗T ⋆ . It’s elementary to see that the element G⊗1 will rise. It is
the only element. Indeed, suppose T ⋆(w1w2 · · ·wip) 6= 0 and T ⋆(wip+1 · · ·win) 6= 0.
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This induces that w1wi2 · · ·wip ∈ V ⊗2k1 and wip+1 · · ·win ∈ V ⊗2k2 for ki ∈ N.
And moreover, supposes that there exists permutations σ1 ∈ S2k1 and σ2 ∈ S2k2

such that ω⊗k1(wσ(1)wσ1(i2) · · ·wσ1(ip)) = ±1 and ω⊗k2(wσ2(ip+1) · · ·wσ2(in)) = ±1.
Thus there exists a permutation (σ1(1), · · · , σ1(ip), σ2(ip+1), · · · , σ2(in)) ∈ Sn such
that ω⊗k1+k2(σ1(1), · · · , σ1(ip), σ2(ip+1), · · · , σ2(in)) = ±1. And by taking into
account the symmetric group action this gives rise to a non-connected graph. This
implies that the connected and non-connected graphs are isomorphic, which is a
contradiction. Therefore ∆<(G) = G⊗ 1 for connected graphs.

The second part of the proof is done with the same arguments as above,
considering a non-connected graph. Indeed a non-connected graph is the disjoint
union of connected graphs.

To illustrate the proof we consider the following example :

Example 9.3. The graph G = ({1, 2, 3}, {{1, 2}, {1, 2}, {1, 3}, {2, 3}}) consid-
ered in example 2.3, can be lifted as p1p2p3⊗q2p4⊗q1q3q4 in T (sp(Com)). Taking
it’s co-half shuffle gives :

∆≺(p1p2p3 ⊗ q2p4 ⊗ q1q3q4) = p1p2p3 ⊗ q2p4 ⊗ q1q3q4
⊗

1 +

p1p2p3 ⊗ q2p4

⊗
q1q3q4 + p1p2p3 ⊗ q1q3q4

⊗
q2p4 + p1p2p3

⊗
q2p4 ⊗ q1q3q4

And applying (ϕ ◦ φ ◦ T ⋆) ⊗ (ϕ ◦ φ ◦ T ⋆) gives : G⊗ 1 which is exactly ∆≺(G).

The non-connected graph H = H1 · H1 considered in example 2.5 admits
for representative the following polynomial in T (sp(Com)) :

P := p1p2 ⊗ q1q2 ⊗ p3p4 ⊗ q3q4 .

Taking the differential of this element gives the following :

∆≺(p1p2 ⊗ q1q2 ⊗ p3p4 ⊗ q3q4) = p1p2 ⊗ q1q2 ⊗ p3p4 ⊗ q3q4
⊗

1

+p1p2

⊗
q1q2 ⊗ p3p4 ⊗ q3q4 + p1p2 ⊗ q1q2

⊗
p3p4 ⊗ q3q4

+p1p2 ⊗ p3p4

⊗
q1q2 ⊗ q3q4 + p1p2 ⊗ q3q4

⊗
q1q2 ⊗ p3p4

+p1p2 ⊗ q1q2 ⊗ p3p4

⊗
q3q4 + p1p2 ⊗ q1q2 ⊗ q3q4

⊗
p3p4

+p1p2 ⊗ p3p4 ⊗ q3q4
⊗

q1q2 .

To have the result in terms of graphs, we apply (ϕ◦φ◦T ⋆)⊗(ϕ◦φ◦T ⋆) to obtain :

H ⊗ 1 + 2H1 ⊗H1

which is exactly ∆≺(H).

Proposition 9.4. The associative product, ordered disjoint union, on the com-
plex of graphs is induced by the associative structure on the Leibniz chain complex
(T (sp(Com)))sp .



154 Burgunder

Proof. To prove this property, we will show that the ordered disjoint union
is induced by the operation on the Leibniz chain complex. The associativity on
K[G] is clear since the operation is the ordered disjoint union of graphs. The
associativity of the product defined on (T (sp(Com)))sp follows from the fact that
T (sp(Com))sp is isomorphic as vector space to K[G].

We focus into proving that the ordered disjoint union of graphs is induced
by T (sp(Com)) ⊗ T (sp(Com)) → T (sp(Com)). Let G1 and G2 be two graphs.
These graphs admit chord diagram representatives as constructed in the proof of
proposition 7.1. Furthermore, by φ−1 these chord diagrams can be seen as a sum
of monomials in variables yij . Last but not least, these monomials can be lifted up
as a polynomial Fi in T (sp(Com)), for i = 1, 2, by the split S defined in remark
5.10. These two polynomials can be seen as included in T (sp(Com) × sp(Com))
by decorating the variables of F1(p1, q1, . . .) by ′ and those of F2(p1, q1, . . .) by
′′ . Then apply the operation ⊕ to them to obtain the following polynomial
F1(p2, q2, . . . , p2i, q2i, . . .) ⊗ F2(p1, q1, . . . , p2i−1, q2i−1, . . .). Then, by going through
the isomorphism (ϕ ◦ φ ◦ T ⋆) ⊗ (ϕ ◦ φ ◦ T ⋆) we obtain the ordered disjoint union
of the graphs. Indeed, a vertex links variables p and q of same indices, that is to
say it links a pi with a qi . Therefore the shifting we did does not influence the
vertices. Moreover it does not interfer in the decoration of the graph as the second
graph will be decorated with numbers following those from the first graph.

To ease the comprehension of the proof, we consider the following example :

Example 9.5. Let G and H be the graphs of the above example 9.3. The
associative product on these graphs is induced by the associative product on
(T (sp(Com)))sp(K) . Indeed, by example 9.3 the two graphs admit representatives
in (T (sp(Com)))sp(K) . Apply the product

⊕
to these representatives gives the

following :

p2p4p6 ⊗ q4p8 ⊗ q2q6q8 ⊗ p1p3 ⊗ q1q3 ⊗ p5p7 ⊗ q5q7 .

By (ϕ ◦ φ ◦ T ⋆) ⊗ (ϕ ◦ φ ◦ T ⋆) we obtain the result in terms of graphs :

({1, . . . , 7}, {{1, 2}, {1, 2}, {2, 3}, {1, 3}, {4, 5}, {4, 5}, {6, 7}, {6, 7}}) ,

which is exactly G ·H .

Proposition 9.6. The induced product on the graph homology is associative and
it is induced by the associative product on the Leibniz homology of sp(Com)sp(K) .

Proof. First, we show that the operation on the homology of graphs is asso-
ciative. But, it is clear that d ◦µ−µ ◦ (Id⊗d+d⊗ Id) = 0 on the graph complex,
proving the associativity of the induced operation. Then, we show that the in-
duced operation on the Leibniz homology of sp(Com)sp(K) is associative. Remark
that on T (sp(Com)), the following holds :

d ◦ µ− µ ◦ (Id ⊗ d+ d⊗ Id)(v1 . . . vp ⊗ vp+1 . . . vp+q) =
∑

1≤i≤p,p+1≤j≤p+q

v1 . . . {vi, vj} . . . v̂j . . . vp+q
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To prove the assertion, it suffices to remark that T ∗◦(d◦µ−µ◦(Id⊗d+d⊗Id))) =
0 thanks to the vector space isomorphism with the vector space spanned by
graphs.

Proposition 9.7. There is a Zinbiel-associative bialgebra isomorphism between
the Leibniz homology of sp(Com) and the homology of graphs :

HL∗(sp(Com)) ∼= T (HL∗(G
3
c )) .

Proof. First we need to show that a Zinbiel-associative structure on the Leibniz
chain complex passes through homology. This is the case thanks to proposition
12.1 for the coproduct and proposition 9.6 for the product.

To define a Zinbiel-associative bialgebra structure on the Leibniz homology
of sp(Com) it suffices to consider the operation and co-operation induced through
the vector space isomorphism

HL∗(sp(Com)) ∼= HL∗(sp(Com)sp(K)) ,

due to the Koszul trick.

Then, propositions 9.2 and 9.4 produce a Zinbiel-associative bialgebra iso-
morphism :

CL∗(sp(Com)) ∼= C∗(K[G]) .

Then, apply the rigidity theorem 11.7 to the connected Zinbiel-associative
bialgebra C∗K[G] :

C∗(K[G]) ∼= T (Prim K[G]) .

By proposition 2.17 the primitive graphs are the connected graphs. To conclude it
suffices to realise that the subcomplexes considered in the third step are Zinbiel-
associative subcomplexes.

9.4. Proof of the Kontsevich theorem. In this section, we give a short proof
of Kontsevich’s theorem in the flavour of the proof given in the Leibniz context.

The set of graphs that Kontsevich considers is the set of classes of symmetric
graphs quotiented by the signed symmetric action, that we denote G. We denote
Gc the set of connected graphs, and G3

c the set of connected graphs such that
the vertices are of valency at least 3. These graphs are geometrically the same as
those in the Leibniz context, but without the numbering on the vertices.

Kontsevich theorem is stated as follows :

Theorem 9.8. There exists a canonical co-commutative commutative bialgebra
isomorphism :

H(sp(Com) ∼= Λ(H(G3
c)) .

The skeleton of the proof is as follows :

First step, quotient the Chevalley-Eilenberg chain complex by the action
of the reductive algebra sp(K), thanks to the Koszul trick. Then apply the
co-invariant theory to reduce the chain complex to the chain complex of chord
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diagrams (quotiented by the symmetric action). Then, Kontsevich’s idea is to
consider the graphs, to code the quotient of the chord diagrams. The computation
of the homology can be reduced to the computation of the homology of the
connected graphs, which can be moreover reduced thanks to explicit homotopy.

The Chevalley-Eilenberg chain complex of sp(Com) is quasi-isomorphisc to
the Chevalley-Eilenberg chain complex of sp(Com)sp(K) similarly to proposition
4.3:

H(sp(Com)) ∼= H(sp(Com)sp(K)) .

The co-invariant theory and direct computation gives a vector space isomorphism
analogously to proposition 5.9 :

(Λn(sp(Com)))sp(K) =
⊕

k1+···+kn=2r

ki≥2

((Ar)Σk1
×···×Σkn

)Σn
.

Propositions 6.3 and 7.1 still hold. Therefore, Ar is isomorphic to the
vector space spanned by chord diagrams, which quotiented by the symetric action
is isomorphic to the vector space spanned by graphs G . It suffices to quotient the
vector space of graphs G by the symmetric action to conclude the existence of a
vector space isomorphism :

H(sp(Com)) ∼= H(G) . (2)

Any graph in G is a union of connected graphs, and the compatibility to the
differential forces the existence of the following vector space isomorphism :

H(sp(Com)) ∼= Λ(H(Gc)) . (3)

Similarly to proposition 8.1 and 8.2 the homology of the primitives can be reduced
ti the vector space of connected graphs with no bivalent vertices G3

c .

This isomorphism is shown to be a co-commutative commutative bialgebra
isomorphism as follows. The chain complex of sp(Com)sp(K) admits a commu-
tative and co-commutative bialgebra structure on the chain complex of graphs.
The commutative operation on the Chevalley-Eilenberg complex of sp(Com)sp(K)

is induced by the sum of matrices, see section 9. The diagonal map induces
the co-commutative co-operation. The vector space isomorphism C(sp(Com)) ∼=
C(K[G]) induces a structure of commutative co-commutative bialgebra structure
on the chain complex of graphs. Therefore the isomorphism of equation (2) is a
co-commutative commutatve bialgebra isomorphism. Moreover by the Hopf-Borel
theorem, this connected commutative co-commutative bialgebra K[G] is isomor-
phic to the bialgebra Λ(Prim G), where Prim G = Gc . Then, to conclude it suffices
to realise that the subcomplexes considered in the last step, namely the subcom-
plex on polygons, the subcomplex on graphs with at least a bivalent vertex, and
the subcomplex on graphs K[G3

c ] are bialgebra subcomplexes.
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Appendix : Associative-Zinbiel bialgebras [1]

There is a celebrated theorem for classical bialgebras known as the Milnor-Moore
theorem which states that a connected co-commutative bialgebra can be recon-
structed thanks to its primitive part. The goal of this appendix is to give an
analogue of this theorem for connected Zinbiel-associative bialgebras and dually
for connected associative-Zinbiel bialgebras.

10. The Associative-Zinbiel structure theorem

10.1. Zinbiel algebra [12].

Definition 10.1. A Zinbiel algebra is a vector space A endowed with a bilinear
operation ≺: A⊗A→ A verifying the following relation :

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (z ≺ y) , ∀x, y, z ∈ A .

Moreover a Zinbiel algebra is said to be unital if it admits an element 1 such that
for all x ∈ A the following is verified :

{
1 ≺ x = 0
x ≺ 1 = x , ∀x ∈ A ,

(4)

Note that 1 ≺ 1 is not defined.

Remark that the operation ∗ : A × A → A : (x, y) 7−→ x ≺ y + y ≺ x is
associative, commutative and unital.

Definition 10.2. Let A0 be a Zinbiel algebra. This algebra is free over the
vector space V , if it satisfies the following universal property. Any map f : V → A,
where A is any Zinbiel algebra, extends uniquely into a Zinbiel morphism f̃ : A0 →
A. This can be summarised in the commutation of the following diagram :

V
i //

f
  A

A
A

A
A

A
A

A
A0

f̃
��

A .

Definition 10.3. The shuffle algebra is the tensor module T (V ) over the vector
space V endowed with the following operation ⊔⊔ : T (V )⊗T (V ) → T (V ) defined
as :

v1 · · · vp⊔⊔ vp+1 · · · vn :=
∑

i∈Shp,q

vi1 . . . vin ∈ V ⊗n ,
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where the sum is extended to the (p, q)-shuffles i, i.e. the multi-indice i =
(i1, . . . , in) has the property that 1, . . . , p are in this order and so are p+1, . . . , n.

Proposition 10.4. The free Zinbiel algebra over the vector space V , denoted
Zinb(V ), is unique up to isomorphisms and can be identified to (T (V ),≺) where
≺ is the half-shuffle defined as :

v1 · · · vp ≺ vp+1 · · · vn := v1(v2 · · · vp⊔⊔ vp+1 · · · vn) .

10.2. Recall on associative coalgebra. This section is mainly to fix notations.

Definition 10.5. A coassociative coalgebra, is a vector space endowed with a

cooperation ∆ : C
∆
→ C ⊗ C and a co-unit c : C → K which verify the two

following commutative diagrams :

C
∆ //

∆

��

C ⊗ C

Id⊗∆
��

C ⊗ C
∆⊗Id

// C ⊗ C ⊗ C .

C
∼=

yysssssssssss

∆
��

∼=

&&L
LLLLLLLLLL

C ⊗ K C ⊗ C
id⊗c
oo

c⊗id
// K ⊗ C .

Definition 10.6. A coalgebra is said to be connected if it is coaugmented and
if it verifies the following property:

H =
⋃

r≥0 FrH ,
where F0 := K1 ,
and, by induction Fr :=

{
x ∈ H | ∆̄(x) ∈ Fr−1 ⊗ Fr−1

}
,

where, ∆̄(x) = ∆(x) − 1 ⊗ x− x⊗ 1 .
The primitive part of a coalgebra is defined as PrimH := {x ∈ H |∆̄(x) = 0} .
Note that the connectedness only depends on the cooperation and the unit.

Definition 10.7. A connected coalgebra C0 is said to be free over the vector
space V if there exists a map p : C0 → V which satisfies the following universal
property :

any map Φ : C → V , where C is a coaugmented connected coalgebra, such
that Φ(1) = 0, extends uniquely in a coalgebra morphism Φ̃ : C → C0 . This can
be summed up in the following commutative diagram :

C
Φ

!!C
C

C
C

C
C

C
C

Φ̃
��

C0
p

// V .
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Definition 10.8. The tensor module T (V ) over the vector space V can be
endowed with a structure of coalgebra with the cooperation ∆ defined as :

∆(v1 · · · vn) =

n−1∑

p=1

v1 · · · vp ⊗ vp+1 · · · vn + 1 ⊗ v1 · · · vn + v1 · · · vn ⊗ 1 ,

with,
∆(1) = 1 ⊗ 1 ,
∆(v) = v ⊗ 1 + 1 ⊗ v , v ∈ V ,

and the counit c : T (V ) −→ K is the projection on the first factor V .

Proposition 10.9. The tensor coalgebra is the free connected coalgebra up to
isomorphisms.

10.3. The Associative-Zinbiel bialgebra.

Definition 10.10. An associative-Zinbiel bialgebra (As-Zinb) is a vector space
H endowed with a structure of associative counitary coalgebra ∆ : H → H ⊗H ,
c : H → K, a structure of unitary Zinbiel algebra ≺: H ⊗ H → H , u : K → H
such that the following compatibility relation is verified :

∆(x ≺ y) = x1 ≺ y1 ⊗ x2 ∗ y2, ∀x, y ∈ H,

with the following convention (1 ≺ 1) ⊗ (x ∗ y) = 1 ⊗ (x ≺ y). We used the
Sweedler notation : ∆(x) = x1 ⊗ x2 .

Example 10.11. The tensor module T (V ) endowed with the deconcatenation
and the half-shuffle product is an associative-Zinbiel bialgebra.

Theorem 10.12. Let H be an As-Zinb bialgebra over a field K of any charac-
teristic. The following are equivalent :

1. H is connected,

2. H is isomorphic to (Zinb(V ),≺,∆) as a bialgebra.

This theorem can now be seen as a particular case of the structure theorem
for associative-dendriform bialgebras done by M. Ronco in [19]. To do so one must
rephrase her article in terms of generalised bialgebra theory and realise that a
Zinbiel algebra is a kind of commutative Dendriform algebra. Then, one can show
that the primitive structure found in the Associative-Dendriform case crushes to
a vector space structure, [1]. We give in this paper a straightforward proof of the
theorem.

10.4. Proof of the theorem.

Definition 10.13. Let H be a Zinbiel algebra. The convolution of two Zinbiel
algebra morphisms f : H → H and g : H → H are defined by:

f ⋆ g :=≺ ◦(f ⊗ g) ◦ ∆ : H → H .
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Note that this convolution is not associative.

Lemma 10.14. Let H := K ⊕ H̄ be an Zinbiel-associative bialgebra. The map
e : H −→ H is defined :

e := J − J ⋆ J + (J ⋆ J) ⋆ J − · · ·+ (−1)n−1 ⋆nJ + · · · (5)

where J := Id− uc and ⋆nJ := (· · · ((J ⋆ J) ⋆ J) · · · ⋆ J) and satisfies the following
properties :

1. Im e = PrimH ,

2. ∀x, y ∈ H̄ , e(x ≺ y) = 0,

3. e is an idempotent,

4. for H = (Zinb(V )+,≺,∆) defined above, e is the identity on V and zero
on the other components.

Proof. Note that e = Id − µ ◦ ∆≺ . The first assertion is proved by induction
on the degree of x ∈ FrH̄ . The second assertion is proven by the bialgebra
compatibility relation. The third assertion is obtained by direct computation
taking into account the second assertion. The last assertion is done by direct
computation with the second assertion.

Definition 10.15. Let PBTn define the set of planar binary rooted trees with
n leaves. We define the operations in the free magmatic algebra Mag(V ) :=
K ⊕n>0 K[PBTn] ⊗ V ⊗n , for all T ∈Mag(V ),

T ·n := (T · (T · · · (T · (T · T ))))
·nT := ((((T · T ) · T ) · · · ) · T )

We define the completion of the magmatic algebra Mag(K)∧ as Mag(K)∧ =
∏

n≥0 K[PBTn],
where we denote the first generator | by t. This allows to define formal series in
Mag(K)∧ .

Proposition 10.16. In Mag(K)∧ , the formal series

g(t) = t− ·2t+ ·3t+ · · ·+ (−1)n+1 ·nt+ · · ·

f(t) = t+ t·2+ t·3+ · · ·+ t·n+ · · · ,

are inverse for the composition.

Proof. The proof is done by induction. Direct calculation shows that up to
rank 1 the property is verified. Suppose that the property is verified up to rank



Burgunder 161

n, then :

(f ◦ g(t))n+1 =
∑

i1+···+iq=n+1

(−1)n−q(· · · ((ti1 · ti2) · ti3) · · · · · tiq)

=
∑

iq

(−1)n−q
( ∑

i1+···+iq−1=n+1−iq

(−1)n−q(· · · ((ti1 · ti2) · · · · · tiq−1)

︸ ︷︷ ︸
by induction=0

)
· tiq)

We verify that the right inverse is a left inverse too, as in the associative context :

f−1 = f−1 ◦ (f ◦ g) = (f−1 ◦ f) ◦ g = g .

Therefore, we proved f ◦ g = Id and g ◦ f = Id .

Proof. [Proof of theorem 10.12] We denote V := PrimH . We define the map

G : H −→ Zinb(V ) : x 7→ J(x) +
∑

(−1)n−1⋆nJ(x) ,

where, ⋆nJ := (((J ⋆ J) ⋆ · · · ⋆ J) ⋆ J) and the map

F : Zinb(V ) −→ H : x 7→ J(x) +
∑

J⋆n(x) ,

where, J⋆n := (J ⋆ (J ⋆ (· · · ⋆ (J ⋆ J)))). Moreover, we define the two formal series
in Mag(K)∧ :

g(t) = t− ·2t+ ·3t+ · · · + (−1)n+1 ·nt+ · · ·

f(t) = t+ t2 + t · t2 + · · ·+ (t · (t · (· · · (t · t2)))) + · · ·

= t+ t·2+ t·3+ · · ·+ t·n+ · · · ,

which are inverse for the composition by proposition 10.16. We apply these series
on HomK(H,H) sending 1 on 0 using ⋆ as multiplication, thanks to the following
map :

Mag(K)∧ −→ HomK(H,H)
t 7→ J

φ(t) =
∑
ant

·n 7→ φ⋆(J) = Φ(x) =
∑
anJ

⋆n(x)
ψ(t) =

∑
bn

·nt 7→ ψ⋆(J) = Ψ(x) =
∑
bn

⋆nJ(x)
φ ◦ ψ(t) 7→ (φ ◦ ψ)⋆(J) = Φ ◦ Ψ(x) = φ⋆(J) ◦ ψ⋆(J)

We obtain e = g⋆J and

F ◦G = f ⋆ ◦ g⋆(J) = (f ◦ g)⋆(J) = Id⋆(J) = J ,

G ◦ F = g⋆ ◦ f ⋆(J) = (g ◦ f)⋆(J) = Id⋆(J) = J .

This ends the proof as J = Id on H̄ .
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11. The Zinbiel-Associative structure theorem

This section is just a dualisation of the above section.

Definition 11.1. A Zinbiel coalgebra is a vector space C endowed with a co-
operation ∆≺ : C → C ⊗ C such that :

(∆≺ ⊗ Id) ◦ ∆≺ = (Id ⊗ ∆≺) ◦ ∆≺ + (Id ⊗ τ∆≺) ◦ ∆≺ ,

where τ : C ⊗ C → C ⊗ C is the map which interchanges the two factors:
τ(x⊗ y) = y ⊗ x.

A Zinbiel coalgebra is said to be counital if it admits a linear map c : C → K

such that : {
(c⊗ Id) ◦ ∆≺ = 0 ,
(Id ⊗ c) ◦ ∆≺ = Id .

It is to be noted that (c⊗ c) ◦∆≺ is not defined. This notion is dual to the notion
of Zinbiel algebra (originally called dual Leibniz algebra in [12])

Remark 11.2. The co-operation ∆ := τ∆≺ +∆≺ : C → C⊗C is coassociative
co-commutative and counital.

Definition 11.3. A connected coalgebra H = K ⊕ H̄ is a coalgebra verifying
the following property :

H =
⋃

r≥0 FrH ,
where F0 := K1 ,

and by induction Fr :=
{
x ∈ H | ∆≺(x) ∈ Fr−1 ⊗ Fr−1

}
.

where ∆≺(x) = ∆≺(x) − x⊗ 1 .

Example 11.4. A co-shuffle coproduct can be defined on the tensor module
T (V ) over a vector space V as follows :

⊔⊔⋆ (v1 · · · vpvp+1 · · · vn) :=
∑

p+q=n

∑

i∈Shp,q

vi1 . . . vip ⊗ vip+1 . . . vin ∈ V ⊗n ,

where the sum is extended over all (p, q)-shuffles i (i.e. in the multi-index i =
(i1, . . . , in) the integers 1, . . . , p are ordered and so are p+ 1, . . . , n).

The tensor module T (V ) endowed with the co-half shuffle ∆≺ := Id⊗⊔⊔⋆

is the cofree Zinbiel coalgebra.

Definition 11.5. A Zinbiel-associative bialgebra H = (H, µ,∆≺) is a vector
space H = H̄ ⊕ K 1 endowed with a co-unital Zinbiel co-operation ∆≺ and an
associative operation µ verifying the following compatibility relation :

∆≺ ◦ µ = (µ⊗ µ) ◦ (Id ⊗ τ ⊗ Id) ◦ (∆≺ ⊗ ∆) ,

Example 11.6. The tensor module endowed with the concatenation product ·
and the co-half shuffle ∆≺ is a Zinbiel-associative bialgebra.
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Theorem 11.7 (cf. [1]). Let H be a Zinbiel-associative bialgebra over the field
K without any assumption on its characteristic. The following are equivalent :

1. H is connected,

2. H is isomorphic to (T (V ), ·,∆≺).

12. Leibniz homology and the Zinbiel coalgebra structure [11]

Let V be a vector space. Let ∆≺ denote the co-half shuffle defined on the tensor
module T (V ).

Proposition 12.1. Let ∆p,q
≺ denote the projection of ∆≺ on the vector space

V ⊗p ⊗ V ⊗q . Let dn be the Leibniz differential on V ⊗n . Then the following holds :

∆p,q
≺ ◦ dp+q+1 = (dp+1 ⊗ Id) ◦ ∆p+1,q

≺ + (Id ⊗ dq+1) ◦ ∆p,q+1
≺ .

The proof is done by dualizing the proof of J.-L. Loday in [11].

Proof. First, we shall compute the number of terms appearing on each side of
the equation. On the right hand side there are exactly :

(
p+ q − 1

p− 1

)
(p+ q)(p+ q + 1)

2
=

(p+ q + 1)!

2(p− 1)!q!

terms. On the left hand side there are :

p(p+ 1)

2

(
p+ q

q

)
+
q(q + 1)

2

(
p+ q

p− 1

)
=

(p+ q + 1)!

2(p− 1)!q!

terms. The number of terms appearing in each parts of the equation coincide.
It suffices therefore to check that any term on the left side belongs to the set of
elements appearing in the right hand side.

To ease the proof we introduce the following operator δj
i : V ⊗n → V ⊗n−1

for 1 ≤ i < j ≤ n is defined by :

δj
i (x1 . . . xn) := x1 ⊗ . . .⊗ [xi, xj ] ⊗ . . .⊗ xn ,

so that dn =
∑

1≤i<j≤n(−1)jδj
i .

There are two cases to be considered. Let σ⋆ be a (p, q) co-shuffle. Consider
the element (Id ⊗ δl

k) ◦ (Id ⊗ σ⋆) where 1 ≤ k < l ≤ p. This operator is part of

∆p,q
≺ ◦ dp+q+1 . Indeed, (Id ⊗ δl

k) ◦ (Id ⊗ σ⋆) = (Id ⊗ ω⋆) ◦ δ
σ⋆(l)
σ⋆(k) for a certain

(p− 1, q)-coshuffle ω .

The other case is treated analogously, and this ends the proof.

Corollary 12.2. Let (H, d) be a graded connected differential Zinbiel-associative
bialgebra. Then,

H∗(H, d) ∼= T (H∗(PrimH, d)) .

The primitive part of the homology of a Zinbiel-associative bialgebra is the
tensor module of the homology of the primitive part of the Zinbiel-associative
bialgebra.
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Proof. By the above theorem 11.7, we can restrict ourselves to prove the
following :

H∗(T (PrimH, d)) = T (H∗(PrimH, d)) .

And it is well known that the two functors T and H∗ commute, see [18] appendix
B.
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