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1. Introduction

In this paper a local group is a hausdorff topological space G equipped with an
element 1 = 1G ∈ G (its identity) and continuous maps x 7→ x−1 : G → G
(inversion), and (x, y) 7→ xy : Ω → G (product) with open Ω = ΩG ⊆ G × G ,
such that for all x, y, z ∈ G ,

(1) (1, x), (x, 1) ∈ Ω and 1x = x1 = x ;

(2) (x, x−1), (x−1, x) ∈ Ω and xx−1 = x−1x = 1;

(3) if (x, y), (y, z) ∈ Ω and either (xy, z) ∈ Ω or (x, yz) ∈ Ω, then both (xy, z)
and (x, yz) belong to Ω and (xy)z = x(yz).

Also, “topological group” will stand for “hausdorff topological group”, so any
topological group G is a local group with Ω = G × G . From now on G is a
local group, and a, b, c, x, y, z range over G . It follows easily that if xy = 1,
then x = y−1 and y = x−1 , and with a bit more effort, that if (x, y) ∈ Ω, then
(y−1, x−1) ∈ Ω and (xy)−1 = y−1x−1 . Call X ⊆ G symmetric if X = X−1 . Given
any symmetric open neighborhood U of the identity of G we have a local group
G|U ; it has the subspace U as underlying space, 1G as its identity, the restriction
of inversion to U as its inversion, and the restriction of the product to

ΩU := {(x, y) ∈ Ω ∩ (U × U) : xy ∈ U}

as its product. Such a local group G|U is called a restriction of G .
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A central question in the subject (see for example [8]) is the following: When
does a local group have a restriction that is also a restriction of a topological group?
We give here a complete answer in the locally compact case, as a consequence of
the recent solution in [4] of a local version of Hilbert’s 5th problem and of earlier
work by S̀wierczkowski [10]:

Theorem 1.1. If G is locally compact, then some restriction of G is a restric-
tion of a topological group.

Cartan [1] established this for local Lie groups (local groups whose inversion and
product are real analytic with respect to some real analytic manifold structure
on the underlying space). This remains true for locally euclidean local groups,
since these were shown in [4] to have a restriction that is a local Lie group. The
conclusion of the theorem is false for some local Banach-Lie groups; see [3].

The above notion of “local group” is that of [10] and is more strict than in [4],
where inversion is only required to be defined on an open neighborhood of 1, and
the associativity axiom (3) is weaker. But the theorem goes through for the local
groups of [4], since these have restrictions satisfying the local group axioms of the
present paper; see [5], Lemma 3.2.6.

Note also that by local homogeneity [4], Lemma 2.16, the space G is locally
compact iff 1 has a compact neighborhood. It is worth noting that in the totally
disconnected case more is true (but the result is much less deep):

Proposition 1.2. If G is locally compact and totally disconnected, then some
restriction of G is a compact topological group.

This is proved just as in the global case for which we refer to [7], p. 54. This
proposition will not be used in the rest of the paper.

2. Normal subgroups and strong morphisms

If (a, b), (b, c) ∈ Ω and (ab, c) ∈ Ω, then we say that abc is defined, and set

abc := (ab)c = a(bc).

¿From now on G′ is also a local group. We take the local groups as the objects
of a category; a morphism G → G′ in this category is a map φ : G → G′ such
that if (x, y) ∈ ΩG , then (φ(x), φ(y)) ∈ ΩG′ and φ(xy) = φ(x)φ(y); composition of
morphisms is given by composition of maps. Below, morphisms are with respect to
this category. We say that G and G′ are locally isomorphic if they have restrictions
that are isomorphic in this category.

A subgroup of G is a symmetric subset H of G such that

1 ∈ H, H ×H ⊆ Ω, xy ∈ H for all x, y ∈ H.

Note that such H is a topological group in the obvious way. A normal subgroup
of G is a subgroup N of G such that axa−1 is defined and in N for all x ∈ N
and a ∈ G (in particular, N ×G, G×N ⊆ Ω).
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Suppose N is a normal subgroup of G . It follows that for all a, b ,

aN = Na, aN = bN ⇔ a ∈ bN,

(a, b) ∈ Ω =⇒ aN × bN ⊆ Ω and aN · bN = (ab)N.

So the sets aN form a partition of G . We make G/N := {aN : a ∈ G} into a local
group (except possibly for the hausdorff requirement) by giving G/N the quotient
topology, taking 1N = N as the identity element, aN 7→ a−1N as inversion, and
setting

ΩG/N := {(aN, bN) : (a, b) ∈ Ω}

with multiplication given by (aN, bN) 7→ (ab)N : ΩG/N → G/N . The canonical
map G → G/N is open, and if N is closed in G , then G/N is hausdorff and this
canonical map is a strong morphism in the following sense: a morphism φ : G → G′

is strong if for all (x, y) with (φ(x), φ(y)) ∈ ΩG′ we have (x, y) ∈ ΩG . If φ : G → G′

is a strong morphism, then its kernel ker φ := {x : φ(x) = 1G′} is a closed normal
subgroup of G . The proof of the next lemma is obvious.

Lemma 2.1. If φ : G → G′ is a strong morphism and V is a symmetric
open neighborhood of the identity in G′ , then U := φ−1(V ) is a symmetric open
neighborhood of the identity in G, and φ restricts to a strong morphism G|U →
G′|V .

Sometimes a subgroup of G is only “partially” normal, and we need to restrict
G to get an actual normal subgroup. To describe this situation we say that a
subgroup N of G has normalizing neighborhood V if V is a symmetric open
neighborhood of 1 in G such that N ⊆ V and for all a ∈ V and x ∈ N , if axa−1

is defined and in V , then axa−1 ∈ N .

Lemma 2.2. Let N be a compact subgroup of G with normalizing neighborhood
V . Then there is an open symmetric neighborhood U of 1 in G such that N ⊆
U ⊆ V and N is a normal subgroup of G|U .

Proof. By compactness of N we can take a symmetric open neighborhood W
of 1 in G such that for all x ∈ N and a ∈ W we have (x, a) ∈ Ω and xa ∈ V ,
and axa−1 is defined and in V . For x ∈ N, a ∈ W we also have (a, x) ∈ Ω and
ax ∈ V , since ax = (axa−1)a ∈ NW . Thus for U := NW we have U = WN . It
follows easily that U has the desired property.

Lemma 2.3. Suppose ι : G → G′ is an injective open morphism. Then ι
restricts to an isomorphism G|U → G′|ιU , for some restriction G|U of G.

Proof. Any symmetric open neighborhood U of 1 in G such that U ×U ⊆ Ω
has the desired property.
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3. A theorem of S̀wierczkowski

The following theorem, slightly adapted to our situation, is from §11 of [10]. It is
closely related to earlier work by Smith [9] and van Est [2].

Theorem 3.1. Let L be a simply connected topological group whose second
singular homology H2(L) vanishes. Let V, V̂ , Q be symmetric open neighborhoods
of the identity in L such that

(1) V̂ V̂ ⊆ Q, QQ ⊆ V ,

(2) V̂ is connected,

(3) every closed curve in V̂ V̂ is contractible in Q.

If φ : G → L|V is a surjective strong morphism, then there is an injective open
morphism G|φ−1V̂ → G′ into a topological group G′ .

In [10] the topology on G and G′ is discrete, which makes the continuity and
openness of the morphisms trivial. Nevertheless, this discrete version yields the
topological version above because we can assume G′ to be generated by the image
of G|φ−1V̂ so that the next well-known lemma is applicable:

Lemma 3.2. Suppose H is a group and ι : G → H is a morphism of the
discrete local group underlying G into the discrete group H , and suppose that
H is generated by ι(G). Then there is a unique group topology on H such that
ι : G → H is an open morphism.

Proof. Let B be the set of open neighborhoods of 1 in G . Let ιB :=
{ι(U) | U ∈ B} . It is easy to verify that ιB is a neighborhood base at 1H for a
(necessarily unique) group topology on H , and that this topology has the desired
properties.

We need the following consequence of Theorem 3.1:

Corollary 3.3. Suppose there exists a surjective strong morphism G → L|V
where L is a Lie group and V a symmetric open neighborhood of the identity in
L. Then G is locally isomorphic to a topological group.

Proof. Shrinking V and restricting G accordingly we can replace L by a
locally isomorphic Lie group and so arrange that L is simply connected. Then
its second homotopy group π2(L) vanishes, [1], so by the Hurewicz Theorem of
algebraic topology, [6], Theorem 4-32, the singular homology group H2(L) also
vanishes. To obtain the desired conclusion, it suffices in view of Lemma 2.3 to find
symmetric open neighborhoods V̂ and Q of the identity in L satisfying (1)-(3) of
Theorem 3.1. Take a symmetric open neigborhood Q of 1L such that QQ ⊆ V .
Lie groups are locally simply connected, so we can take a simply connected open
neighborhood Q′ ⊆ Q of 1L . Next, take a symmetric open neighborhood V̂ of
1L such that V̂ V̂ ⊆ Q′ . By passing to the connected component of 1L in V̂ we
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arrange that V̂ is connected. Every closed curve in V̂ V̂ is a closed curve in Q′ ,
so is contractible in Q′ and thus in Q .

4. Proof of the Theorem

To apply S̀wierckowski’s theorem to locally compact G , we need a local analogue
of a theorem of Yamabe. It appears in the thesis [5], but not in [4], so we include
here a proof using [4]. We say that G has NSS (“no small subgroups”) if some
neighborhood of 1 contains no subgroup other than {1} .

Proposition 4.1. Suppose G is locally compact. Then (G|U)/N has NSS, for
some compact normal subgroup N of some restriction G|U of G.

Proof. The inclusion diagram below shows the relevant subsets of G . Lemma
9.3 of [4] yields a compact subgroup H of G and a neighborhood V of 1 in G such
that every subgroup of G contained in V is contained in H . Since H is compact,
we have a compact normal subgroup N of H such that N ⊆ H ∩ V and H/N
has NSS, by [7], page 99. This yields an open neighborhood V ′ of 1 in G with
N ⊆ V ′ ⊆ V such that every subgroup of G contained in V ′ is contained in N .
Choose a symmetric open neighborhood U of 1 in G so that N ⊆ U ⊆ V ′ and all
abc with a, b, c ∈ U are defined and in V ′ . Then U is a normalizing neighborhood
of N in G : if a ∈ U , then aNa−1 is a subgroup of G contained in V ′ , and thus
aNa−1 ⊆ N ⊆ U . By Lemma 2.2 we can shrink U such that N becomes a normal
subgroup of G|U . Then (G|U)/N has NSS.

G

H V

V ′

U

N

Proof of Theorem 1.1. Let G be locally compact. Towards proving that G is
locally isomorphic to a topological group we can replace G by any restriction.
After such a restriction, Proposition 4.1 gives a compact normal subgroup N of
G such that G/N has NSS. Then by [4], §8, and Lemma 2.1 we can arrange by a
further restriction that G/N is a restriction of a Lie group L . It remains to apply
Corollary 3.3 to obtain that G is locally isomorphic to a topological group.
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