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Abstract. In this paper, we study the restriction of an irreducible unitary
representation π of the universal covering S̃p2n(R) to a Heisenberg maximal
parabolic subgroup P̃ . We prove that if π|P̃ is irreducible, then π must be
a highest weight module or a lowest weight module. This is in sharp contrast
with the GLn(R) case. In addition, we show that for a unitary highest or lowest
weight module, π|P̃ decomposes discretely. We also treat the groups U(p, q) and
O∗(2n).
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1. Introduction

Let F = C,R . Let GLn(F) be the general linear group on Fn . Let P1 be the
maximal parabolic subgroup preserving a one dimensional subspace in Fn . Let π
be an irreducible unitary representation of GLn(F). Consider the restriction of π
onto P1 . Kirillov conjectured that π|P1 is irreducible. Kirillov’s conjecture was
proved by Sahi using Vogan’s classification ([14] [15]). Recently, Baruch estab-
lished Kirillov’s conjecture without Vogan’s classification ([1]).

Generally speaking, for other semisimple Lie groups G , the restriction of an ir-
reducible unitary representation of G to a maximal parabolic subgroup is hardly
irreducible. Nevertheless, as proved by Howe and Li, for irreducible low rank rep-
resentations, their restrictions to a certain maximal parabolic subgroup remain
irreducible ([5] [12]). In this situation, the restriction uniquely determines the
original representation. However, it is not clear whether there are other represen-
tations whose restrictions to a fixed maximal parabolic group are irreducible.

Now let G = Sp2n(R) and n ≥ 2. Let P be the maximal parabolic subgroup
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that preserves a one-dimensional isotropic subspace of the symplectic space R2n .
Decompose the identity component of P as Sp2n−2(R)AHn−1 where Hn−1 is the
Heisenberg group and A ∼= R+ . We call P a Heisenberg parabolic subgroup of
G . Let G̃ be the universal covering of G . Let Mp2n(R) be the unique double
covering of G . For any subgroup H of G , let H̃ be the preimage of H under
the universal covering. The classification of irreducible unitary representation of
P̃ can be obtained directly by Mackey analysis.

As an example, take the linear group P . Let C(Hn−1) be the center of Hn−1 .
Let π be an irreducible unitary representation of P . If π|C(Hn−1) is trivial, then π
is in one-to-one correspondence with irreducible unitary representations of maxi-
mal parabolic subgroup of Sp2n−2(R) with levi factor GL1(R)Sp2n−4(R). Suppose
π|C(Hn−1) is not trivial. Let ρ± be the two irreducible unitary representation of

dilated Heisenberg group AHn−1 . Then P̂ is parametrized by a triple (ρ±, τ,±)
where τ is a genuine irreducible unitary representation of Mp2n−2(R) and ± cor-
responds to the two representations of the component group of P . Extend ρ± to
a unitary representation of Mp2n−2(R)AHn−1 , and extend τ trivially to AHn−1 .
Every irreducible unitary representation of P0 can thus be written as ρ± ⊗ τ .
Moreover, ρ± ⊗ τ can be extended to an irreducible unitary representation of P .
So every irreducible unitary representation of P0 can be written as ρ± ⊗ τ ⊗ C± .

In this paper, all tensor product of Hilbert spaces will mean the completion of
the algebraic tensor product. All Hilbert spaces are assumed to be separable. We
use π to denote both the representation and the underlying Hilbert space.

For simplicity, let us absorb the parameter ± into τ . Any unitary representa-
tion π of P can then be written as

[ρ+ ⊗ τ+]⊕ [ρ− ⊗ τ−]⊕ τ0,

here τ0|C(Hn−1) is trivial. Hence every irreducible unitary representation of G can
also be written in this form.

Notice that ρ+|Mp2n−2(R) is equivalent to ω(n − 1) ⊗ C∞ where ω(n − 1) is the
oscillator representation of Mp2n−2(R) and C∞ is an infinite dimensional trivial
representation of Mp2n−2(R). ρ−|Mp2n−2(R) is equivalent to ω(n− 1)∗ ⊗ C∞ .

Theorem 1.1 (See [6]). Let π be a nontrivial irreducible unitary representation

of S̃p2n(R). Let P̃0 be the identity component of P̃ . Then there are two unitary

representations τ+(π) and τ−(π) of S̃p2n−2(R) such that

πP̃0

∼= [ρ+ ⊗ τ+(π)]⊕ [ρ− ⊗ τ−(π)],

π|S̃p2n−2(R)
∼= [ω(n− 1)⊗ τ+(π)⊕ ω∗(n− 1)⊗ τ−(π)]⊗ C∞.

In the first identity, τ±(π) extend trivially to representations of P̃0 .

This theorem is established by Howe for the double covering Mp2n(R) ([6]).
Howe’s argument essentially extends to the universal covering of Sp2n(R).
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If π is a unitarily induced representation from a unitary representation of P ,
then τ+ and τ− are quite easy to compute. The issue of computing the map
π → τ±(π) for smaller representations is rather complex. For the two constituents
of the oscillator representation, ω(n)± , τ+ is trivial and τ− is zero. Moreover, if
we take into consideration of the two connected component of P , τ+ for ω(n)+
will be the trivial representation and τ+ for ω(n)− will be the sign character.

By Mackey analysis, π|P̃ is irreducible, if and only if one of τ±(π) vanishes and
the other is irreducible. Our main result is the following.

Theorem 1.2. Let π be an irreducible unitary representation of G̃. If π|P̃ is
irreducible, then π must be either a highest weight module or lowest weight module.
In addition, for π a unitary lowest weight module, π|P̃ ∼= ρ+⊗ τ+(π) where τ+(π)

decompose discretely into a direct sum of lowest weight modules of S̃p2n−2(R); for
π a unitary highest weight module, π|P̃ ∼= ρ− ⊗ τ−(π) where τ−(π) decompose

discretely into a direct sum of highest weight modules of S̃p2n−2(R).

It is not clear whether τ±(π) is irreducible for π a highest or lowest weight
module. For some highest (lowest) weight modules, τ±(π) is irreducible. In fact,

for S̃p2(R), τ±(π) will always be irreducible. For n ≥ 2, decomposing π|P̃ is quite
difficult. Generally speaking π|P̃ does not decompose according to the K -types.

In this paper, we derive some equivalent conditions for π being a nontrivial highest
weight module. One of the condition can be stated as follows.

Theorem 1.3. Let Sp2(R) be a subgroup of G that fixes a nondegenerate
2n−2 dimensional symplectic subspace. Let N be a unipotent subgroup in Sp2(R).
Identify N̂ with the real line. Then π is a nontrivial irreducible unitary highest
or lowest weight module if and only if π|N is supported on half of the real line.

In this paper, we also treat the groups U(p, q) and O∗(2n). The group P
will be a maximal subgroup whose nilradical is a Heisenberg group. We call such
P a Heisenberg parabolic subgroup. The detailed results are stated in Theorems
6.1, 6.2, 7.1, 7.2.

2. Irreducible Unitary Representations of P̃

Let G be the symplectic group Sp2n(R) with n ≥ 2 and P be the maximal
parabolic subgroup preserving a one dimensional isotropic subspace Re1 . Let G̃
be the universal covering of G . For simplicity, let Z be the preimage of the identity.
The group P has a Langlands decomposition GL1(R)Sp2n−2(R)Hn−1 where Hn−1
is the Heisenberg group. P is a semidirect product of GL1(R) × Sp2n−2(R) and
Hn−1 . GL1(R) can be further decomposed as Z2A with A ∼= R+ .

Lemma 2.1. Ã ∼= ZÃ0 where Ã0 is the identity component of Ã which can



850 He

be identified with A. So we will write Ã = ZA. In addition, G̃L1(R) ∼= (1
2
Z)A.

Lastly

P̃ ∼= (
1

2
Z)AS̃p2n−2(R)Hn−1/Z.

So π0(P̃ ) = Z2 . Here G̃L1(R) ∩ S̃p2n−2(R) = Z.

Notice that the adjoint action of G̃L1(R) on Hn−1 descends into the adjoint

action of GL1(R) on Hn−1 and the adjoint action of S̃p2n−2(R) descends into the
adjoint action of Sp2n−2(R) on Hn−1 .

Suppose that λ is real and λ 6= 0. Let ρλ be the unique irreducible unitary rep-
resentation of Hn−1 with central character exp iλt . The adjoint action of GL1(R)
on Hn−1 induces an action of GL1(R) on Ĥn−1 . In particular, ±1 ∈ GL1(R)
preserve ρλ and

a ∈ GL1(R) : ρλ → ρa2λ.

By Mackey analysis, there are two irreducible unitary representations of AHn−1 :

ρ+ =

∫
λ∈R+

ρλdλ, ρ− =

∫
λ∈R−

ρλdλ.

These are the only irreducible unitary representations with ρ|C(Hn−1) 6= I , the
identity. Now ±1 ∈ GL1(R) preserves each ρλ . By Stone-Von Neumannn Theo-
rem, ±1 acts on each ρλ projectively. In this situation, it is easy to make ±1 act
on ρλ directly. There is no obstruction to lift the projective action of ±1 on ρλ .
Using the Schrödinger model, −1 acts on the odd functions by −1 and on the even
functions by +1. Let us include the actions of Z2 ⊆ GL1(R) in the model ρλ , con-
sequently in ρ± . Now again, by Mackey analysis, there are four irreducible unitary
representations of GL1(R)Hn−1 on which C(Hn−1) acts nontrivially, namely

ρ± ⊗ sgn, ρ±.

The difference between the former and the latter is a little subtle. One way to
tell the difference is that (ρ± ⊗ sgn)(−1) acts on the even functions by −1 while
ρ±(−1) acts on the even functions by identity.

Now consider G̃L1(R)Hn−1 . The representation ρ± can be regarded as a rep-

resentation of G̃L1(R)Hn−1 .

Lemma 2.2. Identify G̃L1(R)Hn−1 with (1
2
Z)AHn−1 . Then the irreducible

unitary representations on which C(Hn−1) act nontrivially are all of the form

ρ± ⊗ χt | t ∈ [0, 1)

with χt(m) = exp 4πimt for m ∈ 1
2
Z.

For GL1(R)Hn−1 , t = 0, 1
2

because χt(Z) = 1.
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Now let us consider S̃p2n−2(R). This group preserves ρλ . Again, by the Stone-

Von Neumann Theorem, S̃p2n−2(R) acts on ρλ projectively. Since S̃p2n−2(R) is

already simply connected, one obtains a group action of S̃p2n−2(R) on ρλ . By a

theorem of Segal-Shale-Weil, S̃p2n−2(R) action on ρλ descends into an action of
Mp2n−2(R). Simply put, m ∈ Z acts by (−1)m = exp imπ on ρλ . We can now

extend ρ± to include the action of S̃p2n−2(R).

From now on ρ± will be representations of P̃ .

Theorem 2.3 ([6]). Irreducible unitary representations of P̃ on which C(Hn−1)
acts nontrivially are of the form

[ρ± ⊗ χt]⊗ τ

with τ an irreducible unitary representation of S̃p2n−2(R) such that τ(m) = χt(m)
for any m ∈ Z. In addition, two such representations are equivalent if and only if
all the parameters (±, t, τ) are the same.

I shall make some remarks here. First, τ is extended to a representa-
tion of P̃ , trivially on AHn−1 , and trivially on the component group. Second,
χt ⊗ τ is a twisted tensor product in the sense that the action of Z commutes
with the tensor. So χt(m) ⊗ τ(n) = χt(n) ⊗ τ(m) for any m,n ∈ Z . For
group P , ρ±(m) ⊗ χt(m) ⊗ τ(0) must be the identity for every m ∈ Z ⊆ G̃ .
So (−1)m exp 4πmt = (−1)mτ(m) = 1. For an irreducible unitary representation
of P on which C(Hn−1) acts nontrivially, t = 1

4
, 3
4

and τ is a genuine unitary
representation of Mp2n−2(R).

The proof is straight forward by applying the Mackey analysis. See [6]. Observe

that the subgroup of P̃ that preserves ρ± is 1
2
Z×Z S̃p2n−2(R). χt⊗τ parametrizes

the equivalence classes of irreducible unitary representations of this subgroup.

3. Irreducible Unitary Representations of S̃p2(R)

Throughout this section G = Sp2(R) and P = MAN where M ∼= Z2 and A ∼= R+

and N ∼= R . What we have proved in the last section needs to be modified. Since
the unitary dual of G̃ is known ([13], [8]), we will analyze π|P̃ in detail. The
results in this section must have been known to the experts. They will be used in
the next section to analyze higher rank case.

Fix the standard maximal compact group SO(2). We parametrize it by the an-
gle of rotation counterclockwise. There are essentially four classes of irreducible
unitary representations of G̃ (see [13] [10]):

1. the trivial representation triv;

2. unitary principal series I(ε, s) where ε ∈ [0, 1) and s ∈ iR ( we exclude
ε = 1

2
, s = 0);
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3. complementary series C(ε, s) (ε ∈ [0, 1), s ∈ (0, |1− 2ε|));

4. Highest weight modules D−l (l > 0) and lowest weight modules D+
l (l > 0).

Let P be the standard upper triangular parabolic subgroup of G . Let N be the
nilradical of P . Then the identity component P0 has two irreducible unitary rep-
resentations on which N acts nontrivially, namely ρ+ and ρ− . ρ+|N is supported
on R+ ⊆ N̂ , and ρ−|N is supported on R− ⊆ N̂ . Now the center of G̃ can be
identified with 1

2
Z . Identifying P̃ with 1

2
ZAN , ρ± can be extended to a represen-

tation of P̃ by identify P0 with P̃ /1
2
Z . Then elements of ˆ̃P are parametrized by

(±, t) with t ∈ [0, 1). More precisely, every irreducible unitary representation of
P̃ is equivalent to ρ± ⊗ χt . Here χt(man) = exp 4πimt with m ∈ 1

2
Z , a ∈ A and

n ∈ N . Notice that χt also defines a central character of G̃ . In our setting, the
representations with even weights have central character χ0 ; the representations
with odd weights have central character χ 1

2
. Let χ1 = χ0 .

The following theorem gives the structure of the restriction of irreducible unitary
representations of G̃ to P̃ .

Theorem 3.1. Let b l
2
c be the largest integer less or equal to l

2
.

1. I(ε, s)|P̃ ∼= (ρ+ ⊕ ρ−)⊗ χε;

2. C(ε, s)|P̃ ∼= (ρ+ ⊕ ρ−)⊗ χε;

3. D+
l |P̃ ∼= ρ+ ⊗ χ l

2
−b l

2
c;

4. D−l |P̃ ∼= ρ− ⊗ χ1− l
2
+b l

2
c.

The results here are obviously known to the experts. We will provide an
elementary proof.

Proof. The central character of each π ∈ ˆ̃G can be computed easily. Using the
noncompact model, I(ε, s) can be modeled on L2(N) with N act as translations.
Hence (1) is proved. To prove (2), (3), (4), it suffices to show that the Fourier
transform of the matrix coefficients of π restricted to N has the desired support.

To show (2), let ( , ) be the inner product of C(ε, s) and ( , )Inv be the nat-
ural complex linear pairing between the induced representations I∞(ε,−s) and
I∞(ε, s). For smooth vectors φ, ψ ∈ I∞(ε, s), we have

(φ, ψ) = (A(ε, s)φ, ψ)Inv

where A(ε, s) is the intertwining operator defined over smooth vectors. In addition,
A(ε, s) defines a bijection between I∞(ε, s) and I∞(ε,−s). Using the noncompact
model, for every n ∈ N as an additive group, we have

(C(ε, s)(n)φ, ψ) = (A(ε, s)φ, I(ε, s)(−n)ψ)Inv =

∫
N

A(ε, s)φ(x)ψ(x+ n)dx.
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Now C∞c (N) ⊆ I∞(ε,±s). We choose φ and ψ so that

A(ε, s)φ ∈ C∞c (N), ψ ∈ C∞c (N).

So (C(ε, s)(n)φ, ψ) becomes the convolution of two smooth and compactly sup-
ported functions. Its Fourier transform can be made to be supported on N̂ , upon
proper choices of φ and ψ . So again we have C(ε, s)|P̃ ∼= (ρ+ ⊕ ρ−)⊗ χε .

We will now prove (3). (4) follows immediately from (3). Let l > 0. Notice
that D+

l is a subquotient of I(ε, l − 1) and of I(ε, 1 − l) with ε = l
2
− b l

2
c . Let

vl+p be of weight l + p in D+
l where p is a nonnegative even integer. We stick

with the noncompact picture. Let

φl+p(x) = (
1√

x2 + 1
)l(

1− xi
1 + xi

)
l+p
2 =

(1 + x2)
p
2

(1 + xi)l+p

be a function in the noncompact model of I(ε, l−1). Here we choose the standard
arg function between −π

2
and π

2
to define (1± xi)l if l is not an integer. Let

ψl+q = (
1√

x2 + 1
)2−l(

1− xi
1 + xi

)
l+q
2 =

(1− xi)l−1+ q
2

(1 + xi)1+
q
2

be a function in the noncompact model of I(ε, 1− l). Then

(D+
l (g)vl+p, vl+q) = C(I(ε, l − 1)(g)φl+p, ψl+q)Inv (g ∈ G̃, p ≥ 0, q ≤ 0).

In particular, for n ∈ N ∼= R ,

(D+
l (n)vl+p, vl+q) = C

∫
N

φl+p(x− n)ψl+q(x)dx. (1)

Recall that

1

(1 + xi)l+p
= C1

∫
R+

(exp−ξ) ξl+p−1(exp(−ixξ)) dξ

(See Ch. 8.3 [3]). It follows by Fourier analysis that

φl+p(x) =
(1 + x2)

p
2

(1 + xi)l+p
=

∫
R+

W (ξ) exp(−ixξ) dξ

where W (ξ) is a linear combination of derivatives of (exp−ξ) ξl+ p
2
−1|R+ and W (ξ)

is supported on R+ . Therefore

φl+p(x− n) =

∫
R+

W (ξ) exp(−ixξ) exp(inξ) dξ.

Even though ψl+q(x) are not in L1 , ddle+3

dxdle+3ψl+q(x) will be in L1 . So Fourier
transform of ψl+q(x) will be a C0 function on R multiplied by a monomial of ξ .
By Equation 1, the Fourier transform of (D+

l (n)vl+p, vl+q) is supported on R+ .
Since {vl+p | p > 0} is an orthogonal basis for D+

l , D+
l |N is supported on R+ .

We shall remark that Theorem 3.1 depends on the parametrization of K
and N . If one chooses the opposite parabolic P , then the statements in (3) and
(4) will change. There may be other proofs to Theorem 3.1. The proof of (3) and
(4) we give here is more self-contained.
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4. Restriction of Unitary Representations and Irreducibility

Now let π be a nontrivial irreducible unitary representation of G̃ . Then π|P̃ can
be decomposed into a direct integral of ρ± ⊗ χt ⊗ τ . In particular, one can write

π ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π)⊕ τ0.

Here τ+(π) and τ−(π) are unitary representations of G̃L1(R)S̃p2n−2(R). The fol-
lowing theorem says that τ0 does not occur.

Theorem 4.1 (See [6]). Let π be a nontrivial irreducible unitary represen-
tation of G̃. Then there exist two unitary representations τ+(π) and τ−(π) of

G̃L1(R)S̃p2n−2(R) such that

π|P̃ ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π).

Notice that one of τ±(π) could be zero. This theorem was proved by Howe
in [6] Pg. 249 for the metaplectic group.

Proof. We will have to prove that π|P̃ does not have any subrepresentation
on which C(Hn−1) acts trivially. Suppose otherwise. let v be a nonzero vector

fixed by C(Hn−1). Let G̃0 be the subgroup of G̃ that commutes with S̃p2n−2(R).

So G̃0
∼= S̃p2(R). Notice that C(Hn−1) ⊆ G̃0 and A ⊆ G̃0 . Let H be the

Hilbert space spanned by π(g̃0)v for g̃0 ∈ G̃0 . Clearly, H decomposes into a
direct integral of irreducible unitary representations of G̃0 on which Z acts as a
character. Indeed, all factorial representations of G̃0 are direct sum of irreducible
representations. Now let

v =

∫
̂̃G0

vsdµ(s)

where vs ∈ Hs⊗Vs , Hs ∈ ˆ̃G0 and dimVs = m(Hs,H). Then C(Hn−1) must fix vs
for almost all s with respect to µ . If Hs is not trivial, Hs⊗Vs has no vector fixed
by C(Hn−1). Hence, H must be a direct sum of the trivial representation of G̃0 .
In particular, π must descend to a representation of G . The matrix coefficient
g → (π(g)v, v) violates the Howe-Moore vanishing Theorem ([4]). We reach a
contradiction.

Now we can prove one of our main results.

Theorem 4.2. Let π be a nontrivial irreducible unitary representation of G̃
such that Z acts by exp 2πmt (∀m ∈ Z) for a fixed t ∈ [0, 1). Suppose that π|P̃
is irreducible. Then π must be a highest weight module or a lowest weight module.

Proof. Let us fix the standard maximal compact group U(n) ⊆ G . Then
U(n) ∩ Sp2n−2(R) = U(n− 1). As usual, the complexified Lie algebra gC decom-
poses into a direct sum

kC ⊕ p+ ⊕ p−.
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Suppose that π|P̃ is irreducible. By the last Theorem, either τ+(π) or τ−(π)
must be zero. Without loss of generality, suppose that π|P̃ ∼= ρ+ ⊗ τ+(π). No-
tice that ρ+|C(Hn−1) is supported on R+ . So π|C(Hn−1) must also be supported on

R+ . Let G̃0 be the subgroup of G̃ that commutes with S̃p2n−2(R). Consider the
restriction π|G̃0

. π|G̃0
can be decomposed into a direct integral of irreducible uni-

tary representations with multiplicities. By Theorem 3.1, among the irreducible
unitary representations of G̃0 , only the lowest weight modules are supported on

R+ ⊂ ̂C(Hn−1). Hence only the lowest weight modules occur in the direct integral
decomposition of π|G̃0

.

Now π|G̃0
is a direct integral of lowest weight modules. Let U(1) = G0 ∩ U(n).

Then π|Ũ(1) can only have positive weights. Fix a maximal torus T ⊇ U(1) in
U(n). π|T̃ can only have positive weights, since the weight space of π|T̃ is invariant
under the Weyl group of U(n). Let vλ be a vector with weight λ such that

∑
λi

is minimal among all possible weights occurring in π|T̃ . Notice that the set of all
possible

∑
λi is a discrete set in R+ . So a minimal

∑
λi must exist. Now π|Ũ(n)

must contain an irreducible representation Vµ with
∑
µi =

∑
λi . Clearly, p− act

on Vµ by zero. So the module generated by Vµ must have a lowest weight module
as its quotient. Since π is already unitary and irreducible, π must be a lowest
weight module. Now we have shown that π is a unitary lowest weight module.

We shall remark that the last paragraph is true even one assumes that the
weights for π|Ũ(1) is bounded from below.

5. Some Criterions for Lowest Weight Modules

In this section, we give some characterization of lowest weight modules in terms
of their restrictions on certain subgroups. Some of them are well-known to the
experts. Let us fix a complex structure and an inner product ( , ) on the symplec-
tic space R2n such that the symplectic form coincides with the imaginary part of
( , ). Let e1, e2, . . . , en be the standard basis over C . Let G = Sp2n(R). Let P
be the subgroup preserving Re1 . Then P = GL1(R)Sp2n−2(R)Hn−1 . Let U(n) be
the subgroup preserving ( , ).

Theorem 5.1. Let T be the standard maximal torus in the maximal compact
group U(n) of G. Let Sp2(R) be the subgroup of G preserving Ce1 and acting on
the complex linear span of {e2, e3, . . . , en} by identity. Let U(1) = Sp2(R)∩U(n).
Let π be a nontrivial irreducible unitary representation of G̃. Let Q be a maximal
parabolic subgroup of G. Let N be its nilradical and ZN be the center of N .
Suppose that ZN ⊇ C(Hn−1). The following are equivalent:

1. π|ZN is supported on a subset of the positive semidefinite cone of ẐN ,
regarded as the space of symmetric matrices;

2. π|C(Hn−1) is supported on R+ ⊆ ̂C(Hn−1);

3. π|S̃p2(R) decomposes into a direct integral of lowest weight modules;
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4. π|Ũ(1) only has positive weights;

5. π|T̃ only has positive weights;

6. the weights of π|Ũ(1) is bounded from below;

7. there is an integer k such that every weight λ of π|T̃ satisfies λi ≥ k for
every i;

8. π is a unitary lowest weight module of G̃;

9. If n = 1, π is a unitary lowest weight module; if n ≥ 2, π|P̃ decomposes
into ρ+⊗ τ+(π) and the weights of τ+(π)|T̃ (1) are bounded from below. Here
T (1) is the one dimensional compact torus in U(n) ∩ Sp2n−2(R) fixing all
vectors in the complex span of {e1, e3, . . . , en}.

Proof. When n = 1, our theorem follows from Theorem 3.1. Suppose now
n ≥ 2.

By [6], π|ZN is supported on GL-orbits on ẐN . (1)↔ (2) is a matter of matrix
analysis. (2) → (3) → (4) is proved in Theorem 4.2. (4) → (3) → (2) is easier
than the other direction. So (1), (2), (3) and (4) are equivalent.

(4)→ (5)→ (6)→ (7) is trivial. (7)→ (8) follows as in Theorem 4.2. (8)→ (6)
is also obvious. So (8), (7), (6) are equivalent.

To prove (8) → (9), suppose π is a nontrivial unitary lowest weight module.
By Cor. 4.1, π|P̃ ∼= ρ+⊗ τ+(π)⊕ ρ−⊗ τ−(π). If τ−(π) 6= 0, fix a T̃ (1)-eigenvector
v with weight λ . By tensoring with vectors in ρ− , we obtain T̃ (1)-eigenvector
with arbitrarily low weight. By Weyl group action, we obtain Ũ(1)-eigenvectors
with arbitrarily low weight. This contradicts (6). So π ∼= ρ+ ⊗ τ+(π). Similarly,
weights for τ+(π)|T̃ (1) must also be bounded below. Hence (8)→ (9).

Suppose that (9) holds. So the weights of τ+(π)|T̃ (1) are bounded from below.
Let G(2) be the subgroup of Sp2n−2(R) that fixes all vectors in the complex linear
span of {e1, e3, e4, . . . en} . So T (1) is maximal compact in G(2) and τ+(π)|G̃(2)

must

be a direct integral of lowest weight modules with multiplicities. So the weights of
τ+(π)|T̃ (1) must all be positive. Hence the weights of π|T̃ (1) must all be positive.
Due to the action of the Weyl group of U(n), π|Ũ(1) only has positive weights. So
(9)→ (4). We have proved (9)→ (4)→ (5)→ (6)→ (7)→ (8)→ (9).

We shall remark here that the parametrization of unitary highest or lowest
weight modules is already known, due to the work of Enright-Howe-Wallach ([2]).
It is perhaps easy to go further to derive more properties of unitary lowest or
highest weight modules from Theorem 5.1.

Corollary 5.2. Let π be an irreducible unitary lowest weight module of G̃.
Then π|P̃ ∼= ρ+ ⊗ τ+(π) and τ+(π) decomposes into a direct sum of lowest weight

modules of S̃p2n−2(R).
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Proof. By Theorem 5.1 (9), the weights of τ+(π)|Ũ(1) are bounded from below.
By Theorem 5.1 (4), τ+(π)|Ũ(1) only has positive weights. By Theorem 5.1 (7)

(8), there is a lowest weight subrepresentation of S̃p2n−2(R) in τ+(π). Consider
the orthogonal complement. If it is nonzero, then there is another lowest weight
subrepresentation. This process can continue and it will end in countable time due
to the fact that π has a countable basis. We now obtain a discrete decomposition.

6. The group U(p, q)

Suppose p ≥ q ≥ 1 and p + q ≥ 3. Let U(p, q) be the group that preserve a
Hermitian form ( , ) on Cp+q with signature (p, q). Let P be a maximal parabolic
subgroup that preserves a one dimensional isotropic subspace. Then P can be
identified with GL1(C)U(p − 1, q − 1)Hp+q−2 . Here Hp+q−2 are parametrized by
(t ∈ R, u ∈ Cp+q−2) . The adjoint action of g ∈ U(p − 1, q − 1) on Hp+q−2
leaves t fixed and operates on u as the left multiplication. The adjoint action of
a ∈ GL1(C) on Hp+q−2 dilates t to ‖a‖2t and operates on u as scalar multiplica-
tion. Write GL1(C) = AU(1) where A = R+ .

Let G̃ = {(g, t) | g ∈ U(p, q), exp 2πit = det g} be an infinite covering of G .
For any subgroup H of G , let H̃ be the preimage of H . Let ρ± be the irre-
ducible unitary representations of AHp+q−2 we defined earlier. These are the only
irreducible unitary representations on which C(Hp+q−2) acts nontrivially. Extend
ρ± to a unitary representation of P̃ . Notice that ρ+|Ũ(1)Ũ(p−1,q−1) decomposes as
follows

[⊕n∈Zdet n+
p−q
2 ⊗ θ(det n+

p−q
2 )]⊗ C∞.

Here det n+
p−q
2 is a character of Ũ(1), θ(det n+

p−q
2 ) is the theta lift of det n+

p−q
2

with respect to (U(1), U(p − 1, q − 1)) (see [9] [7] [11]) and C∞ records the mul-
tiplicity.

Theorem 6.1. Let π be an infinite dimensional irreducible unitary represen-
tation of G̃. Then there are two unitary representation τ±(π) of Ũ(p − 1, q − 1)
such that

π|P̃ ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π).

Let U(1) be diagonally embedded in U(1, 1) ⊆ U(p, q). Then

π|Ũ(1)Ũ(p−1,q−1)
∼=[⊕n∈Zdet n+

p−q
2 ⊗ θ(det n+

p−q
2 )]⊗ τ+(π)⊗ C∞

⊕ [⊕n∈Zdet n+
p−q
2 ⊗ θ′(det n+

p−q
2 )]⊗ τ−(π)⊗ C∞.

(2)

Here θ′ refers to the theta lifts with respect to the contragredient oscillator repre-
sentation.

Notice that one of the τ±(π) could be zero. Similarly, we can prove
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Theorem 6.2. Let π be an infinite dimensional irreducible unitary represen-
tation of G̃. Suppose that π|P̃ is irreducible. Then π must be a highest weight
module or a lowest weight module.

Essentially, SU(1, 1) in SU(p, q) will play the role of Sp2(R) in Sp2n(R).
The proof is omitted here.

7. The group O∗(2n)

Let n ≥ 3. Let O∗(2n) be the group of isometry preserving a nondegenerate skew-
Hermitian form on Hn . Let P be the maximal parabolic subgroup preserving a 1
dimensional isotropic subspace. Then P can be identified with GL1(H)O∗(2n −
4)H2n−4 where H2n−4 is a Heisenberg group parametrized by

(t ∈ R, u ∈ Hn−2).

GL1(H) can be further decomposed as Sp(1)A where A is the center of GL1(H).
The adjoint action of a ∈ A on H2n−4 is given by

(t, u)→ (a2t, au).

The adjoint action of O∗(2n − 4) on H2n−4 is the left multiplication on u .
The adjoint action of k ∈ Sp(1) on H2n−4 is the right multiplication. Clearly,
Sp(1) × O∗(2n − 4) action preserves the real part of canonical skew-Hermitian
form on Hn−2 . (Sp(1), O∗(2n− 4)) becomes a dual reductive pair (See [7]).

Now let ρ± be the two irreducible unitary representations of AH2n−4 on which
C(H2n−4) acts nontrivially. ρ± extends to irreducible unitary representations of
the linear group P . In particular, ρ+|Sp(1)O∗(2n−4) decomposes according to the
theta correspondence with infinite multiplicity:

⊕
σ∈Ŝp(1)σ ⊗ θ(σ)⊗ C∞.

Similarly,
ρ−|Sp(1)O∗(2n−4) ∼= ⊕σ∈Ŝp(1)σ ⊗ θ

′(σ)⊗ C∞.

Here θ′ is the theta correspondence with respect to the contragredient oscillator

representation. Ŝp(1) is parametrized by N .

Theorem 7.1. Let π be a nontrivial irreducible unitary representation of O∗(2n).
Then there exists two unitary representations τ±(π) of O∗(2n− 4) such that

π|P ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π).

In addition,

π|Sp(1)O∗(2n−4) ∼= {⊕σ∈Ŝp(1)[σ⊗θ(σ)]⊗τ+(π)⊗C∞}⊕{⊕
σ∈Ŝp(1)[σ⊗θ

′(σ)]⊗τ−(π)⊗C∞}
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One of τ±(π) could be zero. The theorem for the universal covering of
O∗(2n− 4) is left to the reader. Similarly, we have

Theorem 7.2. Let π be a nontrivial irreducible unitary representation of O∗(2n).
If π|P is irreducible, then π must be a highest weight module or lowest weight mod-
ule.

Notice that the group O∗(4) contains a noncompact factor SU(1, 1) ∼=
SL2(R). The proof is essentially the same as in Theorem 4.2.
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