
Journal of Lie Theory
Volume 20 (2010) 49–63
c© 2010 Heldermann Verlag

On the Index of the Quotient of a Borel Subalgebra by an
ad-Nilpotent Ideal
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Abstract. In this paper, we give upper bounds for the index of the quotient
of a Borel subalgebra of a simple Lie algebra or its nilpotent radical by an ad-
nilpotent ideal. For the nilpotent radical quotient, our bound is a generalization
of the formula for the index given by Panov in the type A case. In general, this
bound is not exact. Using results of Panov [On the index of certain nilpotent Lie
algebras, J. of Math. Sci. 161 (2009), 122–129], we show that the upper bound
for the Borel quotient is exact in the type A case, and we conjecture that it is
exact in general.
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1. Introduction

Let k be an algebraically closed field of characteristic zero. Recall that the index
of a finite-dimensional Lie algebra a over k is the integer

χ(a) = min
f∈a∗

dim af

where for f ∈ a∗ , we denote by af = {X ∈ a; f([X, Y ]) = 0 for all Y ∈ a} , the
annihilator of f for the coadjoint representation of a . It is well-known that when
a is the Lie algebra of an algebraic group A , χ(a) is the transcendence degree of
the field of A-invariant rational functions on a∗ .

There are quite a lot of recent works on the computation of the index of
certain classes of Lie subalgebras of a semisimple Lie algebra: parabolic subalgebras
and related subalgebras ([2], [4], [8], [11], [6]), centralizers of elements and related
subalgebras ([9], [1], [13], [5], [3]).

Let g be a simple finite-dimensional Lie algebra defined over k and b

a Borel subalgebra of g . Let h be a Cartan subalgebra of g contained in b ,
∆ the associated root system, ∆+ the set of positive roots relative to b and
Π = {α1, . . . , α`} the corresponding set of simple roots. For each α ∈ ∆, let gα
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be the root subspace of g relative to α . Denote by n = g∆+
the nilpotent radical

of b where for a subset P of ∆+ , we set

gP =
⊕
α∈P

gα.

An ideal i of b is ad-nilpotent if and only if for all x ∈ i , adbx is nilpotent.
Since any ideal of b is h-stable, we deduce easily that an ideal is ad-nilpotent if
and only if it is nilpotent, and there exists a subset Φ ⊂ ∆+ such that i = gΦ .
We set qΦ = b/i and mΦ = n/i .

In [7], Panov determined the index of mΦ , when g is simple of type A .
His results are very explicit, and the index is completely determined by ∆+ \ Φ
in a combinatorial way. A similar consideration of roots was used for the index of
seaweed subalgebras in [11]. In this paper, we generalize these root combinatorial
approaches to give upper bounds for the index of qΦ and mΦ in all types. Our
upper bound for mΦ is not exact when g is not of type A . However, using the
results of Panov for mΦ , we prove that our upper bound for qΦ is exact when g is
of type A , and we have not found so far any counter-examples in the other types.
We give also a short discussion on the existence of stable linear forms.

Our work is partly motivated by some work in progress of P. Damianou, H.
Sabourin and P. Vanhaecke. Let i be an ad-nilpotent ideal of b . They define a
Poisson structure on (b/i)∗ whose Poisson rank L is equal to the dimension of b/i
minus the index of b/i . Their problem is to construct an integrable system, that
is to say a set of dim(b/i)∗ − L/2 independent functions in involution. In view of
the number of equations required, the calculation of the index of b/i is involved
in this problem.

We shall recall a more general definition of the index which is used in the
paper. Let a be the Lie algebra of an algebraic group A and V a rational A-
module of finite dimension. The index of V is the integer

χ(a, V ) = dim V −max
h∈V ∗

dim a.h = dim V −max
h∈V ∗

codima ah

= tr degk(k(V ∗)A)

where for f ∈ V ∗ , af = {X ∈ a; X.f = 0} and a.f = {X.f ; X ∈ a} . When
f ∈ V ∗ is such that dim V − dim a.f = χ(a, V ), we say that f is regular. The set
of regular elements of V ∗ is a non-empty Zariski-open subset.

2. H-sequences

In this section, we introduce the combinatorial tools used to describe the upper
bounds for the index of the quotients. This is a generalization of the “cascade”
construction of Kostant (see for example [11, 12]) and the construction of Panov
in type A in [7].

Recall the following standard partial order on ∆+ . For α, β ∈ ∆+ , we have
α 6 β if and only if β − α is a sum of positive roots. Let E ⊂ ∆+ and γ ∈ E .
We set:

H(E, γ) = {α ∈ E; γ − α ∈ E ∪ {0}}.
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Definition 2.1. Let E ⊂ ∆+ and θ1 ∈ E . We say that (θ1) is an H-sequence
of length 1 in E if E = H(E, θ1).

By induction, for θ1, θ2, . . . , θr ∈ E , we say that (θ1, θ2, . . . , θr) is an H-
sequence of length r in E if and only if:

(i) (θ2, θ3, . . . , θr) is an H-sequence of length r − 1 in E \H(E, θ1),

(ii) θ1 is a maximal element for 6 in E .

Let (θ1, θ2, . . . , θr) be an H-sequence of length r in E . Set:

E1 = E \H(E, θ1) , Γ1 = H(E, θ1).

For i = 1, . . . , r − 1, we set

Ei+1 = Ei \H(Ei, θi+1) , Γi+1 = H(Ei, θi+1).

It is clear from the definition that E is the disjoint union of Γ1, . . . , Γr , and we
have Ei = Ei+1 ∪ Γi+1 for i = 0, . . . , r − 1, with the convention that E0 = E .

Let h be an H-sequence. We denote by `(h) its length, D(h) the vector
space in h∗ spanned by the elements in h , and d(h) = dim D(h).

Example 2.2. (i) Let E = ∆+ . We recover (an ordered) Kostant’s cascade
construction of pairwise strongly orthogonal roots in ∆+ .

(ii) Let g be of type A6 . Using the numbering of simple roots in [12], set
αi,j = αi + · · ·+ αj . In this notation, we have, for 1 6 i 6 j 6 6:

H(∆+, αi,j) = {αi,k; i 6 k 6 j} ∪ {αk,j; i 6 k 6 j}.

Take Φ = {α ∈ ∆+; α > α1,4 or α > α2,6} , and E = ∆+ \ Φ. Then α1,3 is
a maximal element in E , and h = (α1,3, α2,5, α3,6, α4,6, α4,4) is an H-sequence of
length 5 in E , where

Γ1 = {α1,3, α1,1, α2,3, α1,2, α3,3}, Γ4 = {α4,6, α4,5, α6,6},
Γ2 = {α2,5, α2,2, α3,5, α2,4, α5,5}, Γ5 = {α4,4},
Γ3 = {α3,6, α3,4, α5,6}.

Let us illustrate the construction of H-sequences via diagram filling in this
type A case. We display the set of positive roots into the following diagram:

α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,2 α2,3 α2,4 α2,5 α2,6

α3,3 α3,4 α3,5 α3,6

α4,4 α4,5 α4,6

α5,5 α5,6

α6,6

So the box in the i-th row and the j -th column corresponds to the positive root
αi,j for 1 6 i 6 j 6 6. Observe that two roots are comparable if and only if
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they are in the same row or in the same column. Further, the roots are increasing
from left to right, and decreasing from top to bottom with respect to the standard
partial order on ∆+ .

To construct an H-sequence in E , we start with the same diagram but
unfilled. We fill the boxes corresponding to Φ by the symbol ? . Denote this new
diagram by T (see the chain of diagrams below).

Now, maximal elements in E correspond to unfilled north-east corner boxes
of T . Pick a maximal element θ1 in E , and fill the corresponding box B1 by the
symbol ¶. Then the elements of Γ1 \ {θ1} correspond to certain unfilled boxes on
the left or below the box B1 . We fill these boxes by 1. Denote the new diagram
T1 . We start again with T1 , E1 and symbols · and 2 to obtain T2 . We iterate
this process until the diagram is completely filled. The sequence of starred boxes
in the final diagram gives an H-sequence.

For the construction of the H-sequence h above, the successive diagrams
are as follows:

? ? ?
?

−→

1 1 ¶ ? ? ?
1 ?
1

−→

1 1 ¶ ? ? ?
2 1 2 · ?

1 2

2

−→

1 1 ¶ ? ? ?
2 1 2 · ?

1 3 2 ¸

2 3
−→

1 1 ¶ ? ? ?
2 1 2 · ?

1 3 2 ¸
4 ¹
2 3

4

−→

1 1 ¶ ? ? ?
2 1 2 · ?

1 3 2 ¸
º 4 ¹

2 3
4

With another choice of maximal elements, we obtain another H-sequence
h′ = (α2,5, α3,6, α4,4, α6,6, α1,3, α1,2, α1,1)

which is of length 7. The final filled diagram corresponding to h′ is:

¼ » º ? ? ?
1 1 1 ¶ ?

2 2 1 ·
¸ 1 2

1 2
¹

Observe that d(h) = 5 and d(h′) = 6.

Lemma 2.3. Let E ⊂ ∆+ and h = (θ1, . . . , θr) be an H-sequence of length r
in E . Let i, j, k ∈ {1, . . . , r}.
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(i) Let α ∈ Γi and β ∈ Γj be such that α + β = θk . Then k > min(i, j).

(ii) There do not exist i, j, k such that θi + θj = θk .

Proof. (i) If k < min(i, j), then α, β ∈ Ek . It follows that α, β ∈ Γk and
k = j = i , which contradicts the hypothesis.

(ii) Assume that there exist i, j, k such that θi +θj = θk . Then θk > θi and
θk > θj and therefore by construction k < min(i, j), which contradicts the first
point.

3. Upper bounds for the index

We give in this section upper bounds for the index of the quotients. The proof
follows closely the one for the index of seaweed Lie algebras in [11] even though
we do not have the nice properties on the roots from the “cascade construction”.

Recall that if a is a finite-dimensional Lie algebra over k and f ∈ a∗ , we
can define an alternating bilinear form Φf on a by setting

Φf (X, Y ) = f([X, Y ]),

for X, Y ∈ a . Then af = {X ∈ a; Φf (X, Y ) = 0, for all Y ∈ a} is the kernel of
Φf . Therefore we have

χ(a) = min{corank Φf ; f ∈ a∗}.

Let {H1, . . . , H`} be a basis of h . For α ∈ ∆, we denote by Xα a non-zero
element of gα . Then {Hi; 1 6 i 6 `} ∪ {Xα; α ∈ ∆} is a basis of g and we shall
denote by {H∗

i ; 1 6 i 6 `} ∪ {X∗
α; α ∈ ∆} the corresponding dual basis.

Let Φ be a subset of ∆+ such that i = gΦ is an ad-nilpotent ideal of b .
Suppose that h = (θ1, . . . , θs) is an H-sequence of length s of E = ∆+ \ Φ. We
have the following h-module isomorphisms:

qΦ ' h⊕ g∆+\Φ , mΦ ' g∆+\Φ.

Let a = (a1, . . . , as) be an element of (k∗)s . Identifying q∗Φ with h∗ ⊕∑
α∈∆+\Φ

kX∗
α , we define the following element of q∗Φ :

fa =
s∑

i=1

aiX
∗
θi
.

We fix a total order < on ∆+ compatible with the partial order 6 .

For i ∈ {1, . . . , s} , set

Gi = {(α, β) ∈ Γi × Γi; α + β = θi and α < β} , ti = ]Gi ,

and

G =
s⋃

i=1

Gi , t = ]G.
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Denote by Z the set of pairs (α, β) of E2 such that α < β and there exists
k ∈ {1, . . . , s} satisfying α + β = θk .

For z = (α, β) ∈ Z , we set

vz = X∗
α ∧X∗

β ∈
∧2

q∗Φ.

Identifying Φfa with an element of
∧2

q∗Φ , we have

Φfa = Ψfa + Θfa

where

Θfa =
s∑

i=1

Ki ∧X∗
θi

, Ψfa =
∑
z∈Z

λzvz ,

with Ki ∈ D(h) for i = 1, . . . , s and λz ∈ k for all z ∈ Z .

If z = (α, β) ∈ Z , then Θfa(Xα, Xβ) = 0. Moreover, we have [Xα, Xβ] =
µzXθi

, for some i ∈ {1, . . . , s} and a non-zero scalar µz . Consequently,

λz = Φfa(Xα, Xβ) = fa([Xα, Xβ]) = µzai. (1)

Thus λz is non-zero.

Lemma 3.1. In the above notations:

(i) qfa
Φ contains a commutative subalgebra of qΦ , consisting of semi-simple ele-

ments, of dimension `− d(h).

(ii) We have
∧d(h) Θfa 6= 0 and

∧d(h)+1 Θfa = 0.

(iii) There exists a non-empty open subset U of (k∗)s such that we have
∧t Ψfa 6=

0 and
∧d(h)+t Φfa 6= 0 whenever a ∈ U .

Proof. The proof is similar to the one of the lemme in [11, §3.9].

(i) For simplicity, we write q = qΦ . Let t = {x ∈ h; θi(x) = 0 for i =
1, . . . , s} be the annihilator of D(h) in h . Then:

dim t = dim h− dim D(h) = `− d(h).

We also have that [t, q] ⊂
⊕

α∈E\{θ1,...,θs}

gα . It follows that t is contained in qfa , and

therefore, we obtain the result.

(ii) Set r = d(h). Let I = {i1, . . . , ir} ⊂ {1, . . . , s} be such that
(θi1 , . . . , θir) is a basis of D(h) and complete it to a basis B′ = (β1, . . . , β`) of
h∗ such that βk = θik for k = 1, . . . , r . Denote by B = (h1, . . . , h`) the basis of h

dual to B′ . Then we have,

fa([hk, Xθj
]) =

{
aik if j = ik,
0 otherwise.
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We deduce from this that

Θfa =
∑
i∈I

aiθi ∧X∗
θi

+
∑
j 6∈I

Kj ∧X∗
θj

,

where Kj ∈ D(h). The result follows easily because ]I = d(h).

(iii) If z, z′ ∈ Z , we have vz ∧ vz′ = vz′ ∧ vz and vz ∧ vz = 0. Let z1, . . . , zn

be the elements of Z such that z1, . . . , zt are the elements of G . For simplicity,
let us write λivi for λzi

vzi
and µi for µzi

. Consequently:∧t
Ψfa = t!

∑
16i1<···<it6n

λi1 · · ·λitvi1 ∧ · · · ∧ vit .

In the previous sum, the coefficient of v1 ∧ · · · ∧ vt is by (1)

s∏
i=1

ati
i

( ∏
z∈G

µz

)
.

Now assume that vi1 ∧ · · · ∧ vit = λv1 ∧ · · · ∧ vt , with λ ∈ k∗ , where
i1 < · · · < it and (i1, . . . , it) 6= (1, . . . , t).

If z = (α, β) ∈ Z , we denote by z̃ = {α, β} the underlying set of z . Then
the set S = z̃1 ∪ · · · ∪ z̃t is the disjoint union of the sets z̃ik for 1 6 k 6 t . It
follows that if zik /∈ G , then by Lemma 2.3 there exist i, j ∈ {1, . . . , s} such that
i 6= j and zik = (α, β) where (α, β) ∈ (Γi \ {θi})× (Γj \ {θj}).

Let I = {k; zik 6∈ G} . Let i0 be minimal among the elements j ∈ {1, . . . , s}
satisfying:

(Γj \ {θj}) ∩

(⋃
k∈I

z̃ik

)
6= ∅.

Then there exist α ∈ Γi0 , k ∈ I , and β ∈ ∆+ such that z̃ik = {α, β} . By our
choice of i0 and since zik 6∈ G , there exist j > i0 and l ∈ {1, . . . , s} such that
β ∈ Γj and α + β = θl . Then, by Lemma 2.3, we have l > min(i0, j) = i0 . It
follows that λzik

= µzik
al , where l 6= i0 .

We deduce that the coefficient of vi1 ∧ · · · ∧ vit in the sum giving
∧t Ψfa is

of the form

µi1 · · ·µit

s∏
i=1

ami
i ,

with mi0 < ti0 .

It is now clear that there exists a non-empty open subset U of (k∗)s

satisfying
∧t Ψfa 6= 0 if a ∈ U .

Finally, we have∧r+t
Φfa =

r+t∑
k=0

(
r + t

k

)(∧k
Ψfa

)
∧
(∧r+t−k

Θfa

)
.

Set u =
s∑

i=1

kXθi
. Since

∧j Θfa ∈ (
∧jD(h)) ∧ (

∧j
u∗), to show that∧r+t Φfa 6= 0, it suffices to prove that (

∧t Ψfa) ∧ (
∧r Θfa) 6= 0.
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If a ∈ U , then we deduce from the preceding paragraphes that∧t
Ψfa = λv1 ∧ · · · ∧ vt + w,

where λ ∈ k∗ and w is a linear combination of elements of the form vzi1
∧· · ·∧vzit

,

with z̃i1 ∪ · · · ∪ z̃it 6= S . It is therefore clear that (
∧t Ψfa) ∧ (

∧r Θfa) 6= 0 if
a ∈ U .

Theorem 3.2. Let Φ be a subset of ∆+ such that gΦ is an ad-nilpotent ideal
of g. Denote by H the set of H-sequences of ∆+ \ Φ. Then, we have

χ(qΦ) 6 min{` + `(h)− 2d(h);h ∈ H},
χ(mΦ) 6 min{`(h);h ∈ H}.

Proof. Let h ∈ H with `(h) = s and t as defined in the beginning of this
section. By definition, we have

dim qΦ = dim h + `(h) + 2t,
dim mΦ = `(h) + 2t.

Let U be a non-empty open subset of (k∗)s satisfying part (iii) of Lemma 3.1. If

a ∈ U , then the fact that
∧d(h)+t Φfa 6= 0 implies that rk(Φfa) > 2(d(h) + t).

Thus

dim qfa
Φ 6 dim qΦ − 2(d(h) + t).

Hence

dim qfa
Φ 6 dim h + `(h)− 2d(h).

In the same manner, if a ∈ U , then the fact that
∧t Ψfa 6= 0 implies that

rk(Ψfa) > 2t . Thus

dim mfa
Φ 6 dim mΦ − 2t = `(h).

So we are done.

For an H-sequence h , we define

c(h) = ` + `(h)− 2d(h).

Proposition 3.3. Let us keep the notations of Theorem 3.2. If h ∈ H verifies
c(h) ∈ {0, 1}, then χ(qΦ) = c(h).

Proof. The case c(h) = 0 is clear by Theorem 3.2. So let us suppose that
c(h) = 1.

We have dim qΦ − c(h) = 2(d(h) + t). Since dim qΦ − χ(qΦ) is an even
integer (it is the rank of an alternating bilinear form on qΦ ), we deduce that c(h)
and χ(qΦ) are of the same parity. So χ(qΦ) = 1.
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4. Type A

Let us assume in this section that g is of type A` . We shall show that the upper
bound for the index of qΦ is exact in this special case.

We fix a subset Φ of ∆+ such that i = gΦ is an ad-nilpotent ideal of
g . As in example 2.2, we use the numbering of simple roots in [12], and we set
αi,j = αi + · · ·+ αj when i 6 j .

We fix the following total order ≺ on ∆+ compatible with the partial order
6 :

α1,` � α1,`−1 � · · · � α1,2 � α1,1 � α2,` � α2,`−1 � · · · � α`−1,` � α`,`.

It is clear that there is a unique H-sequence h = (θ1, . . . , θs) of E = ∆+ \ Φ,
satisfying θ1 � θ2 � · · · � θs . This H-sequence is considered by Panov in [7], and
we shall call this H-sequence the Panov H-sequence of E .

Using the notation of section 2, for j = 1, . . . , s , set:

nj =
⊕

α∈Ej∪Φ

gα , mj = nj/i.

In [7], Panov proved that for j = 1, . . . , s , nj and mj are Lie subalgebras
of n and n/i respectively. Consider the localization S(mj−1)Xθj

of the algebra

S(mj−1) with respect to the multiplicative subset generated by Xθj
. He defined

an embedding of Poisson algebras Ψj−1 : S(mj) → S(mj−1)Xθj
. Moreover, one

observes directly from the definition of Ψj−1 that it is h-equivariant.

Extending the Ψj with the appropriate localizations, we set

f1 = Xθ1 , fj = Ψ0 ◦ · · · ◦Ψj−2(Xθj
) for 2 6 j 6 s.

Panov proved that f1, . . . , fs are algebraically independent elements of
k(m∗

Φ)mΦ . More precisely, we have k(m∗
Φ)mΦ = k(f1, . . . , fs), and hence χ(mΦ) = s .

Furthermore, using the fact that the embeddings Ψj−1 are h-equivariant, the
element fj is of weight θj for j = 1, . . . , s .

Let I ⊂ {1, . . . , s} be such that {θi; i ∈ I} is a basis of D(h). For
j ∈ {1, . . . , s} \ I , we have

λjθj =
∑
i∈I

λiθi

where λi ∈ Z for i ∈ I and λj ∈ Z∗ .

Set

gj =

(∏
i∈I

fλi
i

)
f
−λj

j ∈ k(m∗
Φ)mΦ .

By construction, the elements gj are of weight zero. Hence gj ∈ k(m∗
Φ)qΦ . Since

the elements f1, . . . , fs are algebraically independent, it follows that

χ(qΦ, mΦ) = tr degk(k(m∗
Φ)qΦ) > `(h)− d(h). (2)
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Theorem 4.1. Let h = (θ1, . . . , θs) be the Panov H-sequence of E . There exists
a non-empty open subset U of (k∗)s such that dim qfa

Φ = c(h) whenever a ∈ U .
Moreover, we have

χ(qΦ, mΦ) = `(h)− d(h).

Proof. Let U be a non-empty open subset of (k∗)s satisfying part (iii) of
Lemma 3.1. Set r = d(h). Let I = {i1, . . . , ir} ⊂ {1, . . . , s} be such that
(θi1 , . . . , θir) is a basis of D(h) and complete to a basis B′ = (β1, . . . , β`) of h∗

such that βk = θik for k = 1, . . . , r . Denote by B = (h1, . . . , h`) the basis of h

dual to B′ .

Let m = dim mΦ and C be a basis of mΦ . Then the matrix of Φfa in the
basis B′ ∪ C is

M =

(
0`,` A
−tA B

)
,

where A is an element of rank d(h) in the set of ` ×m matrices M`,m(k), and
B ∈Mm,m(k) the set of m×m matrices. Set

M ′ =

(
A
B

)
.

Then by (2), we have

dim mΦ − rk(M ′) > χ(qΦ, mΦ) > `(h)− d(h). (3)

It follows that
rk(M ′) 6 dim mΦ − `(h) + d(h) , (4)

and since rk(M) 6 rk(A) + rk(M ′), we deduce that

rk(M) 6 dim mΦ − `(h) + 2d(h). (5)

Hence,
dim qfa

Φ = dim qΦ − rk(M) > c(h).

It follows by Theorem 3.2 that dim qfa
Φ = c(h) and we have equalities in (3) and (4),

(5). Consequently rk(M ′) = dim mΦ−`(h)+d(h) and χ(qΦ, mΦ) = `(h)−d(h).

Theorem 4.2. Let h = (θ1, . . . , θs) be the Panov H-sequence of E . Then we
have χ(qΦ) = ` + `(h)− 2d(h).

Proof. Let U be a non-empty open subset of (k∗)s satisfying part (iii) of
Lemma 3.1. Let S be the subset of m∗

Φ consisting of elements of the form

fλ =
s∑

i=1

λiX
∗
θi

for λ = (λ1, . . . , λs) ∈ ks . Then Ω = {fa; a ∈ U} is an open subset of S .

Let M be the algebraic adjoint group of mΦ . Consider the elements
z1, . . . , zs of k[m∗

Φ]M constructed by Panov in [7] such that k(m∗
Φ)M = k(z1, . . . , zs),

and
zi = Xθi

P + R, (6)
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where P is some product of powers of z1, . . . , zi−1 and R is a polynomial in Xα

for α � θi .

For i = 1, . . . , s , denote by Ui = {f ∈ q∗Φ; zi(f) 6= 0} the standard open
subset of q∗Φ associated to zi . By (6), z1 = Xθ1 so we clearly have U1 ∩ Ω 6= ∅ .
Next, for i > 0, we have

zi+1(fλ) = λi+1P (fλ) + R(fλ).

By the properties of P and R from the preceding paragraph, P depends only on
z1, . . . , zi , and R(fλ) depends only on λ1, . . . , λi . By induction, we obtain

Ω ∩

(
i+1⋂
j=1

Uj

)
6= ∅.

Hence Ω′ = Ω ∩

(
s⋂

i=1

Ui

)
is a non-empty open subset of Ω.

Consider the map

Ψ : M × Ω′ → m∗
Φ

(m, f) 7→ m.f

Assume that fλ and fµ are two elements of Ω′ which are in the same
M -orbit. Then we have zi(fλ) = zi(fµ) for i = 1, . . . , s . In particular, we have
z1(fλ) = z1(fµ) so λ1 = µ1 .

Let us proceed by induction. Suppose that i > 0 and that λj = µj for
1 6 j 6 i . We have

zi+1(fλ) = λi+1P (fλ) + R(fλ),

zi+1(fµ) = µi+1P (fµ) + R(fµ).

Since fλ, fµ ∈ Ω′ , we deduce from the properties of P and R described above
that λi+1 = µi+1 . Hence λ = µ .

It follows that for any fλ ∈ Ω′ , we have

Ψ−1(fλ) = {(m, g) ∈ M × Ω′; m.g = fλ} ' StabM(fλ).

By [7] and Theorem 3.2, we have dim mfλ

Φ = `(h) = s . Since dim mfλ

Φ =
dim StabM(fλ) and dim ImΨ = dim(M × Ω′) − dim Ψ−1(fλ), we obtain that
dim ImΨ = dim M . Therefore M.Ω′ contains an open subset O of m∗

Φ .

Let p be the projection q∗Φ → m∗
Φ via restriction. Then p is M -equivariant.

Since the set of regular elements of q∗Φ is an open subset, we deduce that there
exist ϕ ∈ q∗Φ regular and fλ ∈ Ω′ such that

ϕ|mΦ
= fλ|mΦ

.

For all X, Y ∈ qΦ , we have ϕ([X, Y ]) = fλ([X, Y ]), and therefore

Mat(Φϕ) =

(
0`,` A
−tA B

)
= Mat(Φfλ

).
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Hence by Theorem 4.1, we have

χ(qΦ) = dim qfλ

Φ = ` + `(h)− 2d(h).

Remark 4.3. According to the previous theorem, c(h) is minimal when h is
the Panov H-sequence.

Let g be of type A6 . Set Φ = {α ∈ ∆+; α > α2,5} , and E = ∆+ \ Φ.
Then the Panov H-sequence of E is h = {α1,4, α2,3, α3,5, α4,6, α5,6, α5,5} and we
have `(h) = d(h) = 6.

We have another H-sequence h′ = (α3,5, α4,6, α6,6, α1,4, α1,3, α1,2, α2,3, α2,2)
such that `(h′) = 8 and d(h′) = 6. Observe that c(h) = 0 and c(h′) = 2.

5. Stability

Let a be an algebraic Lie algebra and let A be its adjoint algebraic group. Recall
that g ∈ a∗ is stable if there exists an open subset U of a∗ containing g such that
ag and ah are A-conjugate for all h ∈ U .

The following result is proved in [10]:

Proposition 5.1. Let a be an algebraic Lie algebra and f ∈ a∗ .

(i) If f is stable, then it is a regular element of a∗ .

(ii) The linear form f is stable if and only if [a, af ] ∩ af = {0}.

In this section, we return to the general case, that is g is not necessarily of
type A .

Proposition 5.2. Let Φ be a subset of ∆+ such that gΦ is an ad-nilpotent
ideal of g. Let h = (θ1, . . . , θs) be an H-sequence of ∆+ \ Φ consisting of linear
independent elements. Then there exists f ∈ q∗Φ which is stable and χ(qΦ) = c(h).

Proof. Our hypothesis implies that `(h) = d(h). So

c(h) = `− d(h).

Let U be a non-empty open subset of (k∗)s satisfying part (iii) of Lemma 3.1.
By Theorem 3.2 and Lemma 3.1, if a ∈ U , we have dim qfa

Φ = c(h). It follows
from Lemma 3.1 that qfa

Φ is a commutative Lie subalgebra of qΦ consisting of
semi-simple elements. Therefore, there exists a vector subspace r of qΦ such that
qΦ = qfa

Φ ⊕ r and [qfa
Φ , r] ⊂ r . So [qΦ, qfa

Φ ] ⊂ r and the result follows by Theorem
5.1.

We shall now show that qΦ does not necessarily contain a stable linear form
in general.
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Let gl6(k) be the set of 6 × 6 matrices and let {Ei,j, 1 6 i, j 6 6} be its
canonical basis. Set g = sl6(k), the set of 6× 6 matrices of trace zero, h the set
of diagonal matrices in g and b the set of upper triangular matrices in g .

Therefore, we can choose Xαi+···+αj
= Ei,j+1 , for 1 6 i 6 j 6 5. Set

Φ = {α ∈ ∆+; α > α1 + α2 + α3 or α > α3 + α4 + α5}.

The Panov H-sequence of ∆+ \ Φ is

h = (α1 + α2, α2 + α3 + α4, α3 + α4, α3, α4 + α5, α5).

We have `(h) = 6, d(h) = 5 and c(h) = 1.

By definition, i = gΦ is an ad-nilpotent ideal of g .

Proposition 5.3. The Lie algebra q∗Φ does not possess any stable linear form.

Proof. By Theorem 4.2 or Proposition 3.3, we have χ(qΦ) = 1. Let t ∈ k∗

and λt = (1, . . . , 1, t) ∈ k6 . Set fλt =
∑5

i=1 Xθi
+ tXθ6 and

Zt = Xα1 −Xα3 +
1

t
Xα5 + (1 +

1

t
)Xα2+α3 + Xα3+α4 −Xα4+α5 .

A simple calculation gives q
fλt
Φ = Vect(Zt).

Let H ∈ h be such that α1(H) = α3(H) = α5(H) = 1 and α2(H) =

α4(H) = 0. Then [H, Zt] = Zt , so [qΦ, q
fλt
Φ ] ∩ q

fλt
Φ 6= {0} . By Theorem 5.1, fλt is

not stable.

Denote by Q the algebraic adjoint group of qΦ . Then Q can be identified
with the quotient of the set of invertible upper triangular matrices by a closed

normal subgroup. Let s, t ∈ k∗ . Assume that q
fλt
Φ and q

fλs
Φ are Q-conjugate, then

there exist λ ∈ k∗ and an invertible triangular matrix P such that PZsP
−1−λZt ∈

i . By the definition of i , for any element L ∈ i and for any upper triangular matrix
R , we have LR ∈ i . It follows that PZs−λZtP ∈ i . By a direct computation, we
obtain that t = s .

Recall that for f, g ∈ q∗Φ , if f and g are Q-conjugate, then qf
Φ and qg

Φ are
also Q-conjugate. We define

Ψ : Q× k∗ → q∗Φ
(x, t) 7→ x.fλt

By the above consideration, we deduce that

Ψ−1(fλt) = {(x, s) ∈ Q× k∗; x.fλs = fλt} = StabQ(fλt).

Since dim ImΨ = dim(Q× k∗)− dim Ψ−1(fλt), we have dim ImΨ = dim Q .
Therefore Q.k∗ contains a non-empty open subset of q∗Φ which does not contain
any stable linear form.

Since the set of stable linear forms of qΦ is an open subset of q∗Φ , the result
follows immediately.
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6. Remarks on the exactness of the upper bounds

Assume that g is of type C7 . Using the numbering of simple roots in [12], set

β1 = α1 + α2 + α3 + α4 + α5,
β2 = α3 + α4 + 2α5 + 2α6 + α7,
β3 = 2α4 + 2α5 + 2α6 + α7,
Φ = {α ∈ ∆+; α > βi, for some i such that 1 6 i 6 3}.

We check by hand that the minimal length of an H-sequence associated to ∆+ \Φ
is 8. For example, the following H-sequence h = (θ1, . . . , θs) is of length 8:

θ1 = α1 + α2 + α3 + α4, θ5 = α4 + 2α5 + 2α6 + α7,
θ2 = α2 + α3 + α4 + α5 + 2α6 + α7, θ6 = 2α5 + 2α6 + α7,
θ3 = α3 + α4 + α5 + α6 + α7, θ7 = α5 + α6,
θ4 = α3 + α4 + α5, θ8 = α5.

and d(h) = 7.

By Theorem 3.2, we have

χ(qΦ) 6 ` + `(h)− 2d(h) = 1, and χ(mΦ) 6 `(h) = 8.

So χ(qΦ) = 1 by Proposition 3.3. But by considering an arbitrary linear form, we
found that χ(mΦ) 6 6. Thus the upper bound for the index of mΦ is not always
exact when g is not of type A .

We did some computations using Gap4 on arbitrary linear forms when g is
of rank less than or equal to 6, and we have not found an example where the upper
bound for χ(qΦ) is not exact. This leads us to formulate the following conjecture:

Conjecture 6.1. Let Φ ⊂ ∆+ such that gΦ is an ad-nilpotent ideal of g . There
exists an H-sequence h of ∆+ \ Φ such that

χ(qΦ) = ` + `(h)− 2d(h).
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