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Abstract. Suppose that G is a compact, connected, simple, exceptional Lie
group with Lie algebra g . We determine the sharp minimal exponent k0 , which
depends on G or g , such that the convolution of any k0 continuous, G-invariant
measures is absolutely continuous with respect to Haar measure. The exponent
k0 is also the minimal integer such that any k0 -fold product of conjugacy classes
in G or k0 -fold sum of adjoint orbits in g has non-empty interior. Unlike in the
classical case, the answer can be less than the rank of G or g .

We also establish a dichotomy for orbital measures µ , supported on
non-trivial conjugacy classes or adjoint orbits of minimal non-zero dimension:
for each k , either µk ∈ L2 or µk is singular with respect to Haar measure.
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1. Introduction

Let G be a compact, connected, simple Lie group. In [12], Ragozin proved the
surprising fact that the convolution of dim(G) continuous G-invariant measures is
absolutely continuous with respect to Haar measure on G . His work implies that
a product of dim(G) non-trivial conjugacy classes in G has positive measure and
even non-empty interior. He was unable to decide if dim(G) was minimal with
these properties, and speculated that it was not.

In [4] and [5], the minimum number of convolution powers with this absolute
continuity property and the minimal integer k such that every product (or sum)
of k non-trivial conjugacy classes in G (respectively, adjoint orbits in g) has non-
empty interior was determined for each of the classical Lie groups and algebras.
The answer depends on the Lie type, but in all cases was between r and 2r , where
r = rank g . Ragozin’s result was also improved in [8] for the five exceptional,
compact, simple Lie groups with the exponent reduced to n for the groups of type
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En (where n = 6, 7, 8), to 6 for a group of type F4 , and to 3 for a group of type
G2 .1

In this paper, we complete Ragozin’s project by determining the sharp
exponent for the exceptional Lie groups and algebras. We prove that µ1∗· · ·∗µk is
absolutely continuous with respect to Haar measure for all G-invariant, continuous
measures µj on an exceptional Lie group G or Lie algebra g if and only if k ≥ k0 ,
where k0 depends on the type of the exceptional Lie group or algebra and is
specified below:

k0 =


3 if G or g is of Lie type E6, E7, or E8

3 if G is the Lie group of type G2

4 if G is the Lie group of type F4

2 if g is the Lie algebra of type F4 or G2.

(1.1)

Standard arguments show that k0 is also the minimal integer such that every k0 -
fold product (sum) of non-trivial conjugacy classes in G (adjoint orbits in g) has
non-empty interior.

The approach taken in [8] was to use estimates on the rate of decay of
characters on the group, together with the Peter–Weyl theorem, to deduce L2(G)
results for convolutions of continuous, orbital measures on G , an important class
of G-invariant measures. In this paper we take, instead, the direct approach of
studying the l2 norm of the Fourier transform of powers of orbital measures on G ,
using the combinatorial method developed in [7]. We prove that µk0 ∈ L2(G) for
all continuous orbital measures µ on G , and from this fact one can deduce that
k0 is sufficient for Ragozin’s absolute continuity problem in the group case. For
the Lie algebra problem, we apply a transference argument.

Easy geometric arguments are used to show that the non-trivial conjugacy
classes (or adjoint orbits) of minimum dimension have the property that their
(k0 − 1)-fold product (respectively, sum) has Haar measure zero. Consequently,
orbital measures µ , supported on the minimal non-trivial conjugacy classes or
adjoint orbits satisfy a dichotomy: for each positive integer k , either µk ∈ L2 or
µk is singular with respect to Haar measure on G or g . This same dichotomy
is known to hold for the classical Lie groups and algebras (see [4]–[7]). Sums of
orbits, products of conjugacy classes and convolutions of measures supported on
these manifolds were also investigated by Ricci and Stein in [13], [14], by Dooley
and Wildberger in [2], [3], and by Wildberger in [15].

2. Background Results

2.1. Notation. Let G be a compact, connected, simple Lie group with Lie
algebra g , let T be a maximal torus of G and t be its Lie algebra, which we also
call a torus. We denote by Φ the set of roots of the complexification of g with
respect to the complexified torus and write Φ+ for the positive roots. The group
G acts on its Lie algebra by the adjoint action AdG , and acts on itself by the

1The dimensions of these groups are listed in Table 5 for comparison with Ragozin’s result.
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operation of conjugation, which we denote in the same way. The meaning will be
clear from the context.

A finite, complex Borel measure µ on G (or on g) is called G-invariant if
µ(E) = µ(AdG(g)E) for all g ∈ G and Borel sets E ⊆ G (respectively, E ⊆ g).
The G-invariant measures on the group are often also called central since they
commute with all other measures under convolution.

Given X ∈ g , the orbital measure µX is the Borel measure on g defined by
the rule ∫

g

f dµX =

∫
G

f(AdG(g)X) dmG(g)

for any continuous, compactly supported function f on g . Here mG denotes the
Haar measure on G . The probability measure µX is G-invariant and supported on
the compact adjoint orbit OX ⊆ g , the image of X under the AdG action. Given
x ∈ G , the orbital measure µx on G is defined similarly, and is the G-invariant
probability measure supported on the conjugacy class Cx in G containing x . A
measure is said to be continuous if the measure of every singleton is zero. All
orbital measures µX or µx , with X ∈ g and x ∈ G , are continuous except if
X = 0 or x belongs to the center of G . Of course, x is in the center of the group
G if and only if Cx is a singleton, and we call these the trivial conjugacy classes.

Every adjoint orbit and conjugacy class has zero Haar measure, being a
proper submanifold, consequently, all orbital measures are singular with respect
to Haar measure. We also recall that every orbit and conjugacy class contains a
torus element.

Roots are defined not only on the torus of the Lie algebra, but also on torus
elements in the group by the formula α(x) = α(X) mod 2π , where X ∈ t is any
element with expX = x ∈ T . We say that the root α ∈ Φ annihilates the element
X ∈ t or x ∈ T if α(X) = 0 or α(x) = 0 mod 2π . The set of annihilating roots
is a root subsystem of Φ and thus has a Lie type. By the type of x we mean the
Lie type of its set of annihilating roots. The elements x and AdG(g)x have the
same type, so we may also speak of the type of an adjoint orbit or conjugacy class.

The following geometric fact will be useful later in finding k0 . By (k)OX

we mean the k -fold sum of orbit OX , and by Ck
x we mean the k -fold product of

the conjugacy class Cx .

Lemma 2.1. If X ∈ t or x ∈ T and the number non-annihilating roots of X
(or x) is less than dim(g)/k , then (k)OX (or Ck

x) has measure zero and µkX (or
µkx , respectively) is singular with respect to Haar measure.

Proof. It is known that the dimension of the orbit, OX , is equal to the
number of non-annihilating roots of X ∈ t [11, VI.4], so the hypothesis guarantees
that (k)OX has Haar measure zero. Since the k -fold convolution product µkX is
supported on (k)OX , it is clearly a singular measure. The argument for µkx and
Ck
x are similar.

To prove the sufficiency of the value of k0 , it is actually enough to show
that µk0x ∈ L2(G) for all x not in the center of G . The reason for this is that the
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L2(g) results for orbital measures on the Lie algebra g will then follow from an
application of a transference principle established in [7], as we explain below.

Lemma 2.2. Suppose X ∈ t and µkx ∈ L2(G) whenever x ∈ T has the same
Lie type as X . Then µkX ∈ L2(g).

Proof. Fix a neighbourhood U ⊆ g on which the exponential map is a
diffeomorphism. For almost all λ > 0, the elements X,λX ∈ t and exp(λX) ∈ T
have exactly the same set of annihilating roots. Choose such a λ , sufficiently
small that (k)OλX ⊆ U . If µkexpλX ∈ L2(G), then µkλX ∈ L2(g), according to the
transference principle [7, Cor. 7.3]. But the Fourier transform of µX and µλX are
dilates, hence µkX ∈ L2(g) if and only if µkλX ∈ L2(g).

2.2. Combinatorial Criterion. To prove that µkx ∈ L2(G) for suitable expo-
nents k , we rely heavily on a combinatorial criterion established in [7], which we
briefly review. We suppose that {α1, . . . , αn} is a base for a root system Φ of rank
n and {λ1, . . . , λn} is the set of fundamental dominant weights, that is, the dual
basis vectors which satisfy (αi, λj) = δij . (In our application, Φ will be the root
system of one of the exceptional groups.) Define

Sj = {α ∈ Φ+ : (α, λj) 6= 0}.

Given a set of l integers, i1, . . . , il , satisfying

n ≥ i1 > i2 > · · · > il ≥ 1,

and a root subsystem Ψ of Φ, inductively define

Xj = Sij \
j−1⋃
k=1

Sik =

{
α ∈ Φ+ \

j−1⋃
k=1

Xk : (α, λij) 6= 0

}
for j = 1, . . . , l,

Bj = Bj(Ψ) =

{
α ∈ Ψ+ \

j−1⋃
k=1

Bk : (α, λij) 6= 0

}
for j = 1, . . . , l

and put
Gj = Xj \Bj.

We call Gj and Bj the ‘good’ and ‘bad’ roots, respectively, arising at step j
relative to the given set of indices. The expressions |Xj| , |Bj| and |Gj| denote
the cardinalities of these sets.

Let κ(i1, . . . , il,Ψ) be the minimum integer k such that

l∑
j=1

((k − 1) |Xj| − k |Bj|) =
l∑

j=1

((k − 1) |Gj| − |Bj|) >
l

2
.

The combinatorial criterion for µkx to belong to L2(G) is the content of the
next theorem, whose proof relies upon the Weyl character and degree formulas and
the Peter–Weyl theorem.
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Table 1: The positive roots for the exceptional groups

Type Positive Roots Φ+ #

E8
ei ± ej : 1 ≤ i < j ≤ 8;

1
2
(e8 +

∑7
k=1 skek) : sk = ±1,

∏7
k=1 sk = 1

120

E7
e7 − e8; ei ± ej : 1 ≤ i < j ≤ 6;

1
2
(e8 − e7 +

∑6
k=1 skek) : sk = ±1,

∏6
k=1 sk = 1

63

E6
ei ± ej : 1 ≤ i < j ≤ 5;

1
2
(e8 − e7 − e6 +

∑5
k=1 skek) : sk = ±1,

∏5
k=1 sk = 1

36

F4
ei ± ej : 1 ≤ i < j ≤ 4; el : 1 ≤ l ≤ 4;

1
2
(e1 ± e2 ± e3 ± e4)

24

G2
ei − ej : 1 ≤ i < j ≤ 3;

2ei − ej − ek : i 6= j 6= k ∈ {1, 2, 3} 6

Theorem 2.3 ([7, Thm 6.1]). Suppose that G is a compact, connected, simple
Lie group of rank n, and Φ(x) is the set of annihilating roots of x ∈ T. Let

κ0(x) = max{κ(i1, . . . , il,Ψ)}

where the maximum is taken over all l ∈ {1, . . . , n}, all sets of indices that satisfy
n ≥ i1 > i2 > · · · > il ≥ 1, and all root subsystems Ψ that are conjugate under
the Weyl group to Φ(x). Then µ

κ0(x)
x ∈ L2(G).

2.3. Roots of the Exceptional Groups. For the convenience of the reader, we
list the positive roots for the exceptional groups in Table 1, and the total number
of positive roots. Throughout, ei denotes one of the standard basis vectors. For
further background on roots and root systems we refer the reader to [9].

3. The exceptional Lie groups and algebras E6 , E7 and E8

We continue to use the notation and terminology described in the previous section.
The goal of this section is to prove the following theorem.

Theorem 3.1. Suppose that G is a compact, connected, simple, exceptional Lie
group of type E6 , E7 or E8 , with Lie algebra g. If µ is any continuous orbital
measure on G or g, then µ3 ∈ L2 . Moreover, there exists X ∈ g such that
OX + OX has Haar measure zero and µX ∗ µX is singular with respect to Haar
measure on g. Similarly, there exists x ∈ G such that mG(C2

x) = 0 and µx ∗ µx
is singular with respect to mG .

The difficult part of this argument is proving that µ3 ∈ L2 . Since every
X ∈ t has the same type as some x ∈ T , Lemma 2.2 implies that it is sufficient
to prove that µ3

x ∈ L2(G) whenever µx is a continuous orbital measure on G .
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According to Theorem 2.3, it suffices to prove that κ0(x) ≤ 3 for every non-
central x ∈ T . Furthermore, since the set of annihilating roots of a non-central
torus element is a proper root subsystem [1], and any proper root subsystem is
contained in a maximal subsystem, it suffices to verify that κ(i1, . . . , il,Ψ) ≤ 3
whenever Ψ is a maximal root subsystem contained in the root system of type
En . We will do this for E6 , E7 , and E8 separately.

We begin by recording some facts about the structure of the root system
E8 . The roots may be divided into two classes: the regular roots, those of the
form ±ei ± ej ; and the others, which we call the peculiar roots. In E8 there are
56 regular positive roots and 64 peculiar positive roots. The regular roots form a
root subsystem of type D8 .

In fact, the regular roots form a root subsystem in all the exceptional groups
of type En (where n = 6, 7, 8). This is a consequence of the fact that if the sum or
difference of two regular roots is a root, then it is a regular root. More generally,
the following easy observation will be very useful for us.

Lemma 3.2. Let Ψ be a root subsystem. Then the regular roots in Ψ form a
root subsystem.

Proof. An intersection of root subsystems is a root subsystem.

The same is not true of the peculiar roots. Indeed, two peculiar roots are
either orthogonal or one of their sum or difference is a regular root.

We introduce the following notation for the positive peculiar roots. By
Pj1,j2,...,jl we mean the positive peculiar root with a minus sign in positions
j1, . . . , jl , that is,

Pj1,j2,...,jl = 1
2

(
e8 −

l∑
k=1

ejk +
∑

k 6=j1,...,jl,8

ek

)
.

We write P0 for the peculiar root with all plus signs and P−q for the positive
peculiar root with plus signs only in positions q and 8.

Here are some useful identities. Different letters denote different indices in
1, . . . , 7.

P0 − Pij = ei + ej; P0 + P−q = e8 + eq; Pij − Pijkl = ek + el;

Pij + P−j = e8 − ei; Pij − Pik = ek − ej; P−q − P−m = eq − em;

Pijkl + Pimnq = e8 − ei; Pijkl − Pijkm = em − el;
Pij + Pklmn = e8 + eq; Pijkl − Pijklmn = em + en.

3.1. Exceptional group of type E8 . It is known (see [9, p. 65]) that a base
for E8 is given by the eight vectors

α1 = 1
2
(e1 + e8 −

7∑
i=2

ei),

α2 = e1 + e2,

αk = ek−1 − ek−2 where k = 3, . . . , 8.
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Table 2: The possibilities for the sets Sj for the case of E8

Positive regular roots # Positive peculiar roots #

S1 ej ± e8 : j = 1, . . . , 7 14 all 64

S2
ei + ej, ej ± e8 :
i, j = 1, . . . , 7

35
all but P−q :

q 6= 8
57

S3
ei + ej, e1 − ei, el ± e8 :
i, j = 2, . . . , 7, l = 1, . . . , 7

35 all but P−1 63

S4

ek ± e8, ei + ej, el ± ej :
k = 1, . . . , 7,

i, j = 3, . . . , 7, l = 1, 2
44 all but P−1 , P−2 62

S5

ek ± e8, ei + ej, el ± ej :
k = 1, . . . , 7,

i, j = 4, . . . , 7, l = 1, 2, 3
44

all but P4567, P
−
i :

i = 1, 2, 3
60

S6

ek ± e8, ei + ej, el ± ej :
k = 1, . . . , 7,

i, j = 5, 6, 7, l = 1, . . . , 4
41

all but P−j , Pj567 :
j = 1, . . . , 4

56

S7

ek ± e8, e6 + e7, ei ± ej :
k = 1, . . . , 7,

j = 6, 7, i = 1, . . . , 5
35

all but P67, P
−
j , Pij67 :

i, j = 1, . . . , 5
48

S8
e8 + e7, ei ± ej :

j = 7, 8, i = 1, . . . , 6
25

P0, P
−
7 , Pij, Pijkl :

i, j, k, l = 1, . . . , 6
32

It is a routine exercise to show that the fundamental dominant weights for E8

corresponding to the base above are the eight vectors

λ1 = 2e8

λ2 = 5
2
e8 + 1

2

7∑
i=1

ei,

λ3 = 7
2
e8 + 1

2

(
7∑
i=2

ei − e1

)
,

λk =
7∑

i=k−1

ei + (9− k)e8 where k = 4, . . . , 8.

From these descriptions, it is easy to determine the sets S1, . . . , S8 . In Table 2, we
list the positive regular and peculiar roots in each of the sets Sj . The numbers of
such roots are also given.

The following lemmas also have analogues for E6 and E7 .

Lemma 3.3. Let Ψ be a root subsystem of E8 . Suppose that there are a pair
of distinct indices i, j ∈ {1, . . . , 8} such that both roots ei ± ej belong to Φ \ Ψ.
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Then Ψ contains at most 32 positive peculiar roots.

Proof. First, suppose that ei ± ej ∈ Φ \ Ψ for some i, j ∈ {1, . . . , 7} . By
symmetry, we may assume that i = 1 and j = 2. Because Ψ is a root subsystem,
if both P0 and P12 belong to Ψ, then P0 − P12 = e1 + e2 must also belong to Ψ.
Since this is not the case, at most one of P0 or P12 belongs to Ψ. Similarly, each
of the following 32 pairs,

P0, P12; P
−
1 , P

−
2 ; P12ij, Pij; P1j, P2j; P1ijk, P2ijk; P12ijkl, Pijkl

with i, j, k, l ∈ {3, . . . , 7} (with different letters denoting different indices) has the
property that one of their sum or difference is equal to either e1 + e2 or e1− e2 . If
both peculiar roots of one of these 32 pairs belongs to Ψ, then so must their sum
or difference, hence Ψ contains at most one of each pair.

Otherwise, the missing pair must be ej±e8 where, without loss of generality,
j = 1. A similar argument applies with the 32 pairs

P0, P
−
1 ; P1j, P

−
j ; Piq, Pklmn; P1ijk, P1lmn with i, j, k, l,m, n ∈ {2, . . . , 7} ,

and the proof is finished.

Lemma 3.4. Suppose that i, j ∈ {1, . . . , 6} and Ψ is a root subsystem of E8 .

(a) If both ei ± ej ∈ Φ \ Ψ, then there are at most 16 peculiar roots in
Ψ ∩ S8 .

(b) If only one of ei ± ej belongs to Ψ, then there are at most 24 peculiar
roots in Ψ ∩ S8 .

Proof. Without loss of generality, i, j = 1, 2. Consider the sixteen pairs of
peculiar roots, all of which belong to S8 ,

P0, P12; P12ij, Pij; P1j, P2j; P1ijk, P2ijk; P
−
7 , P3456

with i, j, k ∈ {3, . . . , 6} . Eight of these pairs have their sum or difference equal to
e1 + e2 and the other eight give e1 − e2 . Now argue as above.

Lemma 3.5. Suppose that Ψ is a root subsystem of E8 and there is a pair
i , j ∈ {1, . . . , 5} with both ei ± ej ∈ Φ \ Ψ. Then Ψ ∩ S7 contains at most 24
peculiar roots.

Proof. The peculiar roots of S7 may be partitioned into 24 distinct pairs, each
of which has sum or difference equal to one of ei ± ej .

The expression bzc denotes the greatest integer less than or equal to z .

Lemma 3.6. A root subsystem of type Am in Dn , where m ≥ 4, contains at
most b1

4
(m+ 1)2c positive roots of the form ei + ej .

Proof. A root subsystem of type Am in Dn , where m ≥ 4, must have the
structure

{siei − sjej : i, j ∈ I, i 6= j},
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where I is an m + 1 element subset of {1, . . . , 8} and si is a choice of ±1. The
root ei + ej belongs to Am if and only if sisj = −1, and the maximum number of
such roots is 1

4
(m+ 1)2 if k is odd, or 1

4
m(m+ 2) if m is even.

3.2. Proof of Theorem 3.1 for E8 . Identify the torus of the Lie algebra of
E8 with R8 and consider the element

X = (0, . . . , 0, π, π) ∈ t.

The set of annihilating roots of X is of Lie type E7 (exactly as described in section
2) and the set of annihilating roots of x = expX is of type E7 ×A1 (namely, the
E7 described previously, together with ±(e7 + e8)). Thus X and x have 114 and
112 non-annihilating roots respectively. As 1

2
dim(E8) = 124, Lemma 2.1 implies

that µ2
X and µ2

x are singular measures in g and G respectively, and OX +OX and
C2
x have Haar measure zero.

We now turn to proving that µ3
x ∈ L2(G) for all continuous orbital measures

µx on G . The maximal proper root subsystems of E8 may be deduced from the
Borel–Siebenthal theorem and are listed in [10, p. 136]. They are of type E7×A1 ,
D8 , E6 × A2 , A8 , and A4 × A4 , and have 64, 56, 39, 36 and 20 positive roots
respectively. It clearly suffices to check that κ(i1, . . . , il,Ψ) ≤ 3 when Ψ is one of
these types.

Since each set Sj contains at least 57 elements, if |Ψ+| ≤ 36, then each Sj
contains at least 21 good roots. Of course,

∑l
j=1 |Bj| ≤ |Ψ+| , thus

l∑
j=1

((k − 1) |Gj| − |Bj|) ≥ (k − 1)21− 36 > 8
2

if k = 3.

This shows that κ(i1, . . . , il,Ψ) ≤ 3 if |Ψ+| ≤ 36. Thus we only need to study Ψ
of type E7 × A1 , D8 or E6 × A2 .

3.2.1. Case 1: Ψ is of type E7 × A1 .

This is the most difficult case. Our strategy will be to first consider the root
subsystem of Ψ consisting of the regular roots. This is a root subsystem contained
in one of type D8 , the root subsystem of the regular roots of E8 , as well as being
contained in one of type E7 × A1 . Hence the set of regular roots of Ψ must be
one of the following types: A7 , A6 , a subsystem of D6 × A1 × A1 , a subsytem of
A5 × A1 × A1 , or Aj1 × · · · × Ajl where ji ≤ 4 and j1 + · · ·+ jl ≤ 8.

All of these root subsystems, with the exception of A7 , have the property
that there is a pair of regular roots ei ± ej , both of which belong to Φ \ Ψ. By
Lemma 3.3, Ψ contains at most 32 positive peculiar roots. As a root subsystem
of type E7 × A1 contains 64 positive roots, this implies that Ψ contains at least
32 positive regular roots. This observation eliminates all the root subsystems on
the list except A7 and D6×A1×A1 . Thus we may assume that the regular roots
in Ψ are either type A7 , with 28 regular and 36 peculiar positive roots, or type
D6 × A1 × A1 , with 32 regular and 32 peculiar positive roots. We further remark
that a root subsystem of type D6 × A1 × A1 in D8 has the form

{ei ± ej : i, j ∈ I} ∪ {ei ± ej : i, j ∈ J} (3.1)
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where I and J are disjoint subsets of {1, . . . , 8} of cardinalities 6 and 2 respec-
tively.

Choose a set of indices 1 ≤ il < · · · < i1 ≤ 8. First, suppose that one of
the indices ij is 4 or 5. Then

∣∣Sij ∣∣ ≥ 99 and therefore |Gj| ≥ 99 − 64 = 35.

Moreover,
∑l

j=1 |Bj| ≤ |Ψ+| = 64, hence

l∑
j=1

(2 |Gj| − |Bj|) ≥ 75− 64 > 8
2
,

so in this situation κ(i1, . . . , il,Ψ) ≤ 3.

In particular, note that one of the indices must be 4 or 5 if l = 7 or 8,
hence we may assume that l ≤ 6. In this case, one of the indices must be one of
3, 4 or 5 and then, as |S3| = 98,

l∑
j=1

(2 |Gj| − |Bj|) ≥ 68− 64 > 6
2
.

Again we see that κ(i1, . . . , il,Ψ) ≤ 3.

Thus we may assume that l ≤ 5. We first consider the case when one of
the indices is 1. As S1 contains 64 peculiar positive roots, S1 must contain 32
good peculiar roots if the set of regular roots is of type D6×A1×A1 and 28 good
peculiar roots if the set of regular roots is of type A7 . When the set of regular
roots is of type D6 × A1 × A1 there are either 4 or 12 good regular roots in S1 ,
depending on whether the index 8 belongs to I or J . When the set of regular
roots is of type A7 , exactly one of each pair ej ± e8 with j = 1, . . . , 7 belongs to
Ψ+ . Thus S1 contains at least 7 good regular positive roots. In either situation,
there are at least 35 good roots in S1 and this shows κ(i1, . . . , 1,Ψ) ≤ 3.

Since |S6| = 97, the set S6 contains at least 33 good roots and this is
enough to deduce that κ(i1, . . . , il,Ψ) ≤ 3 if l ≤ 3 and one of the indices, ij say,

is 6. Also, |S2 ∪ S6| = 107, so
∑l

j=1 |Gj| ≥ 43 if two of the indices are 2 and 6,
and this gives κ ≤ 3 for any l ≤ 5. If l = 4 and one of the indices is 6, then at
least one other must be chosen from {1, 2, 3, 4, 5} . Combined with the previous
observations, this shows that κ ≤ 3 if any ij = 6.

The set S2 contains at least 57− 32, that is, 25, good peculiar roots if the
set of regular roots is of type D6 ×A1 ×A1 and at least 21 good peculiar roots if
the set of regular roots is of type A7 . In the former case, S2 contains either 14 or
21 good regular roots, depending on whether the index 8 belongs to I or J , for
a total of at least 39 good roots. According to Lemma 3.6, at most 16 of the 28
roots ei + ej belong to Ψ if Ψ is type A7 . Thus, in the latter case, S2 contains at
least 12 good regular roots for a total of 33 good roots. As with index 6, it follows
that κ ≤ 3 if one of the indices is 2.

It only remains to consider the situation when l = 1 or 2 and the indices
are 7 or 8.

(a) Assume that the set of regular roots in Ψ is of type D6 × A1 × A1 . If
only one of 6, 7, 8 belongs to I (as defined in (3.1)), say 6 ∈ I without loss of
generality, then the regular roots ei± ej for j ∈ {7, 8} and i ∈ {1, . . . , 5} , e6± e8
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and e7 + e6 are all good roots in S7 . A simple cardinality argument shows there
are at least 16 good peculiar roots in S7 , for a total of at least 39 good roots.
Otherwise, two or more of the indices 6, 7, 8 belong to I and then one of the
indices j0 ∈ {1, 2, 3, 4, 5} is not in I . Consequently neither of the roots ei ± ej0 ,
for any (fixed) choice of i ∈ {1, . . . , 5} ∩ I , belong to the D6 × A1 × A1 root
subsystem, and therefore neither belong to Ψ. Lemma 3.5 implies S7 contains at
least 24 good peculiar roots. Since the regular roots in S7 of the form ei ± ej ,
with i ∈ I and j ∈ J , are good roots, one can verify that S7 contains at least 12
good regular roots, for a total of 36 good roots. In either case, we may conclude
that κ(7,Ψ) ≤ 3 and κ(8, 7,Ψ) ≤ 3.

Last, we suppose that l = 1, i1 = 8. If both 7, 8 ∈ J , then the roots ei±ej ,
for j ∈ {7, 8} and i ∈ {1, . . . , 6} , are all good regular roots in S8 . Hence |G1| ≥ 24
and |B1| ≤ 57− 24 = 33 and this obviously implies κ(8,Ψ) ≤ 3. Otherwise, there
must be a pair ei±ej , with i, j ∈ {1, . . . , 6} , in Φ\Ψ. Lemma 3.4(a) implies there
are at least 16 good peculiar roots in S8 . An easy argument shows that there are
also at least 8 good regular roots, so again we see |G1| ≥ 24.

(b) Otherwise the set of regular roots in Ψ is of type A7 . Since A7 contains
only one of each pair, ei ± ej , the set S7 contains at least 17 good regular roots,
the set S7∪S8 contains at least 18 and the set S8 at least 12. A simple cardinality
argument shows that S7 , and therefore also S7 ∪ S8 , contains at least 12 good
peculiar roots. By Lemma 3.4(b), S8 has at least 8 good peculiar roots. Thus S7

has at least 29 good and at most 54 bad roots, S8 has at least 20 good and at most
37 bad roots, and S7 ∪ S8 has at least 30 good and at most 54 bad roots. Thus if
i1 = 7 or 8 and l = 1, or i1, i2 = 8, 7 and l = 2, we have

∑l
j=1 (2 |Gj| − |Bj|) > 1

2
l .

This completes the argument that κ(i1, . . . , il,Ψ) ≤ 3 for all indices i1, . . . , il
when Ψ is of type E7 × A1 .

3.2.2. Case 2: Ψ is of type D8 .

As with Case 1, we begin by considering the root subsystem consisting of
the regular roots in Ψ. Lemma 3.3 implies that if some pair ei±ej were contained
in Φ \ Ψ, then Ψ would have at least 24 regular positive roots. This means that
the root subsystem consisting of the regular roots in Ψ is one of the following
types: D8 , A7 , D7 , D6 × A1 × A1 , D6 × A1 , D6 , D5 × D3 and D4 × D4 . Of
course, a root system of type Dm , which consists only of regular roots, must have
the form {ei ± ej : i, j ∈ I} where the index set I ⊆ {1, . . . , 8} is of cardinality
m .

We remark that if the indices 1 ≤ il < · · · < i1 ≤ 8 are chosen so that
|Si1 ∪ · · · ∪ Sil | ≥ 87, then

l∑
j=1

(2 |Gj| − |Bj|) ≥ 62− 56 > 8
2

and thus κ ≤ 3. More generally, if
∑l

j=1 |Gj| ≥ 31, we may also conclude κ ≤ 3.
Since |Sj| ≥ 92 if j = 2, . . . , 6 and S1 contains at least 32 good peculiar roots,
we only need to further investigate the cases where l = 1, 2 and ij = 7, 8.

(a) Assume the set of regular roots are either type D7 or D8 . Then Ψ+ has
either zero or 14 peculiar roots. In either case, S7 and S7 ∪S8 contain at least 34
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good peculiar roots, which is enough to ensure κ ≤ 3 if l = 2 or l = 1 and i1 = 7.
The set S8 contains 32 good peculiar roots in the D8 case and 18 otherwise. But
in the latter case, there are also at least four good regular roots. Thus S8 contains
at least 22 good roots and at most 35 bad roots, which shows κ(8,Ψ) ≤ 3.

(b) Assume the set of regular roots is of type A7 . Then Ψ+ contains 28
regular and 28 peculiar roots. As one of each pair, ei ± ej , is a good root, the set
S7 and S7 ∪ S8 therefore contains at least 20 good peculiar roots and at least 17
good regular roots, for a total of 37 good roots. Similarly, S8 contains at least 12
good regular roots and by Lemma 3.4(b), at least 8 good peculiar roots. Thus S8

contains at least 20 good roots and at most 37 bad roots. In all these cases we
may conclude κ ≤ 3.

(c) Assume the set of regular roots are types D6 × A1 × A1 , D6 × A1 or
D6 . Then Ψ+ has at most 26 peculiar roots, assuring that S7 contains at least 22
good peculiar roots. By considering which of 6, 7, 8 belong to the set of six indices
generating the D6 , one can check that there are at least 12 good regular roots in
S7 , for a total of 34 good roots.

If D6 is not based on the indices {1, . . . , 6} , then Lemma 3.4 (a) implies S8

has at least 16 good peculiar roots and at least 8 good regular roots, for a total of
24 good and 33 bad roots. Otherwise, all the regular roots in S8 are good. Either
situation yields κ ≤ 3.

(d) If the set of regular roots is of type D5 ×D3 or D4 ×D4 the reasoning
is similar.

This completes the argument that κ(i1, . . . , il,Ψ) ≤ 3 when Ψ is type D8 .

3.2.3. Case 3: Ψ is of type E6 × A2 .

Since |Sj| ≥ 78 for all j 6= 8, each of these sets contains at least 39 good roots.
As 2× 39− 39 > 8

2
, it only remains to consider the case where l = 1, i1 = 8.

As usual, consider the set of regular roots in Ψ and suppose first that they
form a root system of type A5×A1×A1 , A5×A1 or A5 , with the A5 constructed
on the indices {1, . . . , 6} , in all cases. Then all the roots ei ± ej , i = 7, 8 and
j = 1, . . . , 6 are good and this is sufficient to see that κ ≤ 3.

Otherwise, an application of Lemma 3.4(a) ensures that the set S8 contains
at least 16 good peculiar roots. One can verify there are at most 17 positive regular
roots in Ψ if the set of regular roots is of type Aj1 × · · · ×Ajt . Otherwise the set
of regular roots is a subset of a root system of type D5×A2 , and thus has at most
23 positive roots. In addition to the 16 good peculiar roots in S8 , by considering
which of the five indices is the index set for the D5 one can easily verify that S8

also contains at least 12 good regular roots.

This completes the argument that κ ≤ 3 when the maximal root subsystem
is E6 × A2 and concludes the proof of the theorem for E8 .

3.3. Exceptional groups of type E6 and E7 . The arguments for E6 and E7

are similar. We sketch the main ideas.

3.4. Proof of Theorem 3.1 for E6 . The fundamental dominant weights are
listed in [8] and the corresponding sets Sj are described in Table 3, with the
number of regular and peculiar positive roots given in brackets.
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Table 3: The possibilities for the sets Sj for the case of E6

Positive Regular roots # Positive Peculiar roots #

S1 none 0 all 16

S2
ei + ej :

i, j = 1, . . . , 5
10

all but P−q :
q = 1, . . . , 5

11

S3
ei + ej, e1 − ei :
i, j = 2, . . . , 5

10 all but P−1 15

S4
ei + ej, ek ± ej :

i, j = 3, 4, 5, k = 1, 2
15 all but P−1 , P−2 14

S5
e4 + e5, ek ± ej :
j = 4, 5, k = 1, 2, 3

13
all but P4567, P

−
i :

i = 1, 2, 3
12

S6
ei ± e5 :

i = 1, . . . , 4
8

P67, P
−
5 , Pij67 :

i, j = 1, . . . , 4
8

In the same fashion as the earlier lemmas, one can prove the following
results.

Lemma 3.7. Assume Ψ is a root subsystem of E6 .

(a) If there is some i, j ∈ {1, . . . , 5} such that ei ± ej ∈ Φ \ Ψ, then Ψ
contains at most 8 positive peculiar roots.

(b) If there is some i, j ∈ {1, . . . , 4} such that ei± ej ∈ Φ \Ψ, then Ψ∩ S6

contains at most 4 peculiar roots and Ψ ∩ S2 contains at most 7 peculiar roots.

(c) If there is some i, j ∈ {1, . . . , 3} such that ei± ej ∈ Φ \Ψ, then Ψ∩ S5

contains at most 6 peculiar roots.

(d) If Ψ does not contain one of ei ± ej , for some i, j ∈ {1, . . . , 4}, i 6= j ,
then there are most 6 peculiar roots in Ψ ∩ S6 .

The maximal root subsystems of E6 are of types A2 × A2 × A2 , A5 × A1

and D5 with 9, 16 and 20 positive roots, respectively [10, p. 136]. The argument
that κ(il, . . . , i1,Ψ) ≤ 3 is very easy for A2 × A2 × A2 and is left to the reader.

Suppose that Ψ is of type A5 × A1 . Since the set of regular roots of E6 is
of type D5 , one can use Lemma 3.7(a) to deduce that the set of regular roots in
Ψ is either of type A4 or D3 ×D2 . The fact that an A4 root subsystem contains
only one of each pair ei ± ej , and at most six roots of the form ei + ej , makes it
easy to check that κ ≤ 3 in this case. When the set of regular roots is of type
D3 ×D2 , Lemma 3.7(b) can be used to count good and bad roots and verify that
κ ≤ 3.

Now suppose that Ψ is of type D5 . This is the case if, for example, Ψ =
Φ(X) or Ψ = Φ(x), where X = (0, 0, 0, 0, 0,−1,−1, 1) ∈ t and x = expX ∈ T ,
under the natural identification of the torus of E6 with the suitable 6 dimensional
subspace of R8 . The elements X and x have 32 non-annihilating roots. As the
dimension of E6 is 78, Lemma 2.1 implies µ2

X and µ2
x are singular measures, and
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OX +OX and C2
x have Haar measure zero.

Our usual arguments show that the set of regular roots must be of type D5 ,
D4 or A4 . The D5 case is trivial since all the peculiar roots are good. When the set
of regular roots is of type D4 , then a pair ei± ej ∈ Φ \Ψ for some i, j = 1, . . . , 4,
so Lemma 3.7(b) applies. Part (c) is also helpful in counting good and bad roots.
The argument that κ ≤ 3 is entirely routine, but somewhat tedious because of the
number of sets Sj ∪ Sk , which must be considered.

The arguments are the most delicate when the set of regular roots is of type
A4 , say {siei − sjej : i 6= j = 1, . . . , 5} , for a suitable choice of signs si = ±1.
There is no loss of generality in assuming that si = −1 for an even number of i ,
and thus with a suitable Weyl conjugation, ω , consisting of an even number of
sign changes, we may suppose that ω(Ψ) = Ψ′ is of type D5 and has a standard
A4 (by which we mean all si = +1) as its set of regular roots. This new set Ψ′

has 10 regular and 10 peculiar positive roots.

If the peculiar root P67 ∈ Ψ′ , then no peculiar root of the form Pij67 belongs
to Ψ′ since P67−Pij67 = ei+ej does not belong to Ψ′ . It follows that Ψ′ contains
at most six peculiar roots, namely, the roots P67 and P−q for q = 1, . . . , 5, which
is a contradiction. Similarly, if P−q ∈ Ψ′ for some q ∈ {1, . . . , 5} , then since
P−q − (eq − el) = P−l , all P−l must belong to Ψ′ . Since Pij67−Pijkl67 = ek + el , no
Pij67 belongs to Ψ′ . Again this gives an insufficient number of peculiar roots.

So it must be that the 10 peculiar roots in Ψ′ are precisely the set P (2) =
{Pij67 : i, j = 1, . . . , 5, i 6= j} . Hence Ψ is P (2)∪{ei−ej : i, j = 1, . . . , 5, i 6= j} or is
the conjugate of this set under an element of the Weyl group, with the Weyl group
element being either two or four sign changes. In the first case the counting is
straightforward. Otherwise, it is perhaps easiest to apply the Weyl conjugation to
the sets Sj and assume that Ψ is in standard form. The arguments are elementary,
but require some consideration of which signs are the ones that are changed. The
details are straightforward and are left to the reader.

3.5. Proof of Theorem 3.1 for E7 . The fundamental dominant weights are
listed in [8], and the corresponding sets Sj are listed in Table 4 together with the
numbers of regular and peculiar roots.

As with E8 , one can prove the following elementary facts.

Lemma 3.8. Assume that Ψ is a root subsystem of E7 .

(a) If there is some i, j ∈ {1, . . . , 6} such that ei ± ej ∈ Φ \ Ψ, or if
e7 − e8 ∈ Φ \Ψ, then Ψ contains at most 16 positive peculiar roots.

(b) If there is some i, j ∈ {1, . . . , 5} such that ei± ej ∈ Φ \Ψ, then Ψ∩ S7

contains at most 8 peculiar roots.

(c) If there is some i, j ∈ {1, . . . , 4} such that ei± ej ∈ Φ \Ψ, then Ψ∩ S6

contains at most 12 peculiar roots.

(d) If there is some i, j ∈ {1, . . . , 3} such that ei± ej ∈ Φ \Ψ, then Ψ∩S5

contains at most 14 peculiar roots.

(e) If Ψ+contains at most one of each pair ei ± ej and ek ± el , for some
i, j, k, l ∈ {1, . . . , 5}, then there are most 10 peculiar roots in Ψ ∩ S7 .

The maximal root subsystems are of types A5 × A2 , A7 , A1× D6 and E6
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Table 4: The possibilities for the sets Sj for the case of E7

Positive Regular roots # Positive Peculiar roots #

S1 e7 − e8 1 all 32

S2
e7 − e8, ei + ej :
i, j = 1, . . . , 6

16
all but Pq :
q = 1, . . . , 6

26

S3
e7 − e8, ei + ej, e1 − ej :

i, j = 2, . . . , 6
16 all but P−1 31

S4
e7 − e8, ei + ej, ek ± ej :
i, j = 3, . . . , 6, k = 1, 2

23 all but P1, P2 30

S5
e7 − e8, ei + ej, ek ± ej :
i, j = 4, 5, 6, k = 1, 2, 3

22
all but P4567, P

−
j :

j = 1, 2, 3
28

S6
e7 − e8, e5 + e6, ek ± ej :
j = 5, 6, k = 1, 2, 3, 4

18
all but P−j , Pj567 :

j = 1, 2, 3, 4
24

S7
e7 − e8, ei ± e6 :
i = 1, . . . , 5

11
P−6 , Pj7, Pijk7 :
i, j, k = 1, . . . , 5

16

with 18, 28, 31 and 36 positive roots, respectively [10, p. 136]. The arguments are
fairly straightforward for the case of A5 × A2 .

We first sketch the key ideas when the root subsystem is of type A7 . The
set of regular roots of E7 is of type D6 × A1 , so our usual arguments, using part
(a) of the lemma, allow us to deduce that the subset of regular roots must be either
type A5 , A5×A1 or D3×D3 . In the first two cases there are either 15 regular and
13 peculiar positive roots, or 16 and 12, respectively. The fact that A5 contains at
most 9 roots of the form ei + ej is useful for the analysis of S2 . Lemma 3.8(e) is
helpful for the set S7 . The desired calculations for the other sets, Sj , follow easily
from cardinality arguments. If the set of regular roots is type D3 ×D3 , then for
some i, j ∈ {1, . . . , 5} , the pair of regular roots ei± ej belongs to Φ \Ψ. Part (b)
of the lemma can be applied and we argue in the customary fashion.

Next, suppose that the root subsystem is of type A1× D6 . Then the set of
regular roots must be of type A1× D6 , D6 , D5 × A1 , D5 , D4 × A1 × A1 × A1 ,
A5 × A1 or A5 . No special tricks are needed here. The first two cases are easy
as then Ψ has at most one peculiar root. For A5 × A1 or A5 , use part (e) of the
lemma. For D5 × A1 or D5 , either (b) of the lemma applies or the root system
of type D5 must be built on indices {1, . . . , 5} , in which case S7 contains at least
10 good regular roots. The analysis for the other sets, Sj , is routine. In the case
when the regular roots form a root system of type D4 × A1 × A1 × A1 use (b)
again.

The case when the root subsystem Ψ is of type E6 is the difficult (and
sharp) case. The set of annihilating roots of

X = (0, . . . , 0, 1
2
, 1
2
, 1) ∈ t

is of type E6 . Since dim(E7) = 133, the measures µ2
X and µ2

expx are singular, and



1002 Hare and Skoufranis

OX +OX and C2
expX have measure zero.

All the root subsystems of Ψ that are contained in one of type D6 × A1 ,
with the exception of D5 , A5 , or A5 × A1 , have cardinality at most 12 and omit
a pair, ei ± ej , where i, j ∈ {1, . . . , 6} . Together with Lemma 3.8(a), this implies
that Ψ could have only 28 positive roots, which is a contradiction. If the set of
regular roots is of type A5 , then e7−e8 is omitted and the same reasoning applies.
Thus the set of regular roots is either of type D5 or A5 × A1 .

Parts (c) and (d) of the lemma are useful in handling the case when the set
of regular roots is of type D5 . In addition to the sets Sj , a number of the pairs
Sj ∪ Sk need to be considered, but no new ideas are required.

Last, suppose that the set of regular roots in Ψ form a subsystem of type
A5 × A1 . This means Ψ+ has 16 regular and 20 peculiar positive roots. The
regular roots must have the form

{siei − sjej : i, j = 1, . . . , 6, i 6= j} ∪ {±(e7 − e8)}.

First, suppose that an odd number of si = −1. Letting ω be the Weyl
conjugation with an even number of sign changes and permuting the indices in
{1, . . . , 6} , as necessary, we can assume that only s1 = −1. The 32 positive
peculiar roots of E7 may be paired as follows:

P1237,P
−
6 P1247, P

−
5 P1257, P

−
4 P1267, P

−
3 P1347, P

−
2 P4567, P

−
1

P17, P1457 P27, P2347 P37, P3457 P47, P2457 P57, P2357 P67, P2367

P1357, P3567 P1367, P3467 P1467, P2467 P1567, P4567.

The last four pairs have the property that their difference is ej−e1 , none of
which belong to Ψ. All the other pairs have the property that their difference is one
of ej + ek where j, k ∈ {2, . . . , 6} , and none of these belong to Ψ. Consequently,
Ψ has only one of each pair, for a maximum of 16 peculiar roots. But Ψ contains
20 peculiar positive roots, so this is impossible.

Hence there must be an even number of si = −1 and after applying a Weyl
conjugation ω , with an even number of sign changes, we may suppose that all
si = +1 in ω(Ψ). Note that if for one index i , the root Pi7 ∈ ω(Ψ), then since
Pj7 = Pi7 + ei − ej , all Pj7 ∈ ω(Ψ). Also, Pi7 − Pijk7 = ej + ek /∈ ω(Ψ), so none
of the peculiar roots Pijk7 would belong to ω(Ψ). This implies the only positive
peculiar roots in ω(Ψ) are the 12 peculiar roots Pi7 or P−i , i = 1, . . . , 6. But
ω(Ψ) has 20 positive peculiar roots. The arguments are similar if ω(Ψ) contains
one P−i . Thus ω(Ψ) must consist of the 20 positive peculiar roots Pijk7 (where
i, j, k = 1, . . . , 6) and their negatives, the roots ei− ej (where i, j = 1, . . . , 6), and
±(e7 − e8).

If the Weyl conjugation ω is the identity it is easy to do the counting with
the sets Sj . Otherwise, we may suppose that ω is two sign changes and instead
do the counting of ω(Ψ) in ω(Sj). This completes the proof for the exceptional
Lie group and algebra of type E7 .
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4. The Exceptional Lie groups and algebras F4 and G2

Theorem 4.1. (a) If G is the compact Lie group of type F4 (or of type G2 )
then µ4

x ∈ L2(G) (or µ3
x ∈ L2(G) respectively) for all continuous orbital measures

on G. There exists x ∈ G such that the measure of C3
x (respectively, C2

x) is zero
and µ3

x (or µ2
x) is singular with respect to Haar measure on G.

(b) If g is the compact Lie algebra of type F4 or G2 , then µ2
X ∈ L2(g) for

all continuous orbital measures on g.

Proof. We use a similar strategy to that used for the exceptional groups En .
In particular, we continue to use the notation Sj and κ(i1, . . . , il,Ψ), and speak
of the good and bad roots.

4.1.1. The case of F4

Note that F4 has 12 long positive roots, ei ± ej , where i, j = 1, . . . , 4 and i < j ,
and 12 short positive roots, these being the four roots ei , (where i = 1, . . . , 4),
and the 8 peculiar positive roots. The sets Sj are easily seen to be as follows:

S1 = {ei, e1 + e2, ei ± ej : i = 1, 2, j = 3, 4} ∪ {1
2
(e1 + e2 ± e3 ± e4)},

S2 = {e1, e2, e3, all ei ± ej except e2 − e3}
∪ {1

2
(e1 + e2 ± e3 ± e4), 12(e1 − e2 + e3 ± e4)},

S3 = {e1, ei, e1 ± ej, ei + ej : i, j = 2, 3, 4}
∪ {1

2
(e1 + e2 ± e3 ± e4), 12(e1 − e2 + e3 ± e4), 12(e1 − e2 − e3 + e4)},

S4 = {e1, e1 ± ej : j = 2, 3, 4} ∪ {1
2
(e1 ± e2 ± e3 ± e4)}.

These sets have cardinalities 15, 20, 20 and 15 respectively.

The maximal root subsystems of F4 are of types B4 , C3×A1 and A2×A2 ,
with 16, 10 and 6 positive roots, respectively. Since the cardinality of each set Sj
is at least 15, a trivial counting argument shows that κ(i1, . . . , il,Ψ) ≤ 4 if Ψ is
either of type C3 × A1 or A2 × A2 .

We identify the torus of the Lie algebra of F4 with R4 and consider the
group element x = exp(π, π, π , π) ∈ T . Its set of annihilating roots,

Φ(x) = {±ei ± ej, 12(±e1 ± e2 ± e3 ± e4)},

is of type B4 , and the usual appeal to Lemma 2.1 shows that µ3
x is singular and

mG(C2
x) = 0.

A root subsystem of type B4 has 12 long and 4 short positive roots. The
12 long positive roots must be the roots, ei ± ej where i, j = 1, . . . , 4 and i < j .
The four short roots are mutually orthogonal, and so must be either the four short
regular roots, ei , where i = 1, . . . , 4, or four mutually orthogonal, peculiar positive
roots. In the first case, it is simple to count the good and bad roots. In the second
case, we remark that the four peculiar roots must have the same parity in their
number of minus signs and this fact makes the counting straightforward to verify
that κ ≤ 4.
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Now consider the Lie algebra of type F4 . A rank four root subsystem cannot
be the set of annihilating roots of a non-zero element in the Lie algebra, hence the
root subsystems we need to consider are those of type B3 , C3 , B2 × A1 , A3 and
A1 ×A1 ×A1 . Since |Sj| ≥ 15 for all j , the latter three root subsystems, with at
most six positive roots, trivially satisfy κ ≤ 2. This leaves B3 and C3 to study.

In a root subsystem, Ψ, of type B3 , there are three mutually orthogonal,
positive short roots and six positive long roots. Consequently, the short roots are
either three of e1, . . . , e4 , or three peculiar roots from one of the two sets of four
mutually orthogonal, peculiar roots. (These are the two sets of four peculiar roots
with the same parity of minus signs.) Since sums or differences of annihilating
roots are also annihilating roots, in the first case we see that Ψ is a standard B3 ,
on three of the four indices, and it is easy to check that taking κ = 2 works. In
the second case, by taking sums or differences of the three annihilating peculiar
roots, one can show that the six long roots form a root subsystem of type A3 on the
indices {1, 2, 3, 4} . For example, if the three peculiar roots are 1

2
(e1+e2±(e3+e4))

and 1
2
(e1 − e2 + e3 − e4), then taking sums and differences we see that

{e1 + e2, e1 + e3, e1 − e4, e3 + e4, e2 + e4, e2 − e3}

is the set of long roots. More generally, Ψ is simply a change in signs from this
particular case. In particular, the long roots have the property that for each pair,
i, j , one of ei ± ej is a good root and the other is bad. With this observation the
counting is easy.

A root subsystem of type C3 has six short and three long positive roots.
The short roots come in orthogonal pairs, which are not orthogonal to any other
short root. Thus the short roots must consist of ei, ej and two pairs of peculiar
roots, one pair from each of the subsets of four that are mutually orthogonal. Being
mutually orthogonal, the three long roots must consist of the pair ei± ej and one
of ek ± el . We assume that the third root is ek + el , without loss of generality.
Each pair of short roots is orthogonal to one of the long roots. The pair, ei, ej ,
is orthogonal to ek + el . The two pairs of peculiar roots must be orthogonal to
ei ± ej and not orthogonal to the root ek + el , hence they must be the roots
1
2
(ei ± ej ± (ek + el)). By considering the possibilities for i, j , k, l chosen from
{1, 2, 3, 4} , one can verify that κ ≤ 2.

This completes the argument for F4 .

4.1.2. The case of G2 .

It was already noted in [8] that µ3
x ∈ L2(G) for any continuous, orbital measure

on the Lie group of type G2 . The element x = exp(2π,−4
3
π,−2

3
π) ∈ T is of

type A2 , with the three long roots being its annihilators. Thus µ2
x is singular with

respect to Haar measure and mG(C2
x) = 0.

In the Lie algebra of type G2 , the set of annihilating roots of a non-zero
element cannot have rank 2. Thus an element has either no annihilating roots or
one positive annihilating root. Since the sets S1, S2 (listed in [8]) each have five
elements, it follows trivially that κ0 = 2.
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5. Concluding remarks

Ragozin [12] proved that if n = dim(G) and µ1, . . . , µn are continuous, G-invariant
measures on G , then µ1 ∗ · · · ∗ µn is absolutely continuous with respect to mG ,
and if x1, . . . , xn ∈ T are not in the center of G , then Cx1 · · ·Cxn has non-empty
interior in G . We improve these results, as well, for the exceptional Lie groups
and algebras.

Corollary 5.1. Let G be a compact, connected, simple, exceptional Lie group
and let g be its Lie algebra. Let k0 be as given in (1.1). Then the following hold.

(i) µk ∈ L2 for all continuous orbital measures µ on G or g if and only if
k ≥ k0 . Furthermore, there is a continuous orbital measure µ such that
µk0−1 is singular with respect to Haar measure.

(ii) The convolution products µ1 ∗ · · · ∗µk belong to L2 for all continuous orbital
measures µj if and only if k ≥ k0 .

(iii) The set O1+· · ·+Ok (or C1 · · ·Ck ) has non-empty interior for all non-trivial
adjoint orbits Oj ⊆ g (or non-trivial conjugacy classes Cj ⊆ G respectively)
if and only if k ≥ k0 .

(iv) The measures µ1 ∗ · · · ∗ µk are absolutely continuous with respect to Haar
measure for all G-invariant, continuous measures µj on G or g if and only
if k ≥ k0 .

Proof. Part (i) is established in Theorems 3.1 and 4.1 of this paper and part
(ii) follows as a direct consequence of Hölder’s inequality.

For part (iii), we note that k0 -fold sums (or products) of non-trivial ad-
joint orbits (respectively, conjugacy classes) support probability measures that are
absolutely continuous with respect to Haar measure, and consequently must have
positive measure. It is known that for these sets having positive measure is equiv-
alent to having non-empty interior (see [12]). Our theorems show the necessity of
the choice of k0 .

Finally, part (iv), the sharp answer to Ragozin’s absolute continuity prob-
lem, follows from part (iii) by the same reasoning as used in [12].

In Table 5, we record information about the non-trivial adjoint orbits and
conjugacy classes that are minimal in dimension.

Ragozin conjectured that the sharp answer to the absolute continuity prob-
lem would be ddim(G)/minx(dim(Cx))e , where x varies over the non-central ele-
ments of G ; by dse we mean the least integer greater or equal to s . As Lemma
2.1 shows, this is the least possible answer; this integer is always too small for the
classical Lie groups and algebras. In contrast, our results imply that Ragozin’s
conjecture is correct for all the exceptional Lie groups and algebras.

Note also that in each case it was the adjoint orbits or conjugacy classes of
minimal dimension, and their orbital measures, that were used to demonstrate the
sharpness of the choice of k0 . Thus the following L2 -singular dichotomy holds, as
in the classical case.
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Table 5: Minimal dimension conjugacy classes and orbits

Lie Type G2 F4 E6 E7 E8

Dimension 14 52 78 133 248

Type of minimal conjugacy class A2 B4 D5 E6 E7 × A1

Type of minimal orbit A1 B3, C3 D5 E6 E7

Dimension of minimal conjugacy class 6 16 32 62 112

Dimension of minimal orbit 10 30 32 62 114

Corollary 5.2. Suppose that x ∈ G generates a non-trivial conjugacy class of
minimal dimension. The orbital measure µx satisfies the dichotomy that either
µkx is singular with respect to Haar measure on G, or µkx ∈ L2(G). A similar
statement holds for µX when X generates a non-trivial, adjoint orbit of minimal
dimension in g.
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[1] Bröcker, T., and T. tom Dieck, “Representations of Compact Lie Groups,”
Springer, New York, 1985.

[2] Dooley, A. H., J. Repka, and N. J. Wildberger, Sums of adjoint orbits, Linear
and Multilinear Algebra 36 (1993), 79–101.

[3] Dooley, A. H., and N. J. Wildberger, Harmonic analysis and the global expo-
nential map for compact Lie groups, Funct. Anal. Appl. 27 (1993), 21–27.

[4] Gupta, S. K., and K. E. Hare, Singularity of orbits in SU(n), Israel J. Math.
130 (2002), 93–107.

[5] —, Singularity of orbits in classical Lie algebras, Geom. Funct. Anal. 13
(2003), 815–844.

[6] —, L2 -singular dichotomy for orbital measures of classical simple Lie algebras
of classical compact Lie groups, Adv. Math. 222 (2009), 1521–1573.

[7] Gupta, S. K., K. E. Hare, and S. Seyfaddini, L2 -singular dichotomy for orbital
measures of classical simple Lie algebras, Math. Z. 262 (2009), 91–124.

[8] Hare, K. E., and K. Yeats, Size of characters of exceptional Lie groups, J.
Aust. Math. Soc. 77 (2004), 1–16.

[9] Humphreys, J. E., “Introduction to Lie Algebras and Representation Theory,”
Springer Verlag, New York, 1994.

[10] Kane, R., “Reflection Groups and Invariant Theory,” Can. Math. Soc. Books
in Math. 5, Springer-Verlag, New York, 2001.



Hare and Skoufranis 1007

[11] Mimura, M., and H. Toda, “Topology of Lie groups,” Transl. Math. Mono-
graphs 91, Amer. Math. Soc., Providence, R.I., 1991.

[12] Ragozin, D. L., Central measures on compact simple Lie groups, J. Funct.
Anal. 10 (1972), 212–229.

[13] Ricci, F., and E. Stein, Harmonic analysis on nilpotent groups and singular
integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal. 78
(1988), 56–84.

[14] —, Harmonic analysis on nilpotent groups and singular integrals. III. Frac-
tional integration along manifolds, J. Funct. Anal. 86 (1989), 360–389.

[15] Wildberger, N. J., On a relationship between adjoint orbits and conjugacy
classes of a Lie group, Canad. Math. Bull. 33 (1990), 297–304.

Kathryn Hare
Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1
kehare@uwaterloo.ca

Paul Skoufranis
Department of Mathematics
UCLA
Los Angeles, CA 90095–1555
USA
pskoufra@math.ucla.edu

Received February 24, 2009
and in final form January 27, 2011


