The Smoothness of Orbital Measures on Exceptional Lie Groups and Algebras

Kathryn Hare* and Paul Skoufranis

Communicated by M. Cowling

Abstract

Suppose that G is a compact, connected, simple, exceptional Lie group with Lie algebra \mathfrak{g}. We determine the sharp minimal exponent k_{0}, which depends on G or \mathfrak{g}, such that the convolution of any k_{0} continuous, G-invariant measures is absolutely continuous with respect to Haar measure. The exponent k_{0} is also the minimal integer such that any k_{0}-fold product of conjugacy classes in G or k_{0}-fold sum of adjoint orbits in \mathfrak{g} has non-empty interior. Unlike in the classical case, the answer can be less than the rank of G or \mathfrak{g}.

We also establish a dichotomy for orbital measures μ, supported on non-trivial conjugacy classes or adjoint orbits of minimal non-zero dimension: for each k, either $\mu^{k} \in L^{2}$ or μ^{k} is singular with respect to Haar measure. Mathematics Subject Classification 2000: Primary 43A80; secondary 22E30, 58C35. Key Words and Phrases: Compact Lie group, compact Lie algebra, orbital measure, orbit, conjugacy class.

1. Introduction

Let G be a compact, connected, simple Lie group. In [12], Ragozin proved the surprising fact that the convolution of $\operatorname{dim}(G)$ continuous G-invariant measures is absolutely continuous with respect to Haar measure on G. His work implies that a product of $\operatorname{dim}(G)$ non-trivial conjugacy classes in G has positive measure and even non-empty interior. He was unable to decide if $\operatorname{dim}(G)$ was minimal with these properties, and speculated that it was not.

In [4] and [5], the minimum number of convolution powers with this absolute continuity property and the minimal integer k such that every product (or sum) of k non-trivial conjugacy classes in G (respectively, adjoint orbits in \mathfrak{g}) has nonempty interior was determined for each of the classical Lie groups and algebras. The answer depends on the Lie type, but in all cases was between r and $2 r$, where $r=\operatorname{rank} \mathfrak{g}$. Ragozin's result was also improved in [8] for the five exceptional, compact, simple Lie groups with the exponent reduced to n for the groups of type

[^0]E_{n} (where $n=6,7,8$), to 6 for a group of type F_{4}, and to 3 for a group of type $G_{2} .{ }^{1}$

In this paper, we complete Ragozin's project by determining the sharp exponent for the exceptional Lie groups and algebras. We prove that $\mu_{1} * \cdots * \mu_{k}$ is absolutely continuous with respect to Haar measure for all G-invariant, continuous measures μ_{j} on an exceptional Lie group G or Lie algebra \mathfrak{g} if and only if $k \geq k_{0}$, where k_{0} depends on the type of the exceptional Lie group or algebra and is specified below:

$$
k_{0}= \begin{cases}3 & \text { if } G \text { or } \mathfrak{g} \text { is of Lie type } E_{6}, E_{7}, \text { or } E_{8} \tag{1.1}\\ 3 & \text { if } G \text { is the Lie group of type } G_{2} \\ 4 & \text { if } G \text { is the Lie group of type } F_{4} \\ 2 & \text { if } \mathfrak{g} \text { is the Lie algebra of type } F_{4} \text { or } G_{2}\end{cases}
$$

Standard arguments show that k_{0} is also the minimal integer such that every $k_{0}-$ fold product (sum) of non-trivial conjugacy classes in G (adjoint orbits in \mathfrak{g}) has non-empty interior.

The approach taken in [8] was to use estimates on the rate of decay of characters on the group, together with the Peter-Weyl theorem, to deduce $L^{2}(G)$ results for convolutions of continuous, orbital measures on G, an important class of G-invariant measures. In this paper we take, instead, the direct approach of studying the l^{2} norm of the Fourier transform of powers of orbital measures on G, using the combinatorial method developed in [7]. We prove that $\mu^{k_{0}} \in L^{2}(G)$ for all continuous orbital measures μ on G, and from this fact one can deduce that k_{0} is sufficient for Ragozin's absolute continuity problem in the group case. For the Lie algebra problem, we apply a transference argument.

Easy geometric arguments are used to show that the non-trivial conjugacy classes (or adjoint orbits) of minimum dimension have the property that their ($k_{0}-1$)-fold product (respectively, sum) has Haar measure zero. Consequently, orbital measures μ, supported on the minimal non-trivial conjugacy classes or adjoint orbits satisfy a dichotomy: for each positive integer k, either $\mu^{k} \in L^{2}$ or μ^{k} is singular with respect to Haar measure on G or \mathfrak{g}. This same dichotomy is known to hold for the classical Lie groups and algebras (see [4]-[7]). Sums of orbits, products of conjugacy classes and convolutions of measures supported on these manifolds were also investigated by Ricci and Stein in [13], [14], by Dooley and Wildberger in [2], [3], and by Wildberger in [15].

2. Background Results

2.1. Notation. Let G be a compact, connected, simple Lie group with Lie algebra \mathfrak{g}, let \mathbb{T} be a maximal torus of G and \mathfrak{t} be its Lie algebra, which we also call a torus. We denote by Φ the set of roots of the complexification of \mathfrak{g} with respect to the complexified torus and write Φ^{+}for the positive roots. The group G acts on its Lie algebra by the adjoint action Ad_{G}, and acts on itself by the

[^1]operation of conjugation, which we denote in the same way. The meaning will be clear from the context.

A finite, complex Borel measure μ on G (or on \mathfrak{g}) is called G-invariant if $\mu(E)=\mu\left(\operatorname{Ad}_{G}(g) E\right)$ for all $g \in G$ and Borel sets $E \subseteq G$ (respectively, $E \subseteq \mathfrak{g}$). The G-invariant measures on the group are often also called central since they commute with all other measures under convolution.

Given $X \in \mathfrak{g}$, the orbital measure μ_{X} is the Borel measure on \mathfrak{g} defined by the rule

$$
\int_{\mathfrak{g}} f d \mu_{X}=\int_{G} f\left(\operatorname{Ad}_{G}(g) X\right) d m_{G}(g)
$$

for any continuous, compactly supported function f on \mathfrak{g}. Here m_{G} denotes the Haar measure on G. The probability measure μ_{X} is G-invariant and supported on the compact adjoint orbit $O_{X} \subseteq \mathfrak{g}$, the image of X under the Ad_{G} action. Given $x \in G$, the orbital measure μ_{x} on G is defined similarly, and is the G-invariant probability measure supported on the conjugacy class C_{x} in G containing x. A measure is said to be continuous if the measure of every singleton is zero. All orbital measures μ_{X} or μ_{x}, with $X \in \mathfrak{g}$ and $x \in G$, are continuous except if $X=0$ or x belongs to the center of G. Of course, x is in the center of the group G if and only if C_{x} is a singleton, and we call these the trivial conjugacy classes.

Every adjoint orbit and conjugacy class has zero Haar measure, being a proper submanifold, consequently, all orbital measures are singular with respect to Haar measure. We also recall that every orbit and conjugacy class contains a torus element.

Roots are defined not only on the torus of the Lie algebra, but also on torus elements in the group by the formula $\alpha(x)=\alpha(X) \bmod 2 \pi$, where $X \in \mathfrak{t}$ is any element with $\exp X=x \in \mathbb{T}$. We say that the root $\alpha \in \Phi$ annihilates the element $X \in \mathfrak{t}$ or $x \in \mathbb{T}$ if $\alpha(X)=0$ or $\alpha(x)=0 \bmod 2 \pi$. The set of annihilating roots is a root subsystem of Φ and thus has a Lie type. By the type of x we mean the Lie type of its set of annihilating roots. The elements x and $\operatorname{Ad}_{G}(g) x$ have the same type, so we may also speak of the type of an adjoint orbit or conjugacy class.

The following geometric fact will be useful later in finding k_{0}. By $(k) O_{X}$ we mean the k-fold sum of orbit O_{X}, and by C_{x}^{k} we mean the k-fold product of the conjugacy class C_{x}.

Lemma 2.1. If $X \in \mathfrak{t}$ or $x \in \mathbb{T}$ and the number non-annihilating roots of X (or x) is less than $\operatorname{dim}(\mathfrak{g}) / k$, then $(k) O_{X}$ (or C_{x}^{k}) has measure zero and μ_{X}^{k} (or μ_{x}^{k}, respectively) is singular with respect to Haar measure.

Proof. It is known that the dimension of the orbit, O_{X}, is equal to the number of non-annihilating roots of $X \in \mathfrak{t}$ [11, VI.4], so the hypothesis guarantees that ($k) O_{X}$ has Haar measure zero. Since the k-fold convolution product μ_{X}^{k} is supported on $(k) O_{X}$, it is clearly a singular measure. The argument for μ_{x}^{k} and C_{x}^{k} are similar.

To prove the sufficiency of the value of k_{0}, it is actually enough to show that $\mu_{x}^{k_{0}} \in L^{2}(G)$ for all x not in the center of G. The reason for this is that the
$L^{2}(\mathfrak{g})$ results for orbital measures on the Lie algebra \mathfrak{g} will then follow from an application of a transference principle established in [7], as we explain below.

Lemma 2.2. Suppose $X \in \mathfrak{t}$ and $\mu_{x}^{k} \in L^{2}(G)$ whenever $x \in \mathbb{T}$ has the same Lie type as X. Then $\mu_{X}^{k} \in L^{2}(\mathfrak{g})$.

Proof. Fix a neighbourhood $U \subseteq \mathfrak{g}$ on which the exponential map is a diffeomorphism. For almost all $\lambda>0$, the elements $X, \lambda X \in \mathfrak{t}$ and $\exp (\lambda X) \in \mathbb{T}$ have exactly the same set of annihilating roots. Choose such a λ, sufficiently small that $(k) O_{\lambda X} \subseteq U$. If $\mu_{\exp \lambda X}^{k} \in L^{2}(G)$, then $\mu_{\lambda X}^{k} \in L^{2}(\mathfrak{g})$, according to the transference principle [7, Cor. 7.3]. But the Fourier transform of μ_{X} and $\mu_{\lambda X}$ are dilates, hence $\mu_{X}^{k} \in L^{2}(\mathfrak{g})$ if and only if $\mu_{\lambda X}^{k} \in L^{2}(\mathfrak{g})$.
2.2. Combinatorial Criterion. To prove that $\mu_{x}^{k} \in L^{2}(G)$ for suitable exponents k, we rely heavily on a combinatorial criterion established in [7], which we briefly review. We suppose that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a base for a root system Φ of rank n and $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is the set of fundamental dominant weights, that is, the dual basis vectors which satisfy $\left(\alpha_{i}, \lambda_{j}\right)=\delta_{i j}$. (In our application, Φ will be the root system of one of the exceptional groups.) Define

$$
S_{j}=\left\{\alpha \in \Phi^{+}:\left(\alpha, \lambda_{j}\right) \neq 0\right\} .
$$

Given a set of l integers, i_{1}, \ldots, i_{l}, satisfying

$$
n \geq i_{1}>i_{2}>\cdots>i_{l} \geq 1
$$

and a root subsystem Ψ of Φ, inductively define

$$
\begin{gathered}
X_{j}=S_{i_{j}} \backslash \bigcup_{k=1}^{j-1} S_{i_{k}}=\left\{\alpha \in \Phi^{+} \backslash \bigcup_{k=1}^{j-1} X_{k}:\left(\alpha, \lambda_{i_{j}}\right) \neq 0\right\} \text { for } j=1, \ldots, l, \\
B_{j}=B_{j}(\Psi)=\left\{\alpha \in \Psi^{+} \backslash \bigcup_{k=1}^{j-1} B_{k}:\left(\alpha, \lambda_{i_{j}}\right) \neq 0\right\} \text { for } j=1, \ldots, l
\end{gathered}
$$

and put

$$
G_{j}=X_{j} \backslash B_{j}
$$

We call G_{j} and B_{j} the 'good' and 'bad' roots, respectively, arising at step j relative to the given set of indices. The expressions $\left|X_{j}\right|,\left|B_{j}\right|$ and $\left|G_{j}\right|$ denote the cardinalities of these sets.

Let $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right)$ be the minimum integer k such that

$$
\sum_{j=1}^{l}\left((k-1)\left|X_{j}\right|-k\left|B_{j}\right|\right)=\sum_{j=1}^{l}\left((k-1)\left|G_{j}\right|-\left|B_{j}\right|\right)>\frac{l}{2} .
$$

The combinatorial criterion for μ_{x}^{k} to belong to $L^{2}(G)$ is the content of the next theorem, whose proof relies upon the Weyl character and degree formulas and the Peter-Weyl theorem.

Table 1: The positive roots for the exceptional groups

Type	Positive Roots Φ^{+}	\#
E_{8}	$\begin{gathered} e_{i} \pm e_{j}: 1 \leq i<j \leq 8 ; \\ \frac{1}{2}\left(e_{8}+\sum_{k=1}^{7} s_{k} e_{k}\right): s_{k}= \pm 1, \prod_{k=1}^{7} s_{k}=1 \end{gathered}$	120
E_{7}	$\begin{gathered} e_{7}-e_{8} ; e_{i} \pm e_{j}: 1 \leq i<j \leq 6 ; \\ \frac{1}{2}\left(e_{8}-e_{7}+\sum_{k=1}^{6} s_{k} e_{k}\right): s_{k}= \pm 1, \prod_{k=1}^{6} s_{k}=1 \end{gathered}$	63
E_{6}	$\begin{gathered} e_{i} \pm e_{j}: 1 \leq i<j \leq 5 ; \\ \frac{1}{2}\left(e_{8}-e_{7}-e_{6}+\sum_{k=1}^{5} s_{k} e_{k}\right): s_{k}= \pm 1, \prod_{k=1}^{5} s_{k}=1 \end{gathered}$	36
F_{4}	$\begin{gathered} \hline e_{i} \pm e_{j}: 1 \leq i<j \leq 4 ; e_{l}: 1 \leq l \leq 4 ; \\ \frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right) \end{gathered}$	24
G_{2}	$\begin{gathered} e_{i}-e_{j}: 1 \leq i<j \leq 3 \\ 2 e_{i}-e_{j}-e_{k}: i \neq j \neq k \in\{1,2,3\} \end{gathered}$	6

Theorem 2.3 ([7, Thm 6.1]). Suppose that G is a compact, connected, simple Lie group of rank n, and $\Phi(x)$ is the set of annihilating roots of $x \in \mathbb{T}$. Let

$$
\kappa_{0}(x)=\max \left\{\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right)\right\}
$$

where the maximum is taken over all $l \in\{1, \ldots, n\}$, all sets of indices that satisfy $n \geq i_{1}>i_{2}>\cdots>i_{l} \geq 1$, and all root subsystems Ψ that are conjugate under the Weyl group to $\Phi(x)$. Then $\mu_{x}^{\kappa_{0}(x)} \in L^{2}(G)$.
2.3. Roots of the Exceptional Groups. For the convenience of the reader, we list the positive roots for the exceptional groups in Table 1, and the total number of positive roots. Throughout, e_{i} denotes one of the standard basis vectors. For further background on roots and root systems we refer the reader to [9].

3. The exceptional Lie groups and algebras $\boldsymbol{E}_{6}, \boldsymbol{E}_{7}$ and \boldsymbol{E}_{8}

We continue to use the notation and terminology described in the previous section. The goal of this section is to prove the following theorem.

Theorem 3.1. Suppose that G is a compact, connected, simple, exceptional Lie group of type E_{6}, E_{7} or E_{8}, with Lie algebra \mathfrak{g}. If μ is any continuous orbital measure on G or \mathfrak{g}, then $\mu^{3} \in L^{2}$. Moreover, there exists $X \in \mathfrak{g}$ such that $O_{X}+O_{X}$ has Haar measure zero and $\mu_{X} * \mu_{X}$ is singular with respect to Haar measure on \mathfrak{g}. Similarly, there exists $x \in G$ such that $m_{G}\left(C_{x}^{2}\right)=0$ and $\mu_{x} * \mu_{x}$ is singular with respect to m_{G}.

The difficult part of this argument is proving that $\mu^{3} \in L^{2}$. Since every $X \in \mathfrak{t}$ has the same type as some $x \in \mathbb{T}$, Lemma 2.2 implies that it is sufficient to prove that $\mu_{x}^{3} \in L^{2}(G)$ whenever μ_{x} is a continuous orbital measure on G.

According to Theorem 2.3, it suffices to prove that $\kappa_{0}(x) \leq 3$ for every noncentral $x \in \mathbb{T}$. Furthermore, since the set of annihilating roots of a non-central torus element is a proper root subsystem [1], and any proper root subsystem is contained in a maximal subsystem, it suffices to verify that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$ whenever Ψ is a maximal root subsystem contained in the root system of type E_{n}. We will do this for E_{6}, E_{7}, and E_{8} separately.

We begin by recording some facts about the structure of the root system E_{8}. The roots may be divided into two classes: the regular roots, those of the form $\pm e_{i} \pm e_{j}$; and the others, which we call the peculiar roots. In E_{8} there are 56 regular positive roots and 64 peculiar positive roots. The regular roots form a root subsystem of type D_{8}.

In fact, the regular roots form a root subsystem in all the exceptional groups of type E_{n} (where $n=6,7,8$). This is a consequence of the fact that if the sum or difference of two regular roots is a root, then it is a regular root. More generally, the following easy observation will be very useful for us.

Lemma 3.2. Let Ψ be a root subsystem. Then the regular roots in Ψ form a root subsystem.

Proof. An intersection of root subsystems is a root subsystem.
The same is not true of the peculiar roots. Indeed, two peculiar roots are either orthogonal or one of their sum or difference is a regular root.

We introduce the following notation for the positive peculiar roots. By $P_{j_{1}, j_{2}, \ldots, j_{l}}$ we mean the positive peculiar root with a minus sign in positions j_{1}, \ldots, j_{l}, that is,

$$
P_{j_{1}, j_{2}, \ldots, j_{l}}=\frac{1}{2}\left(e_{8}-\sum_{k=1}^{l} e_{j_{k}}+\sum_{k \neq j_{1}, \ldots, j_{l}, 8} e_{k}\right) .
$$

We write P_{0} for the peculiar root with all plus signs and P_{q}^{-}for the positive peculiar root with plus signs only in positions q and 8 .

Here are some useful identities. Different letters denote different indices in $1, \ldots, 7$.

$$
\begin{aligned}
& P_{0}-P_{i j}=e_{i}+e_{j} ; \quad P_{0}+P_{q}^{-}=e_{8}+e_{q} ; \quad P_{i j}-P_{i j k l}=e_{k}+e_{l} ; \\
& P_{i j}+P_{j}^{-}=e_{8}-e_{i} ; \quad P_{i j}-P_{i k}=e_{k}-e_{j} ; \quad P_{q}^{-}-P_{m}^{-}=e_{q}-e_{m} ; \\
& P_{i j k l}+P_{i m n q}=e_{8}-e_{i} ; \quad P_{i j k l}-P_{i j k m}=e_{m}-e_{l} ; \\
& P_{i j}+P_{k l m n}=e_{8}+e_{q} ; \quad P_{i j k l}-P_{i j k l m n}=e_{m}+e_{n} .
\end{aligned}
$$

3.1. Exceptional group of type E_{8}. It is known (see [9, p. 65]) that a base for E_{8} is given by the eight vectors

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{2}\left(e_{1}+e_{8}-\sum_{i=2}^{7} e_{i}\right), \\
& \alpha_{2}=e_{1}+e_{2}, \\
& \alpha_{k}=e_{k-1}-e_{k-2} \quad \text { where } k=3, \ldots, 8 .
\end{aligned}
$$

Table 2: The possibilities for the sets S_{j} for the case of E_{8}

	Positive regular roots	\#	Positive peculiar roots	\#
S_{1}	$e_{j} \pm e_{8}: j=1, \ldots, 7$	14	all	64
S_{2}	$\begin{gathered} e_{i}+e_{j}, e_{j} \pm e_{8}: \\ i, j=1, \ldots, 7 \end{gathered}$	35	$\begin{aligned} & \text { all but } P_{q}^{-} \text {: } \\ & \qquad q \neq 8 \end{aligned}$	57
S_{3}	$\begin{gathered} e_{i}+e_{j}, e_{1}-e_{i}, e_{l} \pm e_{8}: \\ i, j=2, \ldots, 7, l=1, \ldots, 7 \end{gathered}$	35	all but P_{1}^{-}	63
S_{4}	$\begin{gathered} e_{k} \pm e_{8}, e_{i}+e_{j}, e_{l} \pm e_{j}: \\ k=1, \ldots, 7, \\ i, j=3, \ldots, 7, l=1,2 \end{gathered}$	44	all but P_{1}^{-}, P_{2}^{-}	62
S_{5}	$\begin{aligned} & e_{k} \pm e_{8}, e_{i}+e_{j}, e_{l} \pm e_{j}: \\ & \quad k=1, \ldots, 7, \\ & i, j=4, \ldots, 7, l=1,2,3 \end{aligned}$	44	$\begin{aligned} & \text { all but } P_{4567}, P_{i}^{-}: \\ & \quad i=1,2,3 \end{aligned}$	60
S_{6}	$\begin{gathered} e_{k} \pm e_{8}, e_{i}+e_{j}, e_{l} \pm e_{j}: \\ k=1, \ldots, 7, \\ i, j=5,6,7, l=1, \ldots, 4 \end{gathered}$	41	all but $P_{j}^{-}, P_{j 567}$: $j=1, \ldots, 4$	56
S_{7}	$\begin{gathered} e_{k} \pm e_{8}, e_{6}+e_{7}, e_{i} \pm e_{j}: \\ k=1, \ldots, 7, \\ j=6,7, i=1, \ldots, 5 \end{gathered}$	35	$\begin{aligned} & \text { all but } P_{67}, P_{j}^{-}, P_{i j 67}: \\ & \quad i, j=1, \ldots, 5 \end{aligned}$	48
S_{8}	$\begin{gathered} e_{8}+e_{7}, e_{i} \pm e_{j}: \\ j=7,8, i=1, \ldots, 6 \end{gathered}$	25	$\begin{gathered} P_{0}, P_{7}^{-}, P_{i j}, P_{i j k l}: \\ i, j, k, l=1, \ldots, 6 \end{gathered}$	32

It is a routine exercise to show that the fundamental dominant weights for E_{8} corresponding to the base above are the eight vectors

$$
\begin{aligned}
& \lambda_{1}=2 e_{8} \\
& \lambda_{2}=\frac{5}{2} e_{8}+\frac{1}{2} \sum_{i=1}^{7} e_{i} \\
& \lambda_{3}=\frac{7}{2} e_{8}+\frac{1}{2}\left(\sum_{i=2}^{7} e_{i}-e_{1}\right) \\
& \lambda_{k}=\sum_{i=k-1}^{7} e_{i}+(9-k) e_{8} \quad \text { where } k=4, \ldots, 8
\end{aligned}
$$

From these descriptions, it is easy to determine the sets S_{1}, \ldots, S_{8}. In Table 2, we list the positive regular and peculiar roots in each of the sets S_{j}. The numbers of such roots are also given.

The following lemmas also have analogues for E_{6} and E_{7}.
Lemma 3.3. Let Ψ be a root subsystem of E_{8}. Suppose that there are a pair of distinct indices $i, j \in\{1, \ldots, 8\}$ such that both roots $e_{i} \pm e_{j}$ belong to $\Phi \backslash \Psi$.

Then Ψ contains at most 32 positive peculiar roots.
Proof. First, suppose that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$ for some $i, j \in\{1, \ldots, 7\}$. By symmetry, we may assume that $i=1$ and $j=2$. Because Ψ is a root subsystem, if both P_{0} and P_{12} belong to Ψ, then $P_{0}-P_{12}=e_{1}+e_{2}$ must also belong to Ψ. Since this is not the case, at most one of P_{0} or P_{12} belongs to Ψ. Similarly, each of the following 32 pairs,

$$
P_{0}, P_{12} ; P_{1}^{-}, P_{2}^{-} ; P_{12 i j}, P_{i j} ; P_{1 j}, P_{2 j} ; P_{1 i j k}, P_{2 i j k} ; P_{12 i j k l}, P_{i j k l}
$$

with $i, j, k, l \in\{3, \ldots, 7\}$ (with different letters denoting different indices) has the property that one of their sum or difference is equal to either $e_{1}+e_{2}$ or $e_{1}-e_{2}$. If both peculiar roots of one of these 32 pairs belongs to Ψ, then so must their sum or difference, hence Ψ contains at most one of each pair.

Otherwise, the missing pair must be $e_{j} \pm e_{8}$ where, without loss of generality, $j=1$. A similar argument applies with the 32 pairs

$$
P_{0}, P_{1}^{-} ; P_{1 j}, P_{j}^{-} ; P_{i q}, P_{k l m n} ; P_{1 i j k}, P_{1 l m n} \text { with } i, j, k, l, m, n \in\{2, \ldots, 7\},
$$

and the proof is finished.
Lemma 3.4. Suppose that $i, j \in\{1, \ldots, 6\}$ and Ψ is a root subsystem of E_{8}.
(a) If both $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, then there are at most 16 peculiar roots in $\Psi \cap S_{8}$.
(b) If only one of $e_{i} \pm e_{j}$ belongs to Ψ, then there are at most 24 peculiar roots in $\Psi \cap S_{8}$.

Proof. Without loss of generality, $i, j=1,2$. Consider the sixteen pairs of peculiar roots, all of which belong to S_{8},

$$
P_{0}, P_{12} ; P_{12 i j}, P_{i j} ; P_{1 j}, P_{2 j} ; P_{1 i j k}, P_{2 i j k} ; P_{7}^{-}, P_{3456}
$$

with $i, j, k \in\{3, \ldots, 6\}$. Eight of these pairs have their sum or difference equal to $e_{1}+e_{2}$ and the other eight give $e_{1}-e_{2}$. Now argue as above.

Lemma 3.5. Suppose that Ψ is a root subsystem of E_{8} and there is a pair $i, j \in\{1, \ldots, 5\}$ with both $e_{i} \pm e_{j} \in \Phi \backslash \Psi$. Then $\Psi \cap S_{7}$ contains at most 24 peculiar roots.

Proof. The peculiar roots of S_{7} may be partitioned into 24 distinct pairs, each of which has sum or difference equal to one of $e_{i} \pm e_{j}$.

The expression $\lfloor z\rfloor$ denotes the greatest integer less than or equal to z.
Lemma 3.6. A root subsystem of type A_{m} in D_{n}, where $m \geq 4$, contains at most $\left\lfloor\frac{1}{4}(m+1)^{2}\right\rfloor$ positive roots of the form $e_{i}+e_{j}$.

Proof. A root subsystem of type A_{m} in D_{n}, where $m \geq 4$, must have the structure

$$
\left\{s_{i} e_{i}-s_{j} e_{j}: i, j \in I, i \neq j\right\}
$$

where I is an $m+1$ element subset of $\{1, \ldots, 8\}$ and s_{i} is a choice of ± 1. The root $e_{i}+e_{j}$ belongs to A_{m} if and only if $s_{i} s_{j}=-1$, and the maximum number of such roots is $\frac{1}{4}(m+1)^{2}$ if k is odd, or $\frac{1}{4} m(m+2)$ if m is even.
3.2. Proof of Theorem 3.1 for E_{8}. Identify the torus of the Lie algebra of E_{8} with \mathbb{R}^{8} and consider the element

$$
X=(0, \ldots, 0, \pi, \pi) \in \mathfrak{t}
$$

The set of annihilating roots of X is of Lie type E_{7} (exactly as described in section 2) and the set of annihilating roots of $x=\exp X$ is of type $E_{7} \times A_{1}$ (namely, the E_{7} described previously, together with $\left.\pm\left(e_{7}+e_{8}\right)\right)$. Thus X and x have 114 and 112 non-annihilating roots respectively. As $\frac{1}{2} \operatorname{dim}\left(E_{8}\right)=124$, Lemma 2.1 implies that μ_{X}^{2} and μ_{x}^{2} are singular measures in \mathfrak{g} and G respectively, and $O_{X}+O_{X}$ and C_{x}^{2} have Haar measure zero.

We now turn to proving that $\mu_{x}^{3} \in L^{2}(G)$ for all continuous orbital measures μ_{x} on G. The maximal proper root subsystems of E_{8} may be deduced from the Borel-Siebenthal theorem and are listed in [10, p. 136]. They are of type $E_{7} \times A_{1}$, $D_{8}, E_{6} \times A_{2}, A_{8}$, and $A_{4} \times A_{4}$, and have $64,56,39,36$ and 20 positive roots respectively. It clearly suffices to check that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$ when Ψ is one of these types.

Since each set S_{j} contains at least 57 elements, if $\left|\Psi^{+}\right| \leq 36$, then each S_{j} contains at least 21 good roots. Of course, $\sum_{j=1}^{l}\left|B_{j}\right| \leq\left|\Psi^{+}\right|$, thus

$$
\sum_{j=1}^{l}\left((k-1)\left|G_{j}\right|-\left|B_{j}\right|\right) \geq(k-1) 21-36>\frac{8}{2} \quad \text { if } k=3
$$

This shows that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$ if $\left|\Psi^{+}\right| \leq 36$. Thus we only need to study Ψ of type $E_{7} \times A_{1}, D_{8}$ or $E_{6} \times A_{2}$.

3.2.1. Case 1: Ψ is of type $E_{7} \times A_{1}$.

This is the most difficult case. Our strategy will be to first consider the root subsystem of Ψ consisting of the regular roots. This is a root subsystem contained in one of type D_{8}, the root subsystem of the regular roots of E_{8}, as well as being contained in one of type $E_{7} \times A_{1}$. Hence the set of regular roots of Ψ must be one of the following types: A_{7}, A_{6}, a subsystem of $D_{6} \times A_{1} \times A_{1}$, a subsytem of $A_{5} \times A_{1} \times A_{1}$, or $A_{j_{1}} \times \cdots \times A_{j_{l}}$ where $j_{i} \leq 4$ and $j_{1}+\cdots+j_{l} \leq 8$.

All of these root subsystems, with the exception of A_{7}, have the property that there is a pair of regular roots $e_{i} \pm e_{j}$, both of which belong to $\Phi \backslash \Psi$. By Lemma 3.3, Ψ contains at most 32 positive peculiar roots. As a root subsystem of type $E_{7} \times A_{1}$ contains 64 positive roots, this implies that Ψ contains at least 32 positive regular roots. This observation eliminates all the root subsystems on the list except A_{7} and $D_{6} \times A_{1} \times A_{1}$. Thus we may assume that the regular roots in Ψ are either type A_{7}, with 28 regular and 36 peculiar positive roots, or type $D_{6} \times A_{1} \times A_{1}$, with 32 regular and 32 peculiar positive roots. We further remark that a root subsystem of type $D_{6} \times A_{1} \times A_{1}$ in D_{8} has the form

$$
\begin{equation*}
\left\{e_{i} \pm e_{j}: i, j \in I\right\} \cup\left\{e_{i} \pm e_{j}: i, j \in J\right\} \tag{3.1}
\end{equation*}
$$

where I and J are disjoint subsets of $\{1, \ldots, 8\}$ of cardinalities 6 and 2 respectively.

Choose a set of indices $1 \leq i_{l}<\cdots<i_{1} \leq 8$. First, suppose that one of the indices i_{j} is 4 or 5 . Then $\left|S_{i_{j}}\right| \geq 99$ and therefore $\left|G_{j}\right| \geq 99-64=35$. Moreover, $\sum_{j=1}^{l}\left|B_{j}\right| \leq\left|\Psi^{+}\right|=64$, hence

$$
\sum_{j=1}^{l}\left(2\left|G_{j}\right|-\left|B_{j}\right|\right) \geq 75-64>\frac{8}{2}
$$

so in this situation $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$.
In particular, note that one of the indices must be 4 or 5 if $l=7$ or 8 , hence we may assume that $l \leq 6$. In this case, one of the indices must be one of 3,4 or 5 and then, as $\left|S_{3}\right|=98$,

$$
\sum_{j=1}^{l}\left(2\left|G_{j}\right|-\left|B_{j}\right|\right) \geq 68-64>\frac{6}{2}
$$

Again we see that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$.
Thus we may assume that $l \leq 5$. We first consider the case when one of the indices is 1 . As S_{1} contains 64 peculiar positive roots, S_{1} must contain 32 good peculiar roots if the set of regular roots is of type $D_{6} \times A_{1} \times A_{1}$ and 28 good peculiar roots if the set of regular roots is of type A_{7}. When the set of regular roots is of type $D_{6} \times A_{1} \times A_{1}$ there are either 4 or 12 good regular roots in S_{1}, depending on whether the index 8 belongs to I or J. When the set of regular roots is of type A_{7}, exactly one of each pair $e_{j} \pm e_{8}$ with $j=1, \ldots, 7$ belongs to Ψ^{+}. Thus S_{1} contains at least 7 good regular positive roots. In either situation, there are at least 35 good roots in S_{1} and this shows $\kappa\left(i_{1}, \ldots, 1, \Psi\right) \leq 3$.

Since $\left|S_{6}\right|=97$, the set S_{6} contains at least 33 good roots and this is enough to deduce that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$ if $l \leq 3$ and one of the indices, i_{j} say, is 6. Also, $\left|S_{2} \cup S_{6}\right|=107$, so $\sum_{j=1}^{l}\left|G_{j}\right| \geq 43$ if two of the indices are 2 and 6 , and this gives $\kappa \leq 3$ for any $l \leq 5$. If $l=4$ and one of the indices is 6 , then at least one other must be chosen from $\{1,2,3,4,5\}$. Combined with the previous observations, this shows that $\kappa \leq 3$ if any $i_{j}=6$.

The set S_{2} contains at least $57-32$, that is, 25 , good peculiar roots if the set of regular roots is of type $D_{6} \times A_{1} \times A_{1}$ and at least 21 good peculiar roots if the set of regular roots is of type A_{7}. In the former case, S_{2} contains either 14 or 21 good regular roots, depending on whether the index 8 belongs to I or J, for a total of at least 39 good roots. According to Lemma 3.6, at most 16 of the 28 roots $e_{i}+e_{j}$ belong to Ψ if Ψ is type A_{7}. Thus, in the latter case, S_{2} contains at least 12 good regular roots for a total of 33 good roots. As with index 6 , it follows that $\kappa \leq 3$ if one of the indices is 2 .

It only remains to consider the situation when $l=1$ or 2 and the indices are 7 or 8 .
(a) Assume that the set of regular roots in Ψ is of type $D_{6} \times A_{1} \times A_{1}$. If only one of $6,7,8$ belongs to I (as defined in (3.1)), say $6 \in I$ without loss of generality, then the regular roots $e_{i} \pm e_{j}$ for $j \in\{7,8\}$ and $i \in\{1, \ldots, 5\}, e_{6} \pm e_{8}$
and $e_{7}+e_{6}$ are all good roots in S_{7}. A simple cardinality argument shows there are at least 16 good peculiar roots in S_{7}, for a total of at least 39 good roots. Otherwise, two or more of the indices $6,7,8$ belong to I and then one of the indices $j_{0} \in\{1,2,3,4,5\}$ is not in I. Consequently neither of the roots $e_{i} \pm e_{j_{0}}$, for any (fixed) choice of $i \in\{1, \ldots, 5\} \cap I$, belong to the $D_{6} \times A_{1} \times A_{1}$ root subsystem, and therefore neither belong to Ψ. Lemma 3.5 implies S_{7} contains at least 24 good peculiar roots. Since the regular roots in S_{7} of the form $e_{i} \pm e_{j}$, with $i \in I$ and $j \in J$, are good roots, one can verify that S_{7} contains at least 12 good regular roots, for a total of 36 good roots. In either case, we may conclude that $\kappa(7, \Psi) \leq 3$ and $\kappa(8,7, \Psi) \leq 3$.

Last, we suppose that $l=1, i_{1}=8$. If both $7,8 \in J$, then the roots $e_{i} \pm e_{j}$, for $j \in\{7,8\}$ and $i \in\{1, \ldots, 6\}$, are all good regular roots in S_{8}. Hence $\left|G_{1}\right| \geq 24$ and $\left|B_{1}\right| \leq 57-24=33$ and this obviously implies $\kappa(8, \Psi) \leq 3$. Otherwise, there must be a pair $e_{i} \pm e_{j}$, with $i, j \in\{1, \ldots, 6\}$, in $\Phi \backslash \Psi$. Lemma 3.4(a) implies there are at least 16 good peculiar roots in S_{8}. An easy argument shows that there are also at least 8 good regular roots, so again we see $\left|G_{1}\right| \geq 24$.
(b) Otherwise the set of regular roots in Ψ is of type A_{7}. Since A_{7} contains only one of each pair, $e_{i} \pm e_{j}$, the set S_{7} contains at least 17 good regular roots, the set $S_{7} \cup S_{8}$ contains at least 18 and the set S_{8} at least 12. A simple cardinality argument shows that S_{7}, and therefore also $S_{7} \cup S_{8}$, contains at least 12 good peculiar roots. By Lemma 3.4(b), S_{8} has at least 8 good peculiar roots. Thus S_{7} has at least 29 good and at most 54 bad roots, S_{8} has at least 20 good and at most 37 bad roots, and $S_{7} \cup S_{8}$ has at least 30 good and at most 54 bad roots. Thus if $i_{1}=7$ or 8 and $l=1$, or $i_{1}, i_{2}=8,7$ and $l=2$, we have $\sum_{j=1}^{l}\left(2\left|G_{j}\right|-\left|B_{j}\right|\right)>\frac{1}{2} l$.

This completes the argument that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$ for all indices i_{1}, \ldots, i_{l} when Ψ is of type $E_{7} \times A_{1}$.

3.2.2. Case 2: Ψ is of type D_{8}.

As with Case 1, we begin by considering the root subsystem consisting of the regular roots in Ψ. Lemma 3.3 implies that if some pair $e_{i} \pm e_{j}$ were contained in $\Phi \backslash \Psi$, then Ψ would have at least 24 regular positive roots. This means that the root subsystem consisting of the regular roots in Ψ is one of the following types: $D_{8}, A_{7}, D_{7}, D_{6} \times A_{1} \times A_{1}, D_{6} \times A_{1}, D_{6}, D_{5} \times D_{3}$ and $D_{4} \times D_{4}$. Of course, a root system of type D_{m}, which consists only of regular roots, must have the form $\left\{e_{i} \pm e_{j}: i, j \in I\right\}$ where the index set $I \subseteq\{1, \ldots, 8\}$ is of cardinality m.

We remark that if the indices $1 \leq i_{l}<\cdots<i_{1} \leq 8$ are chosen so that $\left|S_{i_{1}} \cup \cdots \cup S_{i_{l}}\right| \geq 87$, then

$$
\sum_{j=1}^{l}\left(2\left|G_{j}\right|-\left|B_{j}\right|\right) \geq 62-56>\frac{8}{2}
$$

and thus $\kappa \leq 3$. More generally, if $\sum_{j=1}^{l}\left|G_{j}\right| \geq 31$, we may also conclude $\kappa \leq 3$. Since $\left|S_{j}\right| \geq 92$ if $j=2, \ldots, 6$ and S_{1} contains at least 32 good peculiar roots, we only need to further investigate the cases where $l=1,2$ and $i_{j}=7,8$.
(a) Assume the set of regular roots are either type D_{7} or D_{8}. Then Ψ^{+}has either zero or 14 peculiar roots. In either case, S_{7} and $S_{7} \cup S_{8}$ contain at least 34
good peculiar roots, which is enough to ensure $\kappa \leq 3$ if $l=2$ or $l=1$ and $i_{1}=7$. The set S_{8} contains 32 good peculiar roots in the D_{8} case and 18 otherwise. But in the latter case, there are also at least four good regular roots. Thus S_{8} contains at least 22 good roots and at most 35 bad roots, which shows $\kappa(8, \Psi) \leq 3$.
(b) Assume the set of regular roots is of type A_{7}. Then Ψ^{+}contains 28 regular and 28 peculiar roots. As one of each pair, $e_{i} \pm e_{j}$, is a good root, the set S_{7} and $S_{7} \cup S_{8}$ therefore contains at least 20 good peculiar roots and at least 17 good regular roots, for a total of 37 good roots. Similarly, S_{8} contains at least 12 good regular roots and by Lemma 3.4(b), at least 8 good peculiar roots. Thus S_{8} contains at least 20 good roots and at most 37 bad roots. In all these cases we may conclude $\kappa \leq 3$.
(c) Assume the set of regular roots are types $D_{6} \times A_{1} \times A_{1}, D_{6} \times A_{1}$ or D_{6}. Then Ψ^{+}has at most 26 peculiar roots, assuring that S_{7} contains at least 22 good peculiar roots. By considering which of $6,7,8$ belong to the set of six indices generating the D_{6}, one can check that there are at least 12 good regular roots in S_{7}, for a total of 34 good roots.

If D_{6} is not based on the indices $\{1, \ldots, 6\}$, then Lemma 3.4 (a) implies S_{8} has at least 16 good peculiar roots and at least 8 good regular roots, for a total of 24 good and 33 bad roots. Otherwise, all the regular roots in S_{8} are good. Either situation yields $\kappa \leq 3$.
(d) If the set of regular roots is of type $D_{5} \times D_{3}$ or $D_{4} \times D_{4}$ the reasoning is similar.

This completes the argument that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 3$ when Ψ is type D_{8}.

3.2.3. Case 3: Ψ is of type $E_{6} \times A_{2}$.

Since $\left|S_{j}\right| \geq 78$ for all $j \neq 8$, each of these sets contains at least 39 good roots. As $2 \times 39-39>\frac{8}{2}$, it only remains to consider the case where $l=1, i_{1}=8$.

As usual, consider the set of regular roots in Ψ and suppose first that they form a root system of type $A_{5} \times A_{1} \times A_{1}, A_{5} \times A_{1}$ or A_{5}, with the A_{5} constructed on the indices $\{1, \ldots, 6\}$, in all cases. Then all the roots $e_{i} \pm e_{j}, i=7,8$ and $j=1, \ldots, 6$ are good and this is sufficient to see that $\kappa \leq 3$.

Otherwise, an application of Lemma 3.4(a) ensures that the set S_{8} contains at least 16 good peculiar roots. One can verify there are at most 17 positive regular roots in Ψ if the set of regular roots is of type $A_{j_{1}} \times \cdots \times A_{j_{t}}$. Otherwise the set of regular roots is a subset of a root system of type $D_{5} \times A_{2}$, and thus has at most 23 positive roots. In addition to the 16 good peculiar roots in S_{8}, by considering which of the five indices is the index set for the D_{5} one can easily verify that S_{8} also contains at least 12 good regular roots.

This completes the argument that $\kappa \leq 3$ when the maximal root subsystem is $E_{6} \times A_{2}$ and concludes the proof of the theorem for E_{8}.
3.3. Exceptional groups of type E_{6} and E_{7}. The arguments for E_{6} and E_{7} are similar. We sketch the main ideas.
3.4. Proof of Theorem 3.1 for E_{6}. The fundamental dominant weights are listed in [8] and the corresponding sets S_{j} are described in Table 3, with the number of regular and peculiar positive roots given in brackets.

Table 3: The possibilities for the sets S_{j} for the case of E_{6}

	Positive Regular roots	$\#$	Positive Peculiar roots	$\#$
S_{1}	none	0	all	16
S_{2}	$e_{i}+e_{j}:$ $i, j=1, \ldots, 5$	10	all but $P_{q}^{-}:$ $q=1, \ldots, 5$	11
S_{3}	$e_{i}+e_{j}, e_{1}-e_{i}:$ $i, j=2, \ldots, 5$	10	all but P_{1}^{-}	15
S_{4}	$e_{i}+e_{j}, e_{k} \pm e_{j}:$ $i, j=3,4,5, k=1,2$	15	all but P_{1}^{-}, P_{2}^{-}	14
S_{5}	$e_{4}+e_{5}, e_{k} \pm e_{j}:$ $j=4,5, k=1,2,3$	13	all but $P_{4567}, P_{i}^{-}:$ $i=1,2,3$	12
S_{6}	$e_{i} \pm e_{5}:$ $i=1, \ldots, 4$	8	$P_{67}, P_{5}^{-}, P_{i j 67}:$ $i, j=1, \ldots, 4$	8

In the same fashion as the earlier lemmas, one can prove the following results.

Lemma 3.7. Assume Ψ is a root subsystem of E_{6}.
(a) If there is some $i, j \in\{1, \ldots, 5\}$ such that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, then Ψ contains at most 8 positive peculiar roots.
(b) If there is some $i, j \in\{1, \ldots, 4\}$ such that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, then $\Psi \cap S_{6}$ contains at most 4 peculiar roots and $\Psi \cap S_{2}$ contains at most 7 peculiar roots.
(c) If there is some $i, j \in\{1, \ldots, 3\}$ such that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, then $\Psi \cap S_{5}$ contains at most 6 peculiar roots.
(d) If Ψ does not contain one of $e_{i} \pm e_{j}$, for some $i, j \in\{1, \ldots, 4\}, i \neq j$, then there are most 6 peculiar roots in $\Psi \cap S_{6}$.

The maximal root subsystems of E_{6} are of types $A_{2} \times A_{2} \times A_{2}, A_{5} \times A_{1}$ and D_{5} with 9,16 and 20 positive roots, respectively [10, p. 136]. The argument that $\kappa\left(i_{l}, \ldots, i_{1}, \Psi\right) \leq 3$ is very easy for $A_{2} \times A_{2} \times A_{2}$ and is left to the reader.

Suppose that Ψ is of type $A_{5} \times A_{1}$. Since the set of regular roots of E_{6} is of type D_{5}, one can use Lemma 3.7(a) to deduce that the set of regular roots in Ψ is either of type A_{4} or $D_{3} \times D_{2}$. The fact that an A_{4} root subsystem contains only one of each pair $e_{i} \pm e_{j}$, and at most six roots of the form $e_{i}+e_{j}$, makes it easy to check that $\kappa \leq 3$ in this case. When the set of regular roots is of type $D_{3} \times D_{2}$, Lemma 3.7(b) can be used to count good and bad roots and verify that $\kappa \leq 3$.

Now suppose that Ψ is of type D_{5}. This is the case if, for example, $\Psi=$ $\Phi(X)$ or $\Psi=\Phi(x)$, where $X=(0,0,0,0,0,-1,-1,1) \in \mathfrak{t}$ and $x=\exp X \in \mathbb{T}$, under the natural identification of the torus of E_{6} with the suitable 6 dimensional subspace of \mathbb{R}^{8}. The elements X and x have 32 non-annihilating roots. As the dimension of E_{6} is 78, Lemma 2.1 implies μ_{X}^{2} and μ_{x}^{2} are singular measures, and
$O_{X}+O_{X}$ and C_{x}^{2} have Haar measure zero.
Our usual arguments show that the set of regular roots must be of type D_{5}, D_{4} or A_{4}. The D_{5} case is trivial since all the peculiar roots are good. When the set of regular roots is of type D_{4}, then a pair $e_{i} \pm e_{j} \in \Phi \backslash \Psi$ for some $i, j=1, \ldots, 4$, so Lemma 3.7(b) applies. Part (c) is also helpful in counting good and bad roots. The argument that $\kappa \leq 3$ is entirely routine, but somewhat tedious because of the number of sets $S_{j} \cup S_{k}$, which must be considered.

The arguments are the most delicate when the set of regular roots is of type A_{4}, say $\left\{s_{i} e_{i}-s_{j} e_{j}: i \neq j=1, \ldots, 5\right\}$, for a suitable choice of signs $s_{i}= \pm 1$. There is no loss of generality in assuming that $s_{i}=-1$ for an even number of i, and thus with a suitable Weyl conjugation, ω, consisting of an even number of sign changes, we may suppose that $\omega(\Psi)=\Psi^{\prime}$ is of type D_{5} and has a standard A_{4} (by which we mean all $s_{i}=+1$) as its set of regular roots. This new set Ψ^{\prime} has 10 regular and 10 peculiar positive roots.

If the peculiar root $P_{67} \in \Psi^{\prime}$, then no peculiar root of the form $P_{i j 67}$ belongs to Ψ^{\prime} since $P_{67}-P_{i j 67}=e_{i}+e_{j}$ does not belong to Ψ^{\prime}. It follows that Ψ^{\prime} contains at most six peculiar roots, namely, the roots P_{67} and P_{q}^{-}for $q=1, \ldots, 5$, which is a contradiction. Similarly, if $P_{q}^{-} \in \Psi^{\prime}$ for some $q \in\{1, \ldots, 5\}$, then since $P_{q}^{-}-\left(e_{q}-e_{l}\right)=P_{l}^{-}$, all P_{l}^{-}must belong to Ψ^{\prime}. Since $P_{i j 67}-P_{i j k l 67}=e_{k}+e_{l}$, no $P_{i j 67}$ belongs to Ψ^{\prime}. Again this gives an insufficient number of peculiar roots.

So it must be that the 10 peculiar roots in Ψ^{\prime} are precisely the set $P^{(2)}=$ $\left\{P_{i j 67}: i, j=1, \ldots, 5, i \neq j\right\}$. Hence Ψ is $P^{(2)} \cup\left\{e_{i}-e_{j}: i, j=1, \ldots, 5, i \neq j\right\}$ or is the conjugate of this set under an element of the Weyl group, with the Weyl group element being either two or four sign changes. In the first case the counting is straightforward. Otherwise, it is perhaps easiest to apply the Weyl conjugation to the sets S_{j} and assume that Ψ is in standard form. The arguments are elementary, but require some consideration of which signs are the ones that are changed. The details are straightforward and are left to the reader.
3.5. Proof of Theorem 3.1 for E_{7}. The fundamental dominant weights are listed in [8], and the corresponding sets S_{j} are listed in Table 4 together with the numbers of regular and peculiar roots.

As with E_{8}, one can prove the following elementary facts.
Lemma 3.8. Assume that Ψ is a root subsystem of E_{7}.
(a) If there is some $i, j \in\{1, \ldots, 6\}$ such that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, or if $e_{7}-e_{8} \in \Phi \backslash \Psi$, then Ψ contains at most 16 positive peculiar roots.
(b) If there is some $i, j \in\{1, \ldots, 5\}$ such that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, then $\Psi \cap S_{7}$ contains at most 8 peculiar roots.
(c) If there is some $i, j \in\{1, \ldots, 4\}$ such that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, then $\Psi \cap S_{6}$ contains at most 12 peculiar roots.
(d) If there is some $i, j \in\{1, \ldots, 3\}$ such that $e_{i} \pm e_{j} \in \Phi \backslash \Psi$, then $\Psi \cap S_{5}$ contains at most 14 peculiar roots.
(e) If Ψ^{+}contains at most one of each pair $e_{i} \pm e_{j}$ and $e_{k} \pm e_{l}$, for some $i, j, k, l \in\{1, \ldots, 5\}$, then there are most 10 peculiar roots in $\Psi \cap S_{7}$.

The maximal root subsystems are of types $A_{5} \times A_{2}, A_{7}, A_{1} \times D_{6}$ and E_{6}

Table 4: The possibilities for the sets S_{j} for the case of E_{7}

	Positive Regular roots	\#	Positive Peculiar roots	\#
S_{1}	$e_{7}-e_{8}$	1	all	32
S_{2}	$\begin{gathered} e_{7}-e_{8}, e_{i}+e_{j}: \\ i, j=1, \ldots, 6 \end{gathered}$	16	$\begin{aligned} & \text { all but } P_{q}^{-}: \\ & q=1, \ldots, 6 \end{aligned}$	26
S_{3}	$\begin{gathered} e_{7}-e_{8}, e_{i}+e_{j}, e_{1}-e_{j}: \\ i, j=2, \ldots, 6 \end{gathered}$	16	all but P_{1}^{-}	31
S_{4}	$\begin{gathered} e_{7}-e_{8}, e_{i}+e_{j}, \quad e_{k} \pm e_{j}: \\ i, j=3, \ldots, 6, \quad k=1,2 \end{gathered}$	23	all but P_{1}, P_{2}	30
S_{5}	$\begin{aligned} & e_{7}-e_{8}, e_{i}+e_{j}, e_{k} \pm e_{j}: \\ & i, j=4,5,6, k=1,2,3 \end{aligned}$	22	$\begin{aligned} & \text { all but } P_{4567}, P_{j}^{-}: \\ & \quad j=1,2,3 \end{aligned}$	28
S_{6}	$\begin{gathered} e_{7}-e_{8}, \quad e_{5}+e_{6}, \quad e_{k} \pm e_{j}: \\ j=5,6, \quad k=1,2,3,4 \end{gathered}$	18	$\begin{aligned} & \text { all but } P_{j}^{-}, P_{j 567}: \\ & \quad j=1,2,3,4 \end{aligned}$	24
S_{7}	$\begin{gathered} e_{7}-e_{8}, e_{i} \pm e_{6}: \\ i=1, \ldots, 5 \end{gathered}$	11	$\begin{aligned} & P_{6}^{-}, P_{j 7}, P_{i j k 7}: \\ & i, j, k=1, \ldots, 5 \end{aligned}$	16

with 18, 28, 31 and 36 positive roots, respectively [10, p. 136]. The arguments are fairly straightforward for the case of $A_{5} \times A_{2}$.

We first sketch the key ideas when the root subsystem is of type A_{7}. The set of regular roots of E_{7} is of type $D_{6} \times A_{1}$, so our usual arguments, using part (a) of the lemma, allow us to deduce that the subset of regular roots must be either type $A_{5}, A_{5} \times A_{1}$ or $D_{3} \times D_{3}$. In the first two cases there are either 15 regular and 13 peculiar positive roots, or 16 and 12 , respectively. The fact that A_{5} contains at most 9 roots of the form $e_{i}+e_{j}$ is useful for the analysis of S_{2}. Lemma 3.8(e) is helpful for the set S_{7}. The desired calculations for the other sets, S_{j}, follow easily from cardinality arguments. If the set of regular roots is type $D_{3} \times D_{3}$, then for some $i, j \in\{1, \ldots, 5\}$, the pair of regular roots $e_{i} \pm e_{j}$ belongs to $\Phi \backslash \Psi$. Part (b) of the lemma can be applied and we argue in the customary fashion.

Next, suppose that the root subsystem is of type $A_{1} \times D_{6}$. Then the set of regular roots must be of type $A_{1} \times D_{6}, D_{6}, D_{5} \times A_{1}, D_{5}, D_{4} \times A_{1} \times A_{1} \times A_{1}$, $A_{5} \times A_{1}$ or A_{5}. No special tricks are needed here. The first two cases are easy as then Ψ has at most one peculiar root. For $A_{5} \times A_{1}$ or A_{5}, use part (e) of the lemma. For $D_{5} \times A_{1}$ or D_{5}, either (b) of the lemma applies or the root system of type D_{5} must be built on indices $\{1, \ldots, 5\}$, in which case S_{7} contains at least 10 good regular roots. The analysis for the other sets, S_{j}, is routine. In the case when the regular roots form a root system of type $D_{4} \times A_{1} \times A_{1} \times A_{1}$ use (b) again.

The case when the root subsystem Ψ is of type E_{6} is the difficult (and sharp) case. The set of annihilating roots of

$$
X=\left(0, \ldots, 0, \frac{1}{2}, \frac{1}{2}, 1\right) \in \mathfrak{t}
$$

is of type E_{6}. Since $\operatorname{dim}\left(E_{7}\right)=133$, the measures μ_{X}^{2} and $\mu_{\exp x}^{2}$ are singular, and
$O_{X}+O_{X}$ and $C_{\exp X}^{2}$ have measure zero.
All the root subsystems of Ψ that are contained in one of type $D_{6} \times A_{1}$, with the exception of D_{5}, A_{5}, or $A_{5} \times A_{1}$, have cardinality at most 12 and omit a pair, $e_{i} \pm e_{j}$, where $i, j \in\{1, \ldots, 6\}$. Together with Lemma 3.8(a), this implies that Ψ could have only 28 positive roots, which is a contradiction. If the set of regular roots is of type A_{5}, then $e_{7}-e_{8}$ is omitted and the same reasoning applies. Thus the set of regular roots is either of type D_{5} or $A_{5} \times A_{1}$.

Parts (c) and (d) of the lemma are useful in handling the case when the set of regular roots is of type D_{5}. In addition to the sets S_{j}, a number of the pairs $S_{j} \cup S_{k}$ need to be considered, but no new ideas are required.

Last, suppose that the set of regular roots in Ψ form a subsystem of type $A_{5} \times A_{1}$. This means Ψ^{+}has 16 regular and 20 peculiar positive roots. The regular roots must have the form

$$
\left\{s_{i} e_{i}-s_{j} e_{j}: i, j=1, \ldots, 6, i \neq j\right\} \cup\left\{ \pm\left(e_{7}-e_{8}\right)\right\}
$$

First, suppose that an odd number of $s_{i}=-1$. Letting ω be the Weyl conjugation with an even number of sign changes and permuting the indices in $\{1, \ldots, 6\}$, as necessary, we can assume that only $s_{1}=-1$. The 32 positive peculiar roots of E_{7} may be paired as follows:

P_{1237}, P_{6}^{-}	P_{1247}, P_{5}^{-}	P_{1257}, P_{4}^{-}	P_{1267}, P_{3}^{-}	P_{1347}, P_{2}^{-}	P_{4567}, P_{1}^{-}
P_{17}, P_{1457}	P_{27}, P_{2347}	P_{37}, P_{3457}	P_{47}, P_{2457}	P_{57}, P_{2357}	P_{67}, P_{2367}
P_{1357}, P_{3567}	P_{1367}, P_{3467}	P_{1467}, P_{2467}	P_{1567}, P_{4567}.		

The last four pairs have the property that their difference is $e_{j}-e_{1}$, none of which belong to Ψ. All the other pairs have the property that their difference is one of $e_{j}+e_{k}$ where $j, k \in\{2, \ldots, 6\}$, and none of these belong to Ψ. Consequently, Ψ has only one of each pair, for a maximum of 16 peculiar roots. But Ψ contains 20 peculiar positive roots, so this is impossible.

Hence there must be an even number of $s_{i}=-1$ and after applying a Weyl conjugation ω, with an even number of sign changes, we may suppose that all $s_{i}=+1$ in $\omega(\Psi)$. Note that if for one index i, the root $P_{i 7} \in \omega(\Psi)$, then since $P_{j 7}=P_{i 7}+e_{i}-e_{j}$, all $P_{j 7} \in \omega(\Psi)$. Also, $P_{i 7}-P_{i j k 7}=e_{j}+e_{k} \notin \omega(\Psi)$, so none of the peculiar roots $P_{i j k 7}$ would belong to $\omega(\Psi)$. This implies the only positive peculiar roots in $\omega(\Psi)$ are the 12 peculiar roots $P_{i 7}$ or $P_{i}^{-}, i=1, \ldots, 6$. But $\omega(\Psi)$ has 20 positive peculiar roots. The arguments are similar if $\omega(\Psi)$ contains one P_{i}^{-}. Thus $\omega(\Psi)$ must consist of the 20 positive peculiar roots $P_{i j k 7}$ (where $i, j, k=1, \ldots, 6)$ and their negatives, the roots $e_{i}-e_{j}$ (where $i, j=1, \ldots, 6$), and $\pm\left(e_{7}-e_{8}\right)$.

If the Weyl conjugation ω is the identity it is easy to do the counting with the sets S_{j}. Otherwise, we may suppose that ω is two sign changes and instead do the counting of $\omega(\Psi)$ in $\omega\left(S_{j}\right)$. This completes the proof for the exceptional Lie group and algebra of type E_{7}.

4. The Exceptional Lie groups and algebras F_{4} and \boldsymbol{G}_{2}

Theorem 4.1. (a) If G is the compact Lie group of type F_{4} (or of type G_{2}) then $\mu_{x}^{4} \in L^{2}(G)$ (or $\mu_{x}^{3} \in L^{2}(G)$ respectively) for all continuous orbital measures on G. There exists $x \in G$ such that the measure of C_{x}^{3} (respectively, C_{x}^{2}) is zero and $\mu_{x}^{3}\left(\right.$ or $\left.\mu_{x}^{2}\right)$ is singular with respect to Haar measure on G.
(b) If \mathfrak{g} is the compact Lie algebra of type F_{4} or G_{2}, then $\mu_{X}^{2} \in L^{2}(\mathfrak{g})$ for all continuous orbital measures on \mathfrak{g}.

Proof. We use a similar strategy to that used for the exceptional groups E_{n}. In particular, we continue to use the notation S_{j} and $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right)$, and speak of the good and bad roots.

4.1.1. The case of F_{4}

Note that F_{4} has 12 long positive roots, $e_{i} \pm e_{j}$, where $i, j=1, \ldots, 4$ and $i<j$, and 12 short positive roots, these being the four roots e_{i}, (where $i=1, \ldots, 4$), and the 8 peculiar positive roots. The sets S_{j} are easily seen to be as follows:

$$
\begin{aligned}
S_{1}= & \left\{e_{i}, e_{1}+e_{2}, e_{i} \pm e_{j}: i=1,2, j=3,4\right\} \cup\left\{\frac{1}{2}\left(e_{1}+e_{2} \pm e_{3} \pm e_{4}\right)\right\}, \\
S_{2}= & \left\{e_{1}, e_{2}, e_{3}, \text { all } e_{i} \pm e_{j} \text { except } e_{2}-e_{3}\right\} \\
& \cup\left\{\frac{1}{2}\left(e_{1}+e_{2} \pm e_{3} \pm e_{4}\right), \frac{1}{2}\left(e_{1}-e_{2}+e_{3} \pm e_{4}\right)\right\}, \\
S_{3}= & \left\{e_{1}, e_{i}, e_{1} \pm e_{j}, e_{i}+e_{j}: i, j=2,3,4\right\} \\
& \cup\left\{\frac{1}{2}\left(e_{1}+e_{2} \pm e_{3} \pm e_{4}\right), \frac{1}{2}\left(e_{1}-e_{2}+e_{3} \pm e_{4}\right), \frac{1}{2}\left(e_{1}-e_{2}-e_{3}+e_{4}\right)\right\}, \\
S_{4}= & \left\{e_{1}, e_{1} \pm e_{j}: j=2,3,4\right\} \cup\left\{\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\} .
\end{aligned}
$$

These sets have cardinalities $15,20,20$ and 15 respectively.
The maximal root subsystems of F_{4} are of types $B_{4}, C_{3} \times A_{1}$ and $A_{2} \times A_{2}$, with 16,10 and 6 positive roots, respectively. Since the cardinality of each set S_{j} is at least 15 , a trivial counting argument shows that $\kappa\left(i_{1}, \ldots, i_{l}, \Psi\right) \leq 4$ if Ψ is either of type $C_{3} \times A_{1}$ or $A_{2} \times A_{2}$.

We identify the torus of the Lie algebra of F_{4} with \mathbb{R}^{4} and consider the group element $x=\exp (\pi, \pi, \pi, \pi) \in \mathbb{T}$. Its set of annihilating roots,

$$
\Phi(x)=\left\{ \pm e_{i} \pm e_{j}, \frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}
$$

is of type B_{4}, and the usual appeal to Lemma 2.1 shows that μ_{x}^{3} is singular and $m_{G}\left(C_{x}^{2}\right)=0$.

A root subsystem of type B_{4} has 12 long and 4 short positive roots. The 12 long positive roots must be the roots, $e_{i} \pm e_{j}$ where $i, j=1, \ldots, 4$ and $i<j$. The four short roots are mutually orthogonal, and so must be either the four short regular roots, e_{i}, where $i=1, \ldots, 4$, or four mutually orthogonal, peculiar positive roots. In the first case, it is simple to count the good and bad roots. In the second case, we remark that the four peculiar roots must have the same parity in their number of minus signs and this fact makes the counting straightforward to verify that $\kappa \leq 4$.

Now consider the Lie algebra of type F_{4}. A rank four root subsystem cannot be the set of annihilating roots of a non-zero element in the Lie algebra, hence the root subsystems we need to consider are those of type $B_{3}, C_{3}, B_{2} \times A_{1}, A_{3}$ and $A_{1} \times A_{1} \times A_{1}$. Since $\left|S_{j}\right| \geq 15$ for all j, the latter three root subsystems, with at most six positive roots, trivially satisfy $\kappa \leq 2$. This leaves B_{3} and C_{3} to study.

In a root subsystem, Ψ, of type B_{3}, there are three mutually orthogonal, positive short roots and six positive long roots. Consequently, the short roots are either three of e_{1}, \ldots, e_{4}, or three peculiar roots from one of the two sets of four mutually orthogonal, peculiar roots. (These are the two sets of four peculiar roots with the same parity of minus signs.) Since sums or differences of annihilating roots are also annihilating roots, in the first case we see that Ψ is a standard B_{3}, on three of the four indices, and it is easy to check that taking $\kappa=2$ works. In the second case, by taking sums or differences of the three annihilating peculiar roots, one can show that the six long roots form a root subsystem of type A_{3} on the indices $\{1,2,3,4\}$. For example, if the three peculiar roots are $\frac{1}{2}\left(e_{1}+e_{2} \pm\left(e_{3}+e_{4}\right)\right)$ and $\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}\right)$, then taking sums and differences we see that

$$
\left\{e_{1}+e_{2}, e_{1}+e_{3}, e_{1}-e_{4}, e_{3}+e_{4}, e_{2}+e_{4}, e_{2}-e_{3}\right\}
$$

is the set of long roots. More generally, Ψ is simply a change in signs from this particular case. In particular, the long roots have the property that for each pair, i, j, one of $e_{i} \pm e_{j}$ is a good root and the other is bad. With this observation the counting is easy.

A root subsystem of type C_{3} has six short and three long positive roots. The short roots come in orthogonal pairs, which are not orthogonal to any other short root. Thus the short roots must consist of e_{i}, e_{j} and two pairs of peculiar roots, one pair from each of the subsets of four that are mutually orthogonal. Being mutually orthogonal, the three long roots must consist of the pair $e_{i} \pm e_{j}$ and one of $e_{k} \pm e_{l}$. We assume that the third root is $e_{k}+e_{l}$, without loss of generality. Each pair of short roots is orthogonal to one of the long roots. The pair, e_{i}, e_{j}, is orthogonal to $e_{k}+e_{l}$. The two pairs of peculiar roots must be orthogonal to $e_{i} \pm e_{j}$ and not orthogonal to the root $e_{k}+e_{l}$, hence they must be the roots $\frac{1}{2}\left(e_{i} \pm e_{j} \pm\left(e_{k}+e_{l}\right)\right)$. By considering the possibilities for i, j, k, l chosen from $\{1,2,3,4\}$, one can verify that $\kappa \leq 2$.

This completes the argument for F_{4}.

4.1.2. The case of G_{2}.

It was already noted in [8] that $\mu_{x}^{3} \in L^{2}(G)$ for any continuous, orbital measure on the Lie group of type G_{2}. The element $x=\exp \left(2 \pi,-\frac{4}{3} \pi,-\frac{2}{3} \pi\right) \in \mathbb{T}$ is of type A_{2}, with the three long roots being its annihilators. Thus μ_{x}^{2} is singular with respect to Haar measure and $m_{G}\left(C_{x}^{2}\right)=0$.

In the Lie algebra of type G_{2}, the set of annihilating roots of a non-zero element cannot have rank 2. Thus an element has either no annihilating roots or one positive annihilating root. Since the sets S_{1}, S_{2} (listed in [8]) each have five elements, it follows trivially that $\kappa_{0}=2$.

5. Concluding remarks

Ragozin [12] proved that if $n=\operatorname{dim}(G)$ and μ_{1}, \ldots, μ_{n} are continuous, G-invariant measures on G, then $\mu_{1} * \cdots * \mu_{n}$ is absolutely continuous with respect to m_{G}, and if $x_{1}, \ldots, x_{n} \in \mathbb{T}$ are not in the center of G, then $C_{x_{1}} \cdots C_{x_{n}}$ has non-empty interior in G. We improve these results, as well, for the exceptional Lie groups and algebras.

Corollary 5.1. Let G be a compact, connected, simple, exceptional Lie group and let \mathfrak{g} be its Lie algebra. Let k_{0} be as given in (1.1). Then the following hold.
(i) $\mu^{k} \in L^{2}$ for all continuous orbital measures μ on G or \mathfrak{g} if and only if $k \geq k_{0}$. Furthermore, there is a continuous orbital measure μ such that $\mu^{k_{0}-1}$ is singular with respect to Haar measure.
(ii) The convolution products $\mu_{1} * \cdots * \mu_{k}$ belong to L^{2} for all continuous orbital measures μ_{j} if and only if $k \geq k_{0}$.
(iii) The set $O_{1}+\cdots+O_{k}$ (or $C_{1} \cdots C_{k}$) has non-empty interior for all non-trivial adjoint orbits $O_{j} \subseteq \mathfrak{g}$ (or non-trivial conjugacy classes $C_{j} \subseteq G$ respectively) if and only if $k \geq k_{0}$.
(iv) The measures $\mu_{1} * \cdots * \mu_{k}$ are absolutely continuous with respect to Haar measure for all G-invariant, continuous measures μ_{j} on G or \mathfrak{g} if and only if $k \geq k_{0}$.

Proof. Part (i) is established in Theorems 3.1 and 4.1 of this paper and part (ii) follows as a direct consequence of Hölder's inequality.

For part (iii), we note that k_{0}-fold sums (or products) of non-trivial adjoint orbits (respectively, conjugacy classes) support probability measures that are absolutely continuous with respect to Haar measure, and consequently must have positive measure. It is known that for these sets having positive measure is equivalent to having non-empty interior (see [12]). Our theorems show the necessity of the choice of k_{0}.

Finally, part (iv), the sharp answer to Ragozin's absolute continuity problem, follows from part (iii) by the same reasoning as used in [12].

In Table 5, we record information about the non-trivial adjoint orbits and conjugacy classes that are minimal in dimension.

Ragozin conjectured that the sharp answer to the absolute continuity problem would be $\left\lceil\operatorname{dim}(G) / \min _{x}\left(\operatorname{dim}\left(C_{x}\right)\right)\right\rceil$, where x varies over the non-central elements of G; by $\lceil s\rceil$ we mean the least integer greater or equal to s. As Lemma 2.1 shows, this is the least possible answer; this integer is always too small for the classical Lie groups and algebras. In contrast, our results imply that Ragozin's conjecture is correct for all the exceptional Lie groups and algebras.

Note also that in each case it was the adjoint orbits or conjugacy classes of minimal dimension, and their orbital measures, that were used to demonstrate the sharpness of the choice of k_{0}. Thus the following L^{2}-singular dichotomy holds, as in the classical case.

Table 5: Minimal dimension conjugacy classes and orbits

Lie Type	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}
Dimension	14	52	78	133	248
Type of minimal conjugacy class	A_{2}	B_{4}	D_{5}	E_{6}	$E_{7} \times A_{1}$
Type of minimal orbit	A_{1}	B_{3}, C_{3}	D_{5}	E_{6}	E_{7}
Dimension of minimal conjugacy class	6	16	32	62	112
Dimension of minimal orbit	10	30	32	62	114

Corollary 5.2. Suppose that $x \in G$ generates a non-trivial conjugacy class of minimal dimension. The orbital measure μ_{x} satisfies the dichotomy that either μ_{x}^{k} is singular with respect to Haar measure on G, or $\mu_{x}^{k} \in L^{2}(G)$. A similar statement holds for μ_{X} when X generates a non-trivial, adjoint orbit of minimal dimension in \mathfrak{g}.

References

[1] Bröcker, T., and T. tom Dieck, "Representations of Compact Lie Groups," Springer, New York, 1985.
[2] Dooley, A. H., J. Repka, and N. J. Wildberger, Sums of adjoint orbits, Linear and Multilinear Algebra 36 (1993), 79-101.
[3] Dooley, A. H., and N. J. Wildberger, Harmonic analysis and the global exponential map for compact Lie groups, Funct. Anal. Appl. 27 (1993), 21-27.
[4] Gupta, S. K., and K. E. Hare, Singularity of orbits in $S U(n)$, Israel J. Math. 130 (2002), 93-107.
[5] -, Singularity of orbits in classical Lie algebras, Geom. Funct. Anal. 13 (2003), 815-844.
[6] -, L^{2}-singular dichotomy for orbital measures of classical simple Lie algebras of classical compact Lie groups, Adv. Math. 222 (2009), 1521-1573.
[7] Gupta, S. K., K. E. Hare, and S. Seyfaddini, L^{2}-singular dichotomy for orbital measures of classical simple Lie algebras, Math. Z. 262 (2009), 91-124.
[8] Hare, K. E., and K. Yeats, Size of characters of exceptional Lie groups, J. Aust. Math. Soc. 77 (2004), 1-16.
[9] Humphreys, J. E., "Introduction to Lie Algebras and Representation Theory," Springer Verlag, New York, 1994.
[10] Kane, R., "Reflection Groups and Invariant Theory," Can. Math. Soc. Books in Math. 5, Springer-Verlag, New York, 2001.
[11] Mimura, M., and H. Toda, "Topology of Lie groups," Transl. Math. Monographs 91, Amer. Math. Soc., Providence, R.I., 1991.
[12] Ragozin, D. L., Central measures on compact simple Lie groups, J. Funct. Anal. 10 (1972), 212-229.
[13] Ricci, F., and E. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), 56-84.
[14] -, Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389.
[15] Wildberger, N. J., On a relationship between adjoint orbits and conjugacy classes of a Lie group, Canad. Math. Bull. 33 (1990), 297-304.

Kathryn Hare
Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1
kehare@uwaterloo.ca

Paul Skoufranis
Department of Mathematics UCLA
Los Angeles, CA 90095-1555
USA
pskoufra@math.ucla.edu

[^0]: *This research was supported in part by NSERC.

[^1]: ${ }^{1}$ The dimensions of these groups are listed in Table 5 for comparison with Ragozin's result.

