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Abstract. Let G be a reductive algebraic group over the complex number
filed, and K = Gθ be the fixed points of an involutive automorphism θ of G so
that (G, K) is a symmetric pair.

We take parabolic subgroups P and Q of G and K respectively and
consider a product of partial flag varieties G/P and K/Q with diagonal K -
action. The double flag variety G/P ×K/Q thus obtained is said to be of finite
type if there are finitely many K -orbits on it. A triple flag variety G/P 1 ×
G/P 2 ×G/P 3 is a special case of our double flag varieties, and there are many
interesting works on the triple flag varieties.

In this paper, we study double flag varieties G/P ×K/Q of finite type.
We give efficient criterion under which the double flag variety is of finite type.
The finiteness of orbits is strongly related to spherical actions of G or K . For
example, we show a partial flag variety G/P is K -spherical if a product of partial
flag varieties G/P ×G/θ(P ) is G -spherical. We also give many examples of the
double flag varieties of finite type, and for type AIII, we give a classification
when P = B is a Borel subgroup of G .
Mathematics Subject Classification 2000: Primary 14M15; secondary 53C35,
14M17.
Key Words and Phrases: Symmetric pair, flag variety, spherical action.

Introduction

Let G be a connected reductive algebraic group over C . Recently, there appear
many interesting examples of product of (partial) flag varieties which have finitely
many G-orbits. One example is X = G/B × G/B × P(V ) where G = GL(V ),
B a Borel subgroup and P(V ) denotes the projective space over V . The third
factor P(V ) is isomorphic to a partial flag variety G/P , where P is a maximal
parabolic subgroup stabilizing a one dimensional subspace of V . It is known that
there are finitely many G-orbits on X , and by the work of Travkin, Finkelberg
and Ginzburg ([Tra09, FGT09]), there are miraculous similarities between X and

∗Supported by JSPS Grant-in-Aid for Scientific Research (B) #21340006
†Supported by JSPS Grant-in-Aid for Scientific Research (A) #19204011

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



80 Nishiyama and Ochiai

Steinberg variety. For example, they established a kind of Robinson-Schensted-
Knuth correspondence for the orbits on X , and study some micro-local properties
using Hecke algebras. The maximal parabolic P above is called “mirabolic” after
Ginzburg.

In general, one can consider a triple product of partial flag varieties. For a
parabolic subgroup P of G , we denote XP = G/P a partial flag variety. Magyar-
Weymann-Zelevinsky ([MWZ99, MWZ00]) classified the triple flag varieties XP 1×
XP 2 ×XP 3 which have finitely many G-orbits when G is a classical group of type
A or type C. They also gave parametrizations of orbits.

In this paper, we generalize the notion of triple flag varieties to a symmetric
pair (G, K), where K is a symmetric subgroup of G consisting of the fixed points
of an involutive automorphism θ . Thus we take parabolic subgroups P ⊂ G
and Q ⊂ K , and consider a product of partial flag varieties XP = G/P and
ZQ = K/Q . The group K acts on the double flag variety XP ×ZQ diagonally.

If one considers G = G × G and an involution θ(g1, g2) = (g2, g1) of G ,
the symmetric subgroup K = Gθ is just the diagonal subgroup ∆(G) ⊂ G . Then,
for parabolic subgroups P = (P 1, P 2) ⊂ G and Q = ∆(P 3) ⊂ K , the double flag
variety can be interpreted as

G/P×K/Q = (G×G)/(P 1 × P 2)×∆(G)/∆(P 3) ' XP 1 × XP 2 × XP 3

which is nothing but the triple flag variety. So our double flag variety is a
generalization of triple flag varieties.

We say a double flag variety XP × ZQ is of finite type if there are only
finitely many K -orbits on it. One of the most interesting problems is to classify
the double flag varieties of finite type. We give two efficient criterions for the
finiteness of orbits using triple flag varieties. Namely, in Theorem 3.1, we prove

Theorem 1. Let P ′ be a θ -stable parabolic of G such that P ′ ∩ K = Q. If
the number of G-orbits on XP × Xθ(P ) × XP ′ is finite, then there are only finitely
many K -orbits on the double flag variety XP ×ZQ .

The next theorem (Theorem 3.4) is also useful.

Theorem 2. Let P i (i = 1, 2, 3) be a parabolic subgroup of G. Suppose that
XP 1 ×XP 2 ×XP 3 has finitely many G-orbits and that Q := P 2 ∩P 3 is a parabolic
subgroup of K . Then XP 1 ×ZQ has finitely many K -orbits.

Moreover, if P 1 is a Borel subgroup B and the product P2P3 is open in G,
then the converse is also true, i.e., the double flag variety XB×ZQ is of finite type
if and only if the triple flag variety XB × XP 2 × XP 3 is of finite type.

We construct many examples of double flag varieties of finite type using
Theorems 1 and 2 in §§ 6–7, and if P = B is Borel, we give complete classification
for certain cases. However, in general cases, the classification of double flag
varieties of finite type seems to be difficult.

Double flag varieties of finite type are strongly related to spherical actions
of G or K . Recall that an action of a reductive algebraic group G on a variety X
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is called spherical if there is an open dense B -orbit for a certain Borel subgroup B
of G . The existence of an open dense B -orbit is in fact equivalent to the finiteness
of B -orbits on X due to Brion [Bri89, § 1.5] and independently to Vinberg [Vin86].
We often use this finiteness criterion for spherical actions below.

The following theorem (Theorem 5.2), which is a corollary of the first
theorem, exhibits a good connection to the spherical action.

Theorem 3. Let P be a parabolic subgroup of G. If XP ×Xθ(P ) is a spherical
G-variety, then XP is a spherical K -variety.

For a parabolic subgroup P in G , we can find a finite-dimensional irre-
ducible representation Vλ of G with highest weight λ such that

P = {g ∈ G | gvλ ∈ Cvλ} , where vλ

denotes a highest weight vector of Vλ . Assume that the conclusion of Theorem
3 holds, i.e., we assume that XP is K -spherical. Then the contragredient V ∗

kλ

∣∣
K

decomposes multiplicity freely as a K -module for any non-negative integer k ≥ 0
(see Lemma 5.3). This is one of interesting conclusions of Theorem 3.

We will also give some other examples of spherical multiple flag varieties in
§ 5.

There seems to be intimate connection between double flag varieties of finite
type and visible actions (see [Kob05] for the definition of visible actions). Let us
denote the compact real form of K by KU . Then KU acts on XP = G/P visibly
if and only if XP is K -spherical. This is equivalent to say that XP × ZS is of
finite type for a Borel subgroup S of K . See also [Kob05, Cor. 17] and [Kob08].

Acknowledgment. We started the study of double flag varieties when we visited
NCTS in National Cheng-Kung University in Tainan. We thank Ngau Lam for his
generous hospitality at NCTS. We also thank Peter Trapa for useful discussion.

Finally, we thank the anonymous referee, who carefully read the earlier
version of the paper. The references [Vin86] and [Krä76] are due to him/her. Also
referee’s opinions have considerably improved the whole organization of the paper.

1. Double flag varieties for symmetric pair

Let G be a connected reductive algebraic group over the complex number field
C , and θ its (non-trivial) involutive automorphism. We put K = Gθ , a subgroup
whose elements are fixed by θ , and call it a symmetric subgroup of G . We denote
the Lie algebra of G (respectively of K ) by g (respectively k). In the following,
we use the similar notation; for an algebraic group we use a Roman capital letter,
and for its Lie algebra the corresponding German small letter.

For a parabolic subgroup P , we denote a partial flag variety consisting of all
G-conjugates of P by XP . Since P is self-normalizing, XP is isomorphic to G/P
as a G-variety. We also choose a θ -stable parabolic P ′ in G , and put Q = K∩P ′ .
Then Q is a parabolic subgroup of K , and every parabolic subgroup of K can be
obtained in this way (see [BH00, Theorem 2]). We denote a partial flag variety
K/Q by ZQ .

We consider the following problem.
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Problem 1.1. Let the symmetric subgroup K act on the product of the partial
flag varieties XP ×ZQ diagonally.

(1) Classify all the pair (P, Q) (or (P, P ′)) for a given pair (G, K) which admits
finitely many K -orbits on XP × ZQ . We are also interested in the case where
XP ×ZQ contains an open K -orbit.
(2) If there are finitely many orbits, classify all the K -orbits on XP × ZQ ,

and study the geometry of orbits; for example, closure relations, combinatorial
descriptions, equivariant cohomology and so on.
(3) Establish a relation to the representation theory of Harish-Chandra (g, K)-

modules.

All these problems are still open, but at the same time many (explicit)
results are already known. We will give partial answers to the problem (1), which
are new, in the following sections.

The problem (3) may require some account. Let us explain it briefly. Since
we assume P ′ is a θ -stable parabolic subgroup and Q = K ∩ P ′ , ZQ = K/Q can
be embedded into XP ′ = G/P ′ , which is a partial flag variety of G . In fact, ZQ

is isomorphic to a closed K -orbit in XP ′ , and for every closed K -orbit in XP ′ ,
one can attach a Harish-Chandra (g, K)-module via Beilinson-Bernstein theory.
This module is known to be a derived functor module Ap′(ρ

′) induced from a
one-dimensional character of a θ -stable parabolic subalgebra p′ contained in the
K -orbit. On the other hand, there is an open dense K -orbit on XP which should
correspond to a degenerate principal series representation if some translate of p

has a real form. Thus, in a suitable space of cohomology of an invertible sheaf over
XP × ZQ , one can hopefully realize the tensor product of a degenerate principal
series representation and Ap′(ρ

′). Our condition of the finiteness of the K -orbits
put a restriction on the tensor product and we expect a kind of multiplicity-free
property on the tensor product.

2. Triple flags

Let us return to Problem 1.1 and consider a symmetric pair (G, K), where G =
G×G for a reductive group G over C and K = ∆G is the diagonal embedding.
This symmetric subgroup K corresponds to the involution θ : G → G defined by
θ(g1, g2) = (g2, g1). Take a parabolic subgroup P = P 1 × P 2 in G , where P i is a
parabolic subgroup of G . A θ -stable parabolic subgroup P′ in G can be written as
P′ = P 3×P 3 for a certain parabolic subgroup P 3 in G . Thus Q = K∩P′ = ∆P 3

is a diagonal subgroup in ∆G . Now it is immediate to see that, in this setting,
our Problem 1.1 can be translated into

Problem 2.1. Let G act on the triple product of partial flag varieties XP 1 ×
XP 2 × XP 3 diagonally.

(1) Classify all the triples (P 1, P 2, P 3), for which there are finitely many G-
orbits on the triple product XP 1 ×XP 2 ×XP 3 . If this is the case, we say the triple
product is of finite type.
(2) If there are finite number of orbits, classify all the G-orbits and study the
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geometry of orbits.
(3) Establish a relation to the representation theory.

This problem (at least for (1) and (2)) was solved almost completely for
classical groups by Magyar-Weymann-Zelevinsky ([MWZ99, MWZ00]), Travkin
([Tra09]) and Finkelberg-Ginzburg-Travkin ([FGT09]). If P 3 is a Borel subgroup,
Littelmann ([Lit94]) investigated a representation theoretic meaning; in fact, it
seems that this work is one of motivations of [MWZ99, MWZ00]. We do not go
into the details of their works, but let us introduce the classification achieved by
[MWZ99, MWZ00] without proof since we need it later.

2.1. Type A.

Let G = GLn(C) be the general linear group, which we will denote simply
by GLn if there is no confusion. To specify a parabolic subgroup P of G , we use
an unordered partition (or composition) λ of n ; i.e., if P = Pλ corresponds to λ =
(λ1, λ2, . . . , λl), its Levi part is in block diagonal form of GLλ1×GLλ2×· · ·×GLλl

,
and its unipotent radical is in upper triangular form. The number of non-zero parts
in λ is denoted by `(λ) and is called the length of λ .

Theorem 2.2 (Magyar-Weymann-Zelevinsky). Let XP = G/P be a partial flag
variety, where G = GLn .

(1) For a collection of proper parabolic subgroups P 1, . . . , P k , if the number of
G-orbits on XP 1 × XP 2 × · · · × XP k is finite, then k ≤ 3.
(2) A triple product XPλ

× XPµ × XPν of partial flag varieties is of finite type
if and only if it is from the following list (with possible change of the order of
parabolic subgroups, and the order of parts of partitions involved).

type (`(λ), `(µ), `(ν)) extra condition(s)
Sq,r (2, q, r) λ = (n− 1, 1)
Dr+2 (2, 2, r)
E6 (2, 3, 3)
E7 (2, 3, 4)
E8 (2, 3, 5)

E
(a)
r+3 (2, 3, r) λ = (n− 2, 2) (n ≥ 4)

E
(b)
r+3 (2, 3, r) µ = (µ1, µ2, 1)

For the first statement, note that if k = 1 then XP is homogeneous; if k = 2,
then G\(XP 1 × XP 2) ' P 1\G/P 2 , which is further isomorphic to WP 1\W/WP 2

by the Bruhat decomposition (we denote by W the Weyl group of G , and by WP

the Weyl group of P ). So they are always of finite type.

2.2. Type C.

In this subsection we put G = Sp2n(C), which we abbreviate to Sp2n . The
symplectic group G acts on partial flags of isotropic subspaces F1 ⊂ F2 ⊂ · · · ⊂ Fl

of fixed dimensions. Let us denote the orthogonal subspace of Fi by F⊥
i . Then

we have a partial flag of subspaces

F1 ⊂ F2 ⊂ · · · ⊂ Fl−1 ⊂ Fl ⊂ F⊥
l ⊂ F⊥

l−1 ⊂ · · · ⊂ F⊥
2 ⊂ F⊥

1 . (1)
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A parabolic subgroup of G is specified as a fixed point subgroup of a partial flag
as in (1), and its conjugacy class is determined by the dimensions of the subspaces
in the flag. We put, if dim Fl < n , then

λi = dim Fi/Fi−1 (1 ≤ i ≤ l)

λl+1 = dim F⊥
l /Fl = 2(n− dim Fl)

λl+i+1 = dim F⊥
l−i/F

⊥
l−i+1 = λl−i+1 (1 ≤ i ≤ l)

with F0 understood as {0} , and if dim Fl = n{
λi = dim Fi/Fi−1 (1 ≤ i ≤ l)

λl+i = dim F⊥
l−i/F

⊥
l−i+1 = λl−i+1 (1 ≤ i ≤ l)

Then λ = (λ1, λ2, . . . ) is an unordered partition with |λ| = 2n , where |λ| is
the size of λ . We denote by P = Pλ the corresponding parabolic subgroup,
whose Levi part is isomorphic to GLλ1 × · · · × GLλl

× Spλl+1
. Here the factor

Spλl+1
does not appear if dim Fl = n . Thus, if λ = (n, n), the corresponding

parabolic subgroup P(n,n) is a Siegel parabolic with Levi component GLn ; and
if λ = (m, 2(n −m), m) with m < n , then P(m,2(n−m),m) is a maximal parabolic
subgroup with Levi component GLm × Sp2(n−m) .

With this notation, we can state the following

Theorem 2.3 (Magyar-Weymann-Zelevinsky). Let XP = G/P be a partial flag
variety, where G = Sp2n .

(1) For a collection of proper parabolic subgroups P 1, . . . , P k , if the number of
G-orbits on XP 1 × XP 2 × · · · × XP k is finite, then k ≤ 3.
(2) A triple product XPλ

× XPµ × XPν of partial flag varieties is of finite type if
and only if it is from the following list (up to appropriate changes of the order of
parabolic subgroups, and the order of parts of partitions involved).

type (`(λ), `(µ), `(ν)) extra condition(s)
SpDr+2 (2, 2, r) λ = µ = (n, n)
SpE6 (2, 3, 3) λ = (n, n)
SpE7 (2, 3, 4) λ = (n, n)
SpE8 (2, 3, 5) λ = (n, n)

SpE
(b)
r+3 (2, 3, r) λ = (n, n); µ = (1, 2n− 2, 1); 3 ≤ r

SpY4,r (3, 3, r) λ = µ = (1, 2n− 2, 1); 3 ≤ r

Here `(λ) denotes the length of λ. So, if `(λ) = 2, it implies λ = (n, n) and Pλ

is a Siegel parabolic. If `(λ) = 3, then Pλ is a maximal parabolic as explained
above.

Note that in the case of type C, two of the parabolic subgroups among three
should be maximal. Moreover, one of those maximal parabolic subgroups must be
a Siegel parabolic P(n,n) or P(1,2n−2,1) with Levi component C× × Sp2n−2 .
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3. Double flag varieties of finite type

Now we return to our original setting, i.e., G is a reductive group with an involution
θ , and K = Gθ a symmetric subgroup, which is automatically reductive. We take
a parabolic subgroup P and a θ -stable parabolic subgroup P ′ in G , and put
Q = P ′ ∩K , which is a parabolic subgroup of K . As we have already mentioned,
for any parabolic Q ⊂ K , we can choose a θ -stable parabolic subgroup P ′ in G
which cuts out Q from K . So our assumption causes no essential restriction.

Let us consider the diagonal action of K on the product of partial flag
varieties XP ×ZQ , where XP = G/P and ZQ = K/Q . We also put Xθ

P = Xθ(P ) =
G/θ(P ).

The following is one of our main results in this article.

Theorem 3.1. If the number of G-orbits on XP ×Xθ
P ×XP ′ is finite, then there

are only finitely many K -orbits on the double flag variety XP ×ZQ .

Proof. If P ′ = G , then this theorem reduces to the well-known fact that there
are finitely many K -orbits on the partial flag variety XP ([Mat79, Mat82], [Ros79],
[Spr85]). For this, there is a beautiful proof by Miličić [Mil93, § H.2, Theorem 1],
and our proof is an extension of his idea to the case of double flags.

Let us consider the following θ -twisted diagonal embedding:

∆θ : XP 3 P 1 7→ (P 1, θ(P 1)) ∈ XP × Xθ
P ,

where we identify XP with the set of parabolic subgroups of G which are conjugate
to P . Note that θ(P 1) belongs to Xθ

P for any P 1 ∈ XP . Thus we can embed

XP ×ZQ
∼−→ ∆θ(XP )×ZQ ↪→ ∆θ(XP )× XP ′ ⊂ XP × Xθ

P × XP ′ . (2)

This is a closed embedding, and clearly K -equivariant. Let us consider a θ -twisted
action of G on XP × Xθ

P × XP ′ :

g(P 1, P 2, P 3′) = (g·P 1, θ(g)·P 2, g·P 3′) (g ∈ G; (P 1, P 2, P 3′) ∈ XP×Xθ
P×XP ′),

which preserves ∆θ(XP ) × XP ′ . Note that g ∈ G acts on XP by conjugation
g · P 1 = gP 1g−1 . If we indicate this action also by ∆θ , there are only finitely
many ∆θ(G)-orbits on ∆θ(XP )× XP ′ , namely we have

∆θ(G)\
(
∆θ(XP )× XP ′

)
' G\

(
XP × XP ′

)
' WP\W/WP ′ ,

where the last isomorphism comes from the Bruhat decomposition (see §2). So
pick a ∆θ(G)-orbit Oθ

w in ∆θ(XP )× XP ′ indexed by w ∈ WP\W/WP ′ .

Lemma 3.2. Take any G-orbit O in XP ×Xθ
P ×XP ′ , and put X = ∆θ(XP )×

ZQ .

(1) There are finitely many K -orbits in O ∩Oθ
w ∩X .

(2) Let us write the K -orbit decomposition as O∩Oθ
w∩X = t`

i=1Oi . Then each
orbit Oi is a connected component of O ∩ Oθ

w ∩ X , which is also an irreducible
component as an algebraic variety.
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Let us assume the above lemma. Since the decomposition

X =
⊔

w∈WP \W/WP ′

Oθ
w ∩X

is finite, and there are only finitely many possibilities of G-orbits O in XP ×
Xθ

P × XP ′ by the assumption of the theorem, we can conclude that #K\X =
#K\(XP ×ZQ) < ∞ .

Thus it is sufficient to prove the lemma.

Pick a point

ξ = (P 1, θ(P 1), P 3′) ∈ O ∩Oθ
w ∩X ⊂ XP × Xθ

P × XP ′ .

and consider O = K · ξ , a K -orbit through ξ . The tangent space of O at ξ is
contained in

TξO ⊂ Tξ(O ∩Oθ
w ∩X) ⊂ TξO ∩ TξOθ

w ∩ TξX. (3)

We know

TξO = {(y + p1, y + θ(p1), y + p′3) | y ∈ g},
TξOθ

w = {(x + p1, θ(x) + θ(p1), x + p′3) | x ∈ g}.

We denote a Cartan decomposition by g = k⊕ s , where s is the (−1)-eigenspace
of the involution θ on g . Let us prove that

TξO ∩ TξOθ
w ⊂ {(z + p1, z + θ(p1), z + s + p′3) | z ∈ k}. (4)

To deduce this containment, take a vector from the left hand side. Then it is
expressed as

(y + p1, y + θ(p1), y + p′3) = (x + p1, θ(x) + θ(p1), x + p′3)

for some x ∈ g and y ∈ g . From this, we get

x− y ∈ p1, θ(x)− y ∈ θ(p1), and x− y ∈ p′3.

By the second formula, we know x − θ(y) ∈ p1 , and thus y − θ(y) ∈ p1 ∩ θ(p1).
Let us decompose y along the Cartan decomposition:

y =
1

2
(y + θ(y)) +

1

2
(y − θ(y)) =: z + v ∈ k⊕ s.

Then we know v ∈ p1 ∩ θ(p1) and

(y + p1, y + θ(p1), y + p′3) = (z + p1, z + θ(p1), z + v + p′3) (v ∈ s),

which proves (4).

From (4), we get

TξO ∩ TξOθ
w ∩ TξX ⊂ {(z + p1, z + θ(p1), z + p′3) | z ∈ k} = TξO. (5)
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To see this, we concentrate on the third component of TξX , which must be of the
form z′ + p′3 for some z′ ∈ k . Equating this with the third component z + v + p′3
of TξO ∩ TξOθ

w , we get

(z − z′) + v ∈ p′3 (z, z′ ∈ k; v ∈ s).

Since p′3 is θ -stable, we get z − z′ ∈ k ∩ p′3 and v ∈ s ∩ p′3 . Therefore, the third
component becomes z + v + p′3 = z + p′3 .

By Equations (3) and (5), we have

TξO ⊂ Tξ(O ∩Oθ
w ∩X) ⊂ TξO ∩ TξOθ

w ∩ TξX ⊂ TξO,

and conclude that all the containments in the above formula are in fact equalities.
This means that O is an open neighborhood of ξ ∈ O∩Oθ

w∩X . Since ξ is arbitrary,
O ∩ Oθ

w ∩ X is smooth and its irreducible components coincide with connected
components. Since the number of irreducible components of an algebraic variety
is finite, we conclude that there are only finitely many K -orbits in O ∩Oθ

w ∩X .

Thus we finished the proof of Theorem 3.1.

The above theorem is strong enough to produce many interesting examples
of double flag varieties of finite type. However, it also misses many possibilities.
Here we introduce another kind of technique, which can present some more exam-
ples. A key idea is that a homogeneous space G/Q sometimes can be embedded
into a product of (partial) flag varieties. It is an equivariant compactification, and
is considered to be a generalization of a complexification of the Harish-Chandra
embedding of a symmetric space into the product of the flag varieties.

First, let us explain the classical Harish-Chandra embedding.

Let us assume that K is an intersection of a parabolic subgroup P of G
and its opposite P ◦ . Thus K = P ∩ P ◦ is a Levi component of P . Then G/K
can be embedded into XP × XP ◦ :

G/K 3 gK 7→ (gP, gP ◦) ∈ XP × XP ◦ ,

and this embedding is an open embedding (compare their dimension). Let us fix
a Borel subgroup B ⊂ G , and consider an embedding

B\G/K ↪→ B\(XP × XP ◦) ' G\(XB × XP × XP ◦)

Since #B\G/K < ∞ , there is an open B -orbit, hence XP ×XP ◦ is a spherical G-
variety. (See § 5 for fundamental properties of spherical varieties.) Therefore there
are finite number of B -orbits on XP × XP ◦ , which is equivalent to the finiteness
of G-orbits in XB × XP × XP ◦ .

Thus we proved the following

Proposition 3.3. Assume that a Levi component of a parabolic subgroup P is a
symmetric subgroup of G. Then XB ×XP ×XP ◦ contains finitely many G-orbits,
where P ◦ denotes a parabolic subgroup opposite to P .
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The assumption of the proposition above is satisfied for a symmetric pair
(G, K) which is the complexification of a Hermitian symmetric pair (GR, KR). If
P has an abelian unipotent radical, then K = P ∩ P ◦ satisfies this assumption
(i.e., (G, K) is a symmetric pair; see [RRS92]).

Now we generalize the above situation to get a simple criterion of finiteness
of K -orbits on the double flag variety.

Theorem 3.4. Let P i (i = 1, 2, 3) be a parabolic subgroup of G. Suppose that
XP 1 ×XP 2 ×XP 3 has finitely many G-orbits and that Q := P 2 ∩P 3 is a parabolic
subgroup of K . Then XP 1 ×ZQ has finitely many K -orbits.

Moreover, if P 1 is a Borel subgroup B and the product P2P3 is open in G,
then the converse is also true, i.e., the double flag variety XB×ZQ is of finite type
if and only if the triple flag variety XB × XP 2 × XP 3 is of finite type.

Proof. We have a G-equivariant diagonal embedding G/Q ↪→ XP 2 × XP 3 by
g Q 7→ (gP 2, gP 3). Then we have the following natural inclusion

K\(XP 1 ×ZQ) ∼= P 1\G/Q = G\(XP 1 ×G/Q) ↪→ G\(XP 1 × XP 2 × XP 3), (6)

which proves the first claim.

Let us assume that P 1 = B is a Borel subgroup and P2P3 ⊂ G is open.
To prove the converse, let us assume that XB × ZQ is of finite type. Since
K\XB × ZQ ' B\G/Q , there is an open B -orbit on G/Q . Since P2P3 is
open in G , the map G/Q ↪→ XP 2 × XP 3 above is an open embedding, and
consequently there is an open B -orbit on XP 2 × XP 3 . Thus XP 2 × XP 3 is a
spherical G-variety, hence there are only finitely many B -orbits on it. Now, since
G\(XB × XP 2 × XP 3) ' B\(XP 2 × XP 3), we are done.

Note that (P 1, P 2, P 3) = (B, P, P ◦) and Q = P ∩ P ◦ = K in Proposition
3.3 above.

4. Richardson-Springer theory

We use the same notation as in the former section. If P ′ = G and P = B , Theorem
3.1 reduces to the one which claims that K\G/B is a finite set. Let us compare
this to the classification of K -orbits on XB = G/B by Richardson-Springer.

4.1. Review of Richardson-Springer Theory.

First, we briefly review the theory of Richardson and Springer [RS90, RS93].
We fix a θ -stable Borel subgroup B and a θ -stable maximal torus T ⊂ B . Such
pair always exists ([Ste68, Theorem 7.5]). Let T be the set of maximal tori in
G , and T θ the set of θ -stable maximal tori. As before XB denotes the set of all
Borel subgroups in G . We put C = {(T1, B1) ∈ T × XB | T1 ⊂ B1} . Then there
are natural projections p1 : C → T and p2 : C → XB .

The projection p2 : C → XB gives C the structure of fiber bundle over XB

with the fiber B1/T1 . The projection p1 : C → T is a Galois covering map with
the Galois group W = WG(T1). Both of them tell us that C is isomorphic to G/T :

C ' G×B (B/T ) ' G×NG(T ) (NG(T )/T ) ' G/T.
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Put
Cθ := {(T1, B1) ∈ T θ × XB | T1 ⊂ B1} = C ∩ (T θ × XB).

Theorem 4.1 (Richardson-Springer). The K -equivariant projection p2 : Cθ →
XB induces a bijection K\Cθ ∼−→ K\XB .

Corollary 4.2. Let us fix representatives {T1} in the K -conjugacy classes of
the θ -stable maximal tori K\T θ . For each representative T1 , we also fix a Borel
subgroup B1 which contains T1 . Then there is a bijection∐

T1∈K\T θ

WK(T1)\WG(T1)
∼−→ K\XB, WK(T1)w 7→ K · (wB1w

−1),

where WH(T1) = NH(T1)/ZH(T1) is a Weyl group with representatives in H ⊂ G.

The incidence variety Cθ is sometimes too big for our purpose. We can take
a smaller subvariety as follows. Define a map τ : G → G by τ(g) = g−1θ(g) (g ∈
G). We denote by Ξ = Im τ the image of the map, which is known to be closed
in G ([Ric82]). Since τ is clearly invariant under the left translation by K , it
induces a map Ψ : K\G → Ξ. By [Ric82, Lemma 2.4], Ψ is an isomorphism from
the symmetric variety K\G to the closed subvariety Ξ ⊂ G .

Recall the fixed θ -stable maximal torus T . We define

V := τ−1(NG(T )) = {g ∈ G | g−1θ(g) normalizes T },

on which K acts on the left and T acts on the right.

Theorem 4.3 (Richardson-Springer). There is a bijection K\V/T
∼−→ K\XB ,

which is induced by V 3 g 7→ g ·B ∈ XB .

Let us briefly explain that this is an immediate consequence of Theorem
4.1. An element (T1, B1) ∈ Cθ is expressed as (T1, B1) = (gTg−1, gBg−1) for some
g ∈ G . The representative g ∈ G is determined up to the right multiplication of
T . Since T1 = gTg−1 is θ -stable, we have

gTg−1 = θ(gTg−1) = θ(g) T θ(g)−1.

Hence g−1θ(g) ∈ NG(T ). Thus V/T corresponds to Cθ naturally by V 3 g 7→
(g ·T, g ·B) ∈ Cθ . So K -orbits in V/T are in bijection with K -orbits in Cθ , which
are in turn bijective to K\XB .

Now we get a map

K\XB
∼−→ K\V/T

τ−→ NG(T ) → W = NG(T )/T,

which sends KgB to w = g−1θ(g) in W . Note that θ(w) = θ(g)−1g = w−1 . We
call v ∈ W a twisted involution if θ(v) = v−1 holds, and put I = {v ∈ W | θ(v) =
v−1} , the set of twisted involutions. With this notation, we finally get a map

φ : K\XB → I ⊂ W, (7)
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which we call the Richardson-Springer map.

4.2. Geometry of Richardson-Springer map.

Let us recall the notation in § 3. We take P = B , a Borel subgroup, and
P ′ = G so that XP ×ZQ = XB .

We take a G-orbit O in XB × XB under the diagonal action. Since
G\(XB × XB) ' B\G/B , the G-orbits are classified by the Weyl group W =
WG(T ). So we write O = Ow (w ∈ W ). Let us consider the θ -twisted embedding
of XB into XB × XB , i.e.,

∆θ : XB ↪→ XB × XB, B1 7→ (B1, θ(B1)).

We denote X = ∆θ(XB). Then Lemma 3.2 tells us the following

Lemma 4.4. For each w ∈ W , the connected components of Ow∩X are exactly
the irreducible components. Each connected component is a K -orbit, hence there
are finitely many K -orbits in Ow ∩X .

Now pick a point ξ in Ow ∩X . Then ξ = (B1, θ(B1)) = (g · B, (gẇ) · B),
where ẇ ∈ NG(T ) represents w ∈ W = NG(T )/T .

B1 = gBg−1, θ(B1) = (gẇ)B(gẇ)−1, (gẇ)−1θ(g) ∈ B

Thus we have ẇ−1g−1θ(g) ∈ B . From Theorem 4.3, we can assume g−1θ(g) ∈
NG(T ). Therefore ẇ−1g−1θ(g) ∈ B ∩ NG(T ) = T . Thus g−1θ(g) represents w
also.

Theorem 4.5. Let us denote X = ∆θ(XB) ⊂ XB × XB . For w ∈ W , let us
consider a G-orbit Ow = G · (B, w · B) ∈ XB × XB . If Ow ∩X 6= ∅, then w ∈ I
is a twisted involution, i.e., it satisfies w−1 = θ(w). Moreover, if w ∈ I , the
connected components of Ow ∩X correspond bijectively to the K -orbits in K\XB

which are in the fiber φ−1(w) of w of the map φ (see Equation (7)).

This theorem gives a geometric interpretation of the Richardson-Springer
map φ : K\XB → I .

5. Spherical actions on multiple flag varieties

5.1. Spherical varieties.

The finiteness of K -orbits on the product of flag varieties and spherical
actions of G or K are closely related.

Recall that a G-variety X is called spherical if it has an open dense B -
orbit, where B is a Borel subgroup. Note that X is G-spherical if and only if
#B\X < ∞ .

Let us begin with an easy but fundamental lemma.

Lemma 5.1. The following conditions are equivalent.
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(1) Let B × S be a Borel subgroup of G×K . Then K has finitely many orbits
on XB ×ZS .
(2) G ∼= (G×K)/∆K is G×K -spherical.
(3) Every irreducible finite-dimensional rational representation of G is decom-

posed into the representations of K multiplicity freely.

Proof. Let us consider the condition (1). Since XB ×ZS = (G×K)/(B×S),
the finiteness of K -orbits on it implies the finiteness of B×S -orbits on K\(G×K).
Since B×S is Borel in G×K , this is equivalent to that K\(G×K) is (G×K)-
spherical, which is the condition (2).

Note that (G×K)/K is affine. So, the existence of an open B×S -orbit is
equivalent to the condition that the regular function ring C[G×K]K decomposes
multiplicity freely as a representation of G×K . By the Frobenius reciprocity, we
know

C[G×K]K '
⊕

(π,τ)∈Irr(G)×Irr(K)

HomK(π, τ)⊗ (π � τ ∗),

where τ ∗ denotes the contragredient of τ and π � τ ∗ means outer tensor product.
Thus we get dim HomK(π, τ) ≤ 1 for any π ∈ Irr(G) and τ ∈ Irr(K), which is
equivalent to the condition (3).

There are very few examples which satisfy the conditions in the above
lemma, and they are completely classified by Krämer [Krä76]. Best known one
might be the pair (G, K) = (GLn, GL1 × GLn−1), which is related to the multi-
plicity free branching rule (Pieri formula) and Gelfand-Zeitlin basis.

The following theorem is a direct consequence of Theorem 3.1.

Theorem 5.2. Let P be a parabolic subgroup of G. If XP ×Xθ
P is a spherical

G-variety, then XP is a spherical K -variety.

Proof. Since G\(XP ×Xθ
P ×XB) ' B\(XP ×Xθ

P ), the product XP ×Xθ
P is a

spherical G-variety if and only if there are finitely many G-orbits on XP×Xθ
P×XB .

We can assume that B is θ -stable and S := K ∩ B is a Borel subgroup of
K . Then, by Theorem 3.1, this implies that there are finitely many K -orbits
on XP ×ZS ' G/P ×K/S . Since K\(G/P ×K/S) ' S\G/P , this is equivalent
to say that XP ' G/P is K -spherical.

Let us take a θ -stable Borel subgroup B of G , and fix a positive root system
∆+ corresponding to B . We denote by Π ⊂ ∆+ a simple system. For a parabolic
subgroup P in G which contains B , we can associate a subset Φ ⊂ Π so that
Π \ Φ generates a sub root system for a Levi component of P . For α ∈ Φ, we
denote a fundamental weight corresponding to α by ωα . Put λ =

∑
α∈Φ cαωα a

linear combination of those fundamental weights with positive integer coefficients
cα ’s. We assume that λ is integral for G . Let us denote by Vλ a finite dimensional
irreducible representation of G with highest weight λ , and by vλ its highest weight
vector. Then we have

P = {g ∈ G | g · vλ ∈ Cvλ}.
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If we denote by P(Vλ) a projective space over Vλ and [vλ] a point in P(Vλ)
determined by the line through it, it is equivalent to say that G · [vλ] ' XP .

Let us denote X̂P = Gvλ ⊂ Vλ , the affine cone over XP .

With these notations, we have the following

Lemma 5.3. The partial flag variety XP is K -spherical if and only if V ∗
kλ

∣∣
K

decomposes multiplicity freely as a K -module for any non-negative integer k ≥ 0.

Proof. The partial flag variety XP is K -spherical if and only if the affine cone
X̂P is C× ×K -spherical. Since X̂P is an affine variety, it is C× ×K -spherical if
and only if the regular function ring C[X̂P ] decomposes multiplicity freely. Note
that

C[X̂P ] '
⊕

k≥0
V ∗

kλ

as a G-module. Since C× -action specifies one of V ∗
kλ , the restriction V ∗

kλ

∣∣
K

is a
multiplicity free K -module.

Without loss of generality, we can assume that the root system ∆ is defined
with respect to a θ -stable maximal torus T . Thus there is a well-defined action
of θ on the root system ∆. Since B is assumed also to be θ -stable, θ preserves
the simple system Π, and we easily see that θ(P ) corresponds to θ(Φ). Put
λθ =

∑
α∈θ(Φ) cαωα . Under an obvious notation, we conclude that

Lemma 5.4. The product of partial flag varieties XP × Xθ
P is G-spherical if

and only if Vkλ ⊗ V`λθ decomposes multiplicity freely as a G-module for any non-
negative integers k, ` ≥ 0.

The proof is the same as Lemma 5.3 (and essentially, this follows from the
lemma if we consider G = G×G and K = ∆(G)).

Thus we can reinterpret Theorem 5.2 as follows.

Corollary 5.5. Let P be a parabolic subgroup containing a θ -stable Borel
subgroup B of G, and we assume the notations above. If the tensor product
Vkλ ⊗ V`λθ is a multiplicity free G-module for any non-negative integers k, ` ≥ 0,
then the restriction Vmλ

∣∣
K

decomposes multiplicity freely as a K -module for any
m ≥ 0.

5.2. Maximally split parabolic in a real form.

Let gR be a real Lie algebra which is a real form of g . Let GR be a
connected analytic Lie subgroup in G corresponding to gR , and we assume it is
non-compact. Choose a maximal compact subgroup KR of GR . Then we have a
Cartan decomposition gR = kR ⊕ sR corresponding to KR . It is well known that,
for a symmetric pair (G, K), there always exists such a non-compact Riemannian
symmetric pair (GR, KR), and our involution θ coincides with the complexification
of the Cartan involution associated to GR/KR .

Choose a maximal abelian subspace aR in sR . Then a choice of a positive
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system of the restricted root system Σ(gR, aR) determines a real parabolic sub-
algebra pR which is maximally split in gR . Let pmin be the complexification of
pR , and Pmin the corresponding complex parabolic subgroup of G . We denote by
XPmin

' G/Pmin a partial flag variety of parabolic subgroups conjugate to Pmin as
usual.

Lemma 5.6. The dense open K -orbit in XPmin
is isomorphic to K/M , where

M = ZK(a) is the centralizer of a = C⊗R aR in K .

Proof. This lemma is well known, but we prove it for the sake of self-
containedness. Since K∩Pmin = M , the K -orbit through pmin ∈ XP is isomorphic
to K/M . The complex dimension of K/M is equal to the real dimension of Iwa-
sawa’s nR , which is also equal to the dimension of XPmin

. Thus, the orbit must be
an open orbit.

The following is a corollary to Theorem 5.2.

Corollary 5.7. Let Pmin be the complexification of a maximally split parabolic
subgroup of GR as above. If XPmin

×XPmin
is a G-spherical variety, then K/M is

a spherical K -variety.

Proof. If XPmin
× XPmin

is a G-spherical variety, then XPmin
is a spherical K -

variety by Theorem 5.2 (note that we can choose a θ -stable parabolic from XPmin

so that XPmin
= Xθ

Pmin
). So there are finitely many S -orbits, where S is a Borel

subgroup of K . Since K/M is an open orbit in XPmin
, there are only finitely many

S -orbits in K/M , which implies K/M is K -spherical.

We have a partial converse to the above corollary.

Proposition 5.8. The K -variety K/M is spherical if and only if XPmin
× ZQ

contains finitely many K -orbits for any parabolic subgroup Q of K .

Note that if (K, M) is a symmetric pair, then K/M is spherical.

Proof. Let B ⊂ G be a θ -stable Borel subgroup such that S := K ∩ B is
a Borel subgroup of K . We can consider the Borel subgroup S instead of Q
without loss of generality. The variety K/M is K -spherical if and only if there
exists an open S -orbit on K/M . By Lemma 5.6, K/M is an open K -orbit in
XPmin

. So the open S -orbit in K/M turns out to be an open S -orbit in XPmin
,

which means XPmin
is a spherical K -variety. Thus we have finitely many S -orbits

on XPmin
. Through the isomorphism K\(XPmin

×ZS) ' S\XPmin
, we conclude that

XPmin
×ZS also contains finitely many K -orbits.

6. Double flag varieties of type A

Let us consider a group G of type A. There are three types of symmetric pairs
(G, K), denoted by AI, AII, AIII (see [Hel78, § X.6]). Namely they are SLn/SOn ,
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SL2m/Sp2m , and GLn/GLp × GLq (n = p + q). We will construct examples of
double flag varieties with finitely many K -orbits, using Theorem 3.1.

Recall the notation Pλ for an (upper triangular) standard parabolic sub-
group of GLn from §2, where λ = (λ1, . . . , λ`) is a composition of size n . In fact,
Pλ is realized as the stabilizer of a partial flag of subspaces in Cn of dimension
λ1, λ1 + λ2, . . . , λ1 + · · ·+ λ` .

6.1. Type AI and AII.

Let G/K = SLn/SOn (n ≥ 3) or G/K = SL2m/Sp2m (m ≥ 2). In these
cases, a mirabolic parabolic subgroup is not conjugate to a θ -stable parabolic
subgroup. So we have less possibilities to apply Theorem 3.1.

Proposition 6.1. Let (G, K) = (SLn, SOn) or (G, K) = (SL2m, Sp2m), which
is a symmetric pair of type AI or AII respectively. If P ⊂ G and Q ⊂ K are a
pair of parabolic subgroups among the following list (1)–(2), then there are finitely
many K -orbits in XP ×ZQ .

(1) P is a maximal parabolic subgroup of G, and Q is an arbitrary parabolic
subgroup of K .
(2) Assume that n ≥ 4 is an even integer if (G, K) = (SLn, SOn). P = Pλ is a

parabolic subgroup of G with `(λ) = 3 (i.e., λ = (λ1, λ2, λ3)), and Q is a Siegel
parabolic subgroup of K . Here we say Q is a Siegel parabolic subgroup if it is the
stabilizer of a maximal isotropic space.

Proof. Here we only give a proof for type AI. The proof for type AII is similar.

(1) Type Dr+2 in Theorem 2.2 implies the result.

(2) Put n = 2m . We use type E6 in Theorem 2.2. Since the maximal
parabolic P ′ in the list should be θ -stable, it must be a parabolic subgroup of
SL2m corresponding to a partition (m, m). So we can take Q = P ′∩K as a Siegel
parabolic of SO2m with an appropriate choice of conjugates of P ′ .

6.2. Type AIII.

G/K = GLn/GLp ×GLq (n = p + q).

We get three cases in which the double flag variety XP × ZQ has finitely
many K -orbits. These are direct consequence of Theorem 3.1.

Proposition 6.2. Let G/K = GLn/GLp × GLq be a symmetric space of type
AIII. Let P be a parabolic subgroup of G and Q that of K . If P and Q are
among the following list (1)–(3), then there are finitely many K -orbits in XP ×
ZQ .

(1) P is any parabolic subgroup of G, and Q = Q1×Q2 is a parabolic subgroup
of K which satisfies (i) Q1 is of partition type (1, p − 1) and Q2 = GLq ; or (ii)
Q1 = GLp and Q2 is of partition type (q − 1, 1).
(2) P is a maximal parabolic subgroup of G, and Q is any parabolic in K .
(3) P = Pλ is a parabolic subgroup of G which corresponds to a composition λ

with `(λ) = 3 and Q is a maximal parabolic subgroup of K .

Proof. For (1), We use type Sq,r in Theorem 2.2. For (2), we use type Dr+2
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in the same theorem, and for (3), we use type E6 .

Few remarks are in order.

In Case (1) in the above theorem, ZQ is isomorphic to a projective space
P(Cp) or P(Cq). We call these double flag varieties “mirabolic” after [Tra09] and
[FGT09].

In Case (2), if P = P(m,n−m) , XP is a Grassmannian Grassm(Cn) of m-
dimensional subspaces in Cn (n = p + q ). Thus the action of K = GLp ×GLq on

Grassm(Cp+q)× X
GLp

Q1 × X
GLq

Q2 has finitely many orbits with obvious notations.

If P = B is a Borel subgroup of G , we are able to give a complete
classification of the double flag variety XB × ZQ of finite type for a symmetric
pair of type AIII.

Theorem 6.3. Let G = GLn and B ⊂ G be a Borel subgroup; K = GLp×GLq

with p + q = n, q ≥ p ≥ 1; and Q1 is a parabolic subgroup of GLp and Q2 is that
of GLq . Put Q = Q1×Q2 a parabolic subgroup of K . Then there are only finitely
many K -orbits on XB × ZQ if and only if Q1 and Q2 are in the following table.

Case p Q1 Q2 ZQ

(i) arbitrary GLp GLq {point}
(ii) arbitrary GLp mirabolic P(Cq)
(iii) 1 GL1 arbitrary GLq/Q

2

(iv) 2 GL2 maximal Grassm(Cq)
(v) arbitrary mirabolic GLq P(Cp)

Here the second column indicates the condition on p.

Proof. We use Theorem 3.4. Let λ be a composition of p , and µ be that of q .
Note that (λ, µ) is a composition of n . We put P 2 = P(λ,µ) , which is a standard
parabolic subgroup of G , and P 3 = P ◦

(p,q) , a parabolic subgroup of G opposite to

the standard parabolic P(p,q) . It is easy to check that Q = P 2 ∩ P 3 is a parabolic
subgroup Pλ × Pµ of K = GLp × GLq and the product P 2P 3 is open dense in
G . Note that Pλ (respectively Pµ ) is a parabolic subgroup of GLp (respectively
GLq ). Now we are in the setting of Theorem 3.4, and conclude that XB × ZQ is
of finite type if and only if the triple flag XB × XP(λ,µ)

× XP(p,q)
is of finite type.

From Theorem 2.2, we deduce the table above.

6.3. Summary.

As a summary, we give tables of the double flag varieties with finitely many
K -orbits in Tables 1–3 below. Note that these tables do not exhaust all the cases.

7. Double flag varieties of type C

Let us consider a symmetric pair of type C. There are two irreducible symmetric
spaces of type C; namely, type CI and CII. So we consider a symmetric space
G/K = Sp2n/GLn of type CI, or G/K = Sp2n/Sp2p×Sp2q of type CII (n = p+q )
in this section.
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Table 1: Type AI : G/K = SLn/SOn (n ≥ 3)

P Q XP ZQ extra condition
maximal arbitrary Grassm(Cn) ZQ

(λ1, λ2, λ3) Siegel XP LGrass(Cn) n is even

Table 2: Type AII : G/K = SL2n/Sp2n (n ≥ 2)

P Q XP ZQ

maximal arbitrary Grassm(C2n) ZQ

(λ1, λ2, λ3) Siegel XP LGrass(C2n)

Table 3: Type AIII : G/K = GLn/GLp ×GLq (n = p + q).

P Q1 Q2 XP ZQ

arbitrary mirabolic GLq XP P(Cp)
arbitrary GLp mirabolic XP P(Cq)
maximal arbitrary arbitrary Grassm(Cn) ZQ

(λ1, λ2, λ3) GLp maximal XP Grassk(Cq)
(λ1, λ2, λ3) maximal GLq XP Grassk(Cp)

arbitrary GL1 (p = 1) arbitrary XP GLq/Q2

arbitrary GL2 (p = 2) maximal XP Grassm(Cq)
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First, recall the notation Pλ of a standard parabolic subgroup of Sp2n from
§2, where λ is a composition of size 2n . The parabolic Pλ is realized as the
stabilizer of a partial flag of isotropic subspaces in C2n . In particular, a maximal
parabolic subgroup P(m,2n−2m,m) (0 < m ≤ n) is the stabilizer of an isotropic
subspace of dimension m .

If m = n , then a totally isotropic subspace of dimension n is called La-
grangian, and we denote by LGrass(C2n) the Grassmannian of all the Lagrangian
subspaces in C2n . Let P(n,n) be a Siegel parabolic subgroup, which fixes a La-
grangian subspace. Since G = Sp2n acts on LGrass(C2n) transitively, we have
G/P(n,n) ' LGrass(C2n).

If m < n , let IGrassm(C2n) be the Grassmannian of isotropic subspaces
of fixed dimension m . As in the case of the Lagrangian Grassmannian, we can
identify G/P(m,2n−2m,m) ' IGrassm(C2n). Note that, if m = 1, this reduces to
G/P(1,2n−2,1) ' P(C2n).

Theorem 3.1 gives us several examples of double flag varieties of finite type.

Proposition 7.1. Let G/K = Sp2n/GLn be a symmetric space of type CI or
G/K = Sp2n/Sp2p × Sp2q of type CII (n = p + q). If a pair of parabolic subgroups
P ⊂ G and Q ⊂ K is among the following list (1)–(3), then the double flag variety
XP ×ZQ is of finite type.

(1) P = P(n,n) is a Siegel parabolic subgroup of G, and Q ⊂ K is an arbitrary
parabolic subgroup.
(2) P = P(1,2n−2,1) is a maximal parabolic subgroup of G, and Q ⊂ K is an

arbitrary parabolic subgroup.
(3) Let us assume that G/K = Sp2n/Sp2p×Sp2q is of type CII. P = P(m,2n−2m,m)

(1 < m < n) is a maximal parabolic subgroup of G, and Q ⊂ K is a product of
Siegel parabolic subgroups in Sp2p and Sp2q .

Proof. For (1), we use type SpDr+2 in Theorem 2.3 and apply Theorem 3.1.
Similarly, for (2), we use type SpY4,r in Theorem 2.3, and for (3), we use SpE6 .

As a summary, we give tables of the double flag varieties of type C with
finitely many K -orbits in Tables 4–5 below. Note that these tables do not exhaust
all the cases.

Table 4: Type CI : G/K = Sp2n/GLn (n ≥ 2)

P Q XP ZQ

Siegel any LGrass(C2n) ZQ

(1, 2n− 2, 1) any P(C2n) ZQ

Table 5: Type CII : G/K = Sp2n/Sp2p × Sp2q (n = p + q)

P Q XP ZQ

Siegel any LGrass(C2n) ZQ

(m, 2n− 2m, m) Siegel× Siegel IGrassm(C2n) LGrass(C2p)× LGrass(C2q)
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