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1. Introduction

It turns out that the theory of singular integrals is is very fruitful in harmonic
analysis. Starting in 50’s from the works of Calderón and Zygmund [4], this topic
has inexorably drawn an increasing number of mathematicians. Motivated, in
part by the study of the Hilbert transform (singular integral of convolution type)
Calderón and Zygmund created what is nowadays called real-variable method. The
smoothness of the kernel and the Calderón-Zygmund decomposition lead to the
weak-type (1,1) and strong type (p, p), 1 < p < ∞ estimates, from interpolation
and duality techniques.

Dunkl’s theory generalizes classical Fourier analysis on RN . It started
twenty years ago with Dunkls seminal work [9] and was further developed by
several mathematicians. See for instance the surveys [14, 18] and the references
cited therein. The use of singular integral is limited in the latter setting. However
the generalization of some classical Lp -inequalities seems to be difficult and has
been only discussed in particular cases. Partly, this due to insufficient information
about Dunkl kernel and Dunkl translation operator, see [2, 19]. In this paper,
we establish an interesting relationship between a singular integral and a finite
group of reflections G that appears in Dunkl’s theory, then following ideas of [11]
we prove a Fefferman-Stein inequality for the Dunkl-maximal function. We recall
that similar result is obtained in [6] for G = ZN2 with a different approach. Inspired
by ideas developed in ([10], Ch,4), we establish an Lp -estimate for the analogue
of Littlewood-Paley g-function, with 1 < p < ∞ . To be more precise we shall
be concerned with vector-valued singular integral operators T on Lp -spaces for
which there is a function K of two variables x and y defined away from the set
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x = g.y , g ∈ G and taking values in a space of bounded linear operators between
two Banach spaces, such that

T (f)(x) =

∫
Rn
K(x, y)f(y)dµk(y),

where for all g ∈ G , g.x /∈ supp(f) and µk is a weighted measure with respect
to Lebesgue measure. We show that if K satisfies a Hörmander-type conditions,
then T is an Lp - bounded operator, for 1 < p <∞ .

The paper is organized as follows : In Section 2, we shall introduce some
necessary notations, definitions and results about Dunkl’s theory. In Section 3, we
reformulate and prove an adaptable version of singular integral theorem. Section
4 is devoted to the vector-valued estimates for the Dunkl-maximal function. In
section 5, we study the Dunkl-Littlewood-Paley g-function.
Finally, C (eventually with subindex) stands for a positive constant whose value
may vary from line to line.

2. Preliminaries

In this section we give some relevant background material from Dunkl analysis.
The results listed below can be found in [14, 13, 18, 9, 7].

Let G ⊂ O(RN) be a finite reflection group associated to a reduced root
system R , normalized in the sense that |α|2 = 〈α, α〉 = 2 for all α ∈ R , where
〈 , 〉 denotes the usual Euclidean inner product RN . Let k : R → [0,+∞) a
G–invariant function (called multiplicity function) and R+ be a fixed positive
subsystem of R . Define the weighted measure,

dµk(x) =
∏
α∈R+

|〈x, α〉|2k(α) dx. (1)

The Dunkl operators Tξ , ξ ∈ RN are the following k–deformations of
directional derivatives ∂ξ by difference operators :

Tξf(x) = ∂ξf(x) +
∑
α∈R+

k(α) 〈α, ξ〉 f(x)− f(σα. x)

〈α, x〉
, x ∈ RN

where σα denotes the reflection with respect to the hyperplane orthogonal to α ,

σα(y) = y − 〈y, α〉α.

We denote by Tj the operator Tej , where (ej)j is the canonical basis of RN .

The operators ∂ξ and Tξ are intertwined by a Laplace–type operator

Vkf(x) =

∫
RN
f(y) dνx(y),

associated to a family of compactly supported probability measures { νx |x∈RN } .
Specifically, νx is supported in the the convex hull co(G.x).
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For every λ∈CN, the simultaneous eigenfunction problem

Tξf = 〈λ, ξ〉 f, ξ∈RN

has a unique solution f(x)=Ek(λ, x) such that Ek(λ, 0)=1, which is given by

Ek(λ, x) = Vk(e
〈λ, . 〉)(x) =

∫
RN
e 〈λ,y〉 dνx(y), x∈RN .

Furthermore (λ, x) 7→ Ek(λ, x) extends to a holomorphic function on CN × CN .

For evry 1 ≤ p ≤ +∞ , we denote by Lpk(RN ,C) the space of complex
valued measurable functions f on RN , satisfying

‖f‖p,k =
(∫

RN
|f(x)|pdµk(x)

) 1
p
< +∞, 1 < p < +∞,

‖f‖∞,k = ess sup
x∈RN

|f(x)| < +∞.

The Dunkl transform Fk is defined on L1
k(RN ,C) by

Fkf(ξ) =
1

ck

∫
RN
f(x)Ek(−i ξ, x)dµk(x),

where

ck =

∫
RN
e−

|x|2
2 dµk(x).

It can be considered as a generalization of the usual Fourier transform which is
corresponding to F0 . However, it shares many properties of the Fourier transform.

(i) The Dunkl transform is a topological automorphism of the Schwartz space
S(RN).

(ii) (Plancherel Theorem) The Dunkl transform extends to an isometric auto-
morphism of L2

k(RN ,C).

(iii) (Inversion formula) For every f ∈L1
k(RN ,C) such that Fkf ∈L1

k(RN ,C), we
have

f(x) = F2
kf(−x), x∈RN .

(iv) For all ξ ∈ RN and f ∈ S(RN)

Fk(Tξ(f))(x) =< iξ, x > Fk(f)(x), x∈RN .

Let x ∈ RN , the Dunkl translation operator τx is given for f ∈ L2
k(RN ,C)

by

Fk(τx(f))(y) = Fkf(y)Ek(ix, y), y ∈ RN .

An explicit formula for τx(f) due to Rösler [13] is given when f is a radial function

in S(RN) such that f(y) = f̃(|y|), by

τx(f)(y) =

∫
RN
f̃(A(x, y, η))dνx(η), (2)
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where

A(x, y, η) =
√
|y + η|2 + |x|2 − |η|2 =

√
|y|2 + |x|2 + 2 < y, η > .

This formula is extended later by F. Dai and H. Wang ( [5], Lemma 3.4 ) to a
continuous radial function f ∈ L2

k(RN ,C). For applications, we note the following
remarkable inequality

min
g∈G
|g.x+ y| ≤ A(x, y, η) ≤ max

g∈G
|g.x+ y|. (3)

In the next we collect some known facts about Dunkl translation.

(i) For all x, y ∈ RN ,
τx(f)(y) = τy(f)(x). (4)

(ii) For all x, ξ ∈ RN and f ∈ S(RN),

Tξτx(f) = τxTξ(f).

(iii) For all x ∈ RN and 1 ≤ p ≤ ∞ , the operator τx can be extended to all
radial functions f in Lpk(RN ,C), and the following holds

||τx(f)||p,k ≤ ||f ||p,k. (5)

Remark. The inequality (5) is proved in [18] only for 1 ≤ p ≤ 2, by using an
interpolation argument. But since in view of (2) we see that |τx(f)|p ≤ τx(|f |p)
for all radial function f ∈ S(RN) and all 1 ≤ p < ∞ , we can then conclude (5)
by using the L1 -boundedness of τx and density argument.

The convolution product is defined for suitable functions f and g by

f ∗k g(x) =

∫
RN
τx(f)(−y)g(y)dµk(y), x ∈ RN .

We just need the following property, if f and g belong to L2
k(RN ,C),

Fk(f ∗k g) = Fk(f)Fk(g). (6)

3. Banach-Valued Singular Integral Operators

Notations. We denote by :
i) ∆G = {(x, g.x); x ∈ RN ; g ∈ G} .
ii) For B1 and B2 two Banach spaces, L(B1,B2) the space of all bounded linear
operators from B1 to B2 .
Let K a locally integrable function defined on RN ×RN \∆G , which takes values
in L(B1,B2). We say that K satisfies the Hörmander’s type conditions, if :
There exists constant C > 0 such that,∫

ming∈G |g.x−y|>2|y−y0|
‖K(x, y)−K(x, y0)‖ dµk(x) ≤ C, y, y0 ∈ RN , (7)
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and ∫
ming∈G |g.x−y|>2|x−x0|

‖K(x, y)−K(x0, y)‖ dµk(y) ≤ C, x, x0 ∈ RN . (8)

Here ‖.‖ designs the usual norm of L(B1,B2) and µk is the weighted measure
given by (1).
Remark. An important fact is that (RN , µk) is a space of homogeneous type with
respect to the Euclidean distance, ie : there exists a constant C > 0 such that for
all x ∈ RN and r > 0,

µk((B(x, 2r)) ≤ Cµk(B(x, r)), (9)

where B(x, r) = {y ∈ RN , |y − x| < r} . This fact allows us to use the theory of
singular integral operators on spaces of homogeneous type.

For every 1 ≤ p ≤ ∞ , we denote by Lpk(RN ,B) the Bochner space that is
the space of measurable functions f from RN into a Banach space B , which the
corresponding norm is finite:

‖f‖p,k = ‖f‖p,k,B =
(∫

RN
‖f(x)‖p dµk(x)

) 1
p
<∞, 1 ≤ p <∞,

‖f‖∞,k = ‖f‖∞,k,B = ess sup
x∈RN

‖f(x)‖ <∞.

For definitions and properties of these spaces we refer to [8] and much of this sec-
tion follows the treatment of Bochner integrals in [11].

The main result of this paper is the following :

Theorem 3.1. Let T : Lrk(RN ,B1) → Lrk(RN ,B2) be a bounded operator for
some 1 < r ≤ ∞. Suppose that T is associated with a kernel K , such that

T (f)(x) =

∫
Rn
K(x, y)f(y)dµk(y), (10)

for all compactly supported f ∈ L∞(RN ,B1) and for µk -a.e x ∈ RN , g.x /∈
supp(f), for all g ∈ G. We assume that K satisfies the conditions (7) and (8).
Then T can be extended to a bounded operator from Lpk(RN ,B1) to Lpk(RN ,B2)
for all 1 < p <∞.

Proof. The idea seems to be classical in the theory of singular integrals and
makes use of a generalized version of Calderón-Zygmund decomposition and vector
version of the Marcinkiewicz interpolation. We shall here follow the same argument
developed in the proof of ( [11], Theorem 1.1 ). Then it’s enough to show that T
satisfies a weak (1.1), i.e : there exists a constant C > 0 such that for all λ > 0
and f ∈ L1

k(Rn,B1) ∩ Lrk(Rn,B1),

µk

(
{x ∈ RN ; ‖T (f)(x)‖ > λ}

)
≤ C

‖f‖1,k
λ

. (11)
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We first assume that 1 < r < ∞ . By density argument we can take
f ∈ L∞k (Rn,B1) with bounded support. For λ > 0, the lemma 2.8 of [11] states
that there is a decomposition f = g + h = g +

∑
j hj and a collection of balls

(Bj)j = (B(yj, rj))j such that

(i) For all x ∈ RN , ‖g(x)‖ ≤ C1 λ .

(ii) ‖g‖1,k ≤ C1 ‖f)‖1,k .

(iii) supp(hj) ⊂ Bj .

(iv)

∫
Bj

hj(x)dµk(x) = 0.

(v)
∑
j

‖hj‖1,k ≤ C1 ‖f‖1,k .

(vi)
∑
j

µk(Bj) ≤ C1

‖f‖1,k
λ

.

Here C1 is a constant depending only on the measure µk .
Let B̃j = ∪g∈G g.B(yj, 2rj). then,

µk({x ∈ RN ; ‖T (f)(x)‖ > λ})

≤ µk

(
{x ∈ RN ; ‖T (g)(x)‖ > λ

2
}
)

+ µk

(
{x ∈ RN ; ‖T (h)(x)‖ > λ

2
}
)

≤ 2r

λr
‖T (g)‖rr,k + µk

(⋃
j

B̃j

)
+ µk

(
{x ∈

(⋃
j

B̃j

)c
; ‖T (h)(x)‖ > λ

2
}
)

≤ Z1 + Z2 + Z3.

The boundedness of T on Lrk(RN ,B1) with (i) and (ii), imply

Z1 ≤
C

λr
‖g‖rr,k ≤

C

λ
‖f‖1,k .

By (9) and (vi),

Z2 = µk

(⋃
j

B̃j

)
≤ |G|

∑
j

µk(B(yj, 2rj)) ≤ C
∑
j

µk(Bj) ≤ C
‖f‖1,k
λ

.

On the other hand, we can estimate

Z3 ≤
2

λ

∫
(
⋃
j B̃j)

c

‖T (h)(x)‖ dµk(x) ≤ 2

λ

∑
j

∫
B̃cj

‖T (hj)(x)‖ dµk(x).

In view of (iii), (iv) and the representation (10) we can write

T (hj)(x) =

∫
(K(x, y)−K(x, yj))hj(y)dµk(y)
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for all x ∈ B̃c
j . In addition, when x ∈ B̃c

j and y ∈ Bj , we have

min
g∈G
|g.x− yj| > 2rj ≥ 2|y − yj|.

Therefore, by (7) and (v),

Z3 ≤
2

λ

∑
j

∫
RN

∫
B̃cj

‖K(x, y)−K(x, yj)‖ ‖hj(y)‖ dµk(x)dµk(y)

≤ 2

λ

∑
j

∫
RN

∫
ming∈G |g.x−yj |>2|y−yj |

‖K(x, y)−K(x, yj)‖ ‖hj(y)‖ dµk(x)dµk(y)

≤ C

λ
‖f‖1,k .

This achieves the proof of (11).

When r = ∞ , we let A a constant such that ‖T (g)‖∞ ≤ A ‖g‖∞ and we
consider a decomposition of f with λ′ = λ

2AC1
. For this choice, we see that

µk

(
{x ∈ R; ‖T (g)(x)‖ > λ

2
}
)

= 0

and then,

µk

(
{x ∈ R; ‖T (f)(x)‖ > λ}

)
≤ Z2 + Z3,

which can be estimate by the same manner as above.

Now, as in [11], we conclude the proof of the theorem by interpolation and
duality.

Corollary 3.2. Let 1 < p, r < ∞ and T as in Theorem 3.1. There exists a
constant C > 0 such that for all sequences of functions {fl}l ,∥∥∥∥∥(

∞∑
l=0

‖T (fl)‖r
) 1
r

∥∥∥∥∥
p,k

≤ C

∥∥∥∥∥(
∞∑
l=0

‖fl‖r
) 1
r

∥∥∥∥∥
p,k

and for λ > 0,

µk

(
{x ∈ RN ,

( ∞∑
l=0

‖T (fl)(x)‖r
) 1
r
> λ}

)
≤ C

λ

∥∥∥∥∥(
∞∑
l=0

‖fl‖r
) 1
r

∥∥∥∥∥
1,k

.

Proof. Consider the Banach spaces `r(B1) and `r(B2) and define the opera-
tors

S : Lrk(RN , `r(B1)) → Lrk(RN , `r(B2))

f = (fl)l 7→ S(f) = (T (fl))l

and

KS(x, y) : `r(B1) → `r(B2)

t = (tl)l 7→ KS(x, y)(t) =
(
K(x, y)(tl)

)
l
,
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where (x, y) ∈ RN × RN \ ∆G . Clearly, S is a continuous operator satisfying
‖S‖ ≤ ‖T‖ . In addition,

S(f)(x) =

∫
RN
KS(x, y)f(y)dµk(y),

for all x ∈ RN , g.x /∈ supp(f), g ∈ G. However, KS(x, y) is a continuous operator
with ‖KS(x, y)‖ = ‖K(x, y)‖ . Moreover, since

‖KS(x, y)−KS(x′, y′)‖ = ‖K(x, y)−K(x′, y′)‖ ,

under the assumption on T , the conditions (7) and (8) are satisfied by the kernel
KS . The corollary follows from Theorem 3.1.

4. Applications.

4.1. Vector-valued estimates for Dunkl maximal functions.. The Dunkl
maximal function Mk was introduced in [18] as the analogue of the Hardy-
Littlewood maximal function and defined for a locally integrable function f , by

Mk(f)(x) = sup
r>0

1

µ(B(0, r))

∣∣χB(0,r) ∗k f(x)
∣∣ ,

where χB(0,r) is the characteristic function of the ball B(0, r).
In ([18], Theorem 6.1) a basic ingredient in the proof of the Lp -boundedness for
Mk is the following estimate

Mk(f)(x) ≤ C sup
t>0

(Pt ∗ |f |)(x), (12)

where

Pt(x) = ak
t

(t+ |x|2)mk
=

1

t2mk−1
P (

1

t
x),

and P is the generalized Poisson kernel,

P (x) = ak
1

(1 + |x|2)mk
, ak = ck

Γ(mk)√
π

, mk =
∑
α∈R+

k(α) +
N + 1

2
.

We recall that

Fk(P )(x) = e−|x|, (13)

(see [18], Theorem 5.3).

As in the classical case ( [10], Theorem 4.6.6) the above corollary can be
used to obtain the Fefferman-Stein vector-valued inequality for the Dunkl maximal
operator Mk .
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Theorem 4.1. Let 1 < p, r <∞. There exists a constant C > 0 such that for
all sequence {fl}l of locally integrable functions on RN ,

(i)

∥∥∥∥∥(
∞∑
l=0

|Mk(fl)|r
) 1
r

∥∥∥∥∥
p,k

≤ C

∥∥∥∥∥(
∞∑
l=0

|fl|r
) 1
r

∣∣∣∣∣
p,k

;

(ii) µk

(
{x ∈ RN ,

( ∞∑
l=0

|Mk(fl)(x)|r
) 1
r
> λ}

)
≤ C

λ

∥∥∥∥∥(
∞∑
l=0

|fl|r
) 1
r

∥∥∥∥∥
1,k

.

Proof. By writing ]0,+∞[ as the union of intervals of the form [2j−1, 2j[ ,
j ∈ Z and using the fact that the function r → P (r ‖x‖) is decreasing, we obtain

sup
t>0

(Pt ∗k |f |)(x) ≤ 22mk−1 sup
j∈Z

P2j ∗k |f |(x).

Set

Mk(f)(x) = sup
j∈Z
|P2j ∗k f(x)|.

Observe that in view of (12),

Mk(f)(x) ≤ C Mk(|f |)(x).

Then, it suffices to prove the vector-valued inequalities for Mk . Let us consider
the Banach spaces B1 = C ,B2 = `∞(C) and the bounded operator

T : L∞k (RN ,B1)→ L∞k (RN ,B2)

defined by

T (f)(x) = {P2j ∗k f(x)}j∈Z.

The boundedness of T is easily obtained from the following,

‖P2j ∗k f‖∞,k ≤ ‖P‖1,k ‖f‖∞,k .

Moreover, T admits the following integral representation,

T (f)(x) =

∫
RN
K(x, y)f(y)dµk(y),

where K(x, y) is the linear bounded operator from B1 to B2 , given by

K(x, y) : a→ {τxP2j(−y)a}j∈Z

with ‖K(x, y)‖ = supj∈Z |τxP2j(−y)| . In the next, we will show that there exists a
constant C > 0, such that∫

ming∈G |g.x−y|>2|y−y0|
‖K(x, y)−K(x, y0)‖ dµk(x) ≤ C, y, y0 ∈ RN . (14)
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Indeed,∫
ming∈G |g.x−y|>2|y−y0|

‖K(x, y)−K(x, y0)‖ dµk(x)

≤
∑
j∈Z

∫
ming∈G |g.x−y|>2|y−y0|

|τxP2j(−y)− τxP2j(−y0)| dµk(x)

= I1(y, y0) + I2(y, y0),

where

I1(y, y0) =
∑

2j>|y−y0|

∫
ming∈G |g.x−y|>2|y−y0|

|τxP2j(−y)− τxP2j(−y0)|dµk(x),

and

I2(y, y0) =
∑

2j≤|y−y0|

∫
ming∈G |g.x−y|>2|y−y0|

(
|τxP2j(−y)|+ |τxP2j(−y0)|

)
dµk(x).

We claim that I1(y, y0) and I2(y, y0) are uniformly bounded.
Writing yθ = y0 + θ(y − y0), θ ∈ [0, 1], by mean value theorem and (2), we get

|τxP2j(−y)− τxP2j(−y0)|

≤ |y − y0|
N∑
i=1

∫ 1

0

∣∣∣∣∂τxP2j

∂yi
(−yθ)

∣∣∣∣ dθ
≤ C 2j+1 |y − y0|

∫ 1

0

∫
RN

|yθ − η|
(22j + A2(x,−yθ, η))mk+1

dνx(η)dθ

≤ C|y − y0|
∫ 1

0

∫
RN

1

(22j + A2(x,−yθ, η))mk
dνx(η)dθ

≤ C2−j|y − y0|
∫ 1

0

τx(P2j)(−yθ)dθ.

Thus in view of (4) and (5), we obtain

I1(y, y0) ≤ C|y − y0|
∑

|y−y0|<2j

2−j
∫ 1

0

∫
RN
τ−yt(P2j)(x)dµk(x)dt

≤ C|y − y0|
∑

|y−y0|<2j

2−j
∫
RN
P2j(x)dµk(x)

= C|y − y0|
∑

|y−y0|<2j

2−j
∫
RN
P (x)dµk(x) ≤ C.

Now, to estimate I2(y, y0), we can assume that y 6= y0 , since if y = y0 the estimate
(14) is obvious. Let x ∈ RN with,

min
g∈G
|g.x− y| > 2|y − y0|. (15)
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In view of (2) and (3),

|τxP2j(−y)| = ak2
j

∫
RN

dνx(η)

(22j + A2(x,−y, η))mk

≤ ak2
j

∫
RN

dνx(η)

(A2(x,−y, η))mk

≤ ak2
j+mk

∫
RN

dνx(η)

(|y − y0|2 + A2(x,−y, η))mk

=
ak2

j+mk

|y − y0|
τxP|y−y0|(−y).

Observe that from (15), we have

min
g∈G
|g.x− y0| ≥ min

g∈G
|g.x− y| − |y − y0| > |y − y0|,

as above in the same way, we obtain

|τxP2j(−y0)| ≤
ak2

j+mk

|y − y0|
τxP|y−y0|(−y0).

By (4) and (5) it follows that

I2(y, y0) ≤ C
∑

2j≤|y−y0|

2j

|y − y0|

∫
RN

(τ−yP|y−y0|(x) + τ−y0P|y−y0|(x))dµk(x)

≤ C
∑

2j≤|y−y0|

2j

|y − y0|

∫
RN
P (x)dµk(x) ≤ C.

This achieves the proof of (14).

Now, since K(y, x) = K(−x,−y), the condition (8) is also satisfied. There-
fore, from Theorem 3.1 the operator T is bounded from Lpk(RN ,B1) to Lpk(RN ,B2),
for all 1 < p ≤ ∞ and Theorem 4.1 is concluded by Corollary 3.2.

4.2. Dunkl- Littlewood-Paley g-function. It is well known that Littlewood-
Paley g -functions are of great interest in harmonic analysis and have been widely
studied (see [15],[16], [12]). In recent years, there are several different generaliza-
tions of g -functions in many other settings ( [1], [3], [17]). In our context we define
the Littlewood-Paley g -function by

g(f)(x) =
(∫ +∞

0

|∇k(Pt ∗k f)(x)|2 tdt
) 1

2
,

where

|∇k(Pt ∗ f)(x)|2 =

∣∣∣∣ ∂∂t(Pt ∗k f)(x)

∣∣∣∣2 +
N∑
j=1

|Tj(Pt ∗k f)(x)|2 ,

and gj , j = 0, ..., N by,

g0(f)(x) =
(∫ +∞

0

∣∣∣∣ ∂∂t(Pt ∗k f)(x)

∣∣∣∣2 tdt) 1
2
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and

gj(f)(x) =
(∫ +∞

0

|Tj(Pt ∗k f)(x)|2 tdt
) 1

2
, j = 1, ..., N.

Throughout, we consider the Banach spaces, B1 = C and B2 = L2([0,+∞[, tdt).

Theorem 4.2. For each 1 < p < ∞ there exists a constant C > 0 such that
for all f ∈ Lpk(RN ,B1),

‖g(f)‖p,k ≤ C ‖f‖p,k . (16)

As in the proof of Theorem 1 of ( [15], Ch:IV), the L2 -boundedness is easily
obtained by means of Plancherel’s theorem for the Dunkl transform. In addition,
we have

‖g(f)‖2,k =
1

2
‖f‖2,k . (17)

According to the inequality g(f) ≤ g0(f) +
∑N

j=1 gj(f), Theorem 4.2 is an imme-
diate consequence of the following lemmas.

Lemma 4.3. For each 1 < p < ∞ there exists constant C > 0 such that for
all f ∈ Lpk(RN ,B1),

‖g0(f)‖p,k ≤ C ‖f‖p,k .

Proof. Let G0 : Lpk(RN ,B1)→ Lpk(RN ,B2) be the operator given by

G0(f)(x) : t 7→ ∂

∂t
(Pt ∗k f)(x).

It admits the following integral representation

G0(f)(x) =

∫
RN
K0(x, y)f(y)dµk(y),

where K0(x, y) is the linear bounded operator from B1 to B2 , given by

K0(x, y) : a→ K0(x, y)(a) : t 7→ ∂

∂t
τxPt(−y)a.

Applying Theorem 3.1 we show that G0 is bounded from Lpk(RN ,B1) to Lpk(RN ,B2).
First, from (17) this is true for p = 2. However, as K0(y, x) = K0(−x,−y), we
need only to show that K0 satisfies condition (7). Indeed, let x, y, y0 ∈ RN , such
that y 6= y0 and ming∈G |g.x− y| > 2|y − y0|. Put

yθ = y0 + θ(y − y0), θ ∈ [0, 1], and Aθ = A(x,−yθ, η), η ∈ co(G.x).

Observe that for all g ∈ G , we have |g.x − yθ| ≥ |g.x − y| − |y − yθ| > |y − y0| ,
which implies by (3) that

|y − y0| < Aθ. (18)
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The mean value theorem and (2) yield∣∣∣∣ ∂∂tτxPt(−y)− ∂

∂t
τxPt(−y0)

∣∣∣∣
= 2mkak

∣∣∣ ∫ 1

0

∫
RN

N∑
i=1

(yi − y0,i)
( (yθ,i − ηi)

(t2 + A2
θ)
mk+1

+
2(mk + 1)(yθ,i − ηi)t2

(t2 + A2
θ)
mk+2

)
dνx(η)dθ

∣∣∣
≤ C |y − y0|

∫ 1

0

∫
RN

Aθ
(t2 + A2

θ)
mk+1

dνx(η)dθ,

here, we used the following obvious inequality |yθ,i − ηi| ≤ |yθ − η| ≤ Aθ .
Hence, by Minkowski’s inequality for integrals and (18),

‖K0(x, y)−K0(x, y0)‖

≤ C |y − y0|
∫ 1

0

∫
RN

(∫ +∞

0

∣∣∣∣ Aθ
(t2 + A2

θ)
mk+1

∣∣∣∣2 tdt) 1
2
dνx(η)dθ

≤ C |y − y0|
∫ 1

0

∫
RN

1

A2mk
θ

dνx(η)dθ

≤ C |y − y0|
∫ 1

0

∫
RN

2mk

(|y − y0|2 + A2
θ)
mk
dνx(η)dθ

≤ C

∫ 1

0

τxP|y−y0|(−yθ)dθ.

Therefore from (4) and (5), we get∫
ming∈G |g.x−y|>2|y−y0|

‖K0(x, y)−K0(x, y0)‖ dµk(x)

≤ C

∫ 1

0

(∫
RN
τ−yθP|y−y0|(x)dµk(x)

)
dθ

≤ C

∫
RN
P|y−y0|(x)dµk(x) = C

∫
RN
P (x)dµk(x) = C.

Which proves (7) for the kernel K0 .

Lemma 4.4. For each 1 < p < ∞ there exists constant C > 0 such that for
all f ∈ Lpk(RN ,B1),

‖gj(f)‖p,k ≤ C ‖f‖p,k , j = 1, ..., N.

Proof. We use exactly the same approach as in the proof of the previous
lemma. We consider the operator

Gj(f)(x) =

∫
RN
Kj(x, y)f(y)dµk(y), j = 1, ..., N,
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where Kj(x, y) is the linear bounded operator from B1 to B2 given by,

Kj(x, y) : a→ Kj(x, y)(a) : t 7→ τxTjPt(−y)a = TjτxPt(−y)a.

Obviously, the Lp -boundedness of gj is equivalent to the boundedness of the
operator Gj from Lpk(RN ,B1) into Lpk(RN ,B2). It remains only to verify the
condition (7). Indeed, it follows from (2) that

TjτxPt(−y) = K
(1)
j (x, y, t) +K

(2)
j (x, y, t),

where

K
(1)
j (x, y, t) = −2mkak t

∫
RN

(yj − ηj)
(t2 + A(x,−y, η)2)mk+1

dνx(η),

and

K
(2)
j (x, y, t)

= ak
∑
α∈R+

tk(α)αj
< y, α >

∫
RN

( 1

(t2 + A(x,−y, η)2)mk
− 1

(t2 + A(x,−σα.y, η)2)mk

)
dνx(η).

We then split the kernel Kj into

Kj = K(1)
j +K(2)

j

where K(1)
j (x, y) and K(2)

j (x, y) are the linear bounded operators from B1 to B2

given by,

K(1)
j (x, y) : a→ K(1)

j (x, y)(a) : t 7→ K
(1)
j (x, y, t)a,

and

K(2)
j (x, y) : a→ K(2)

j (x, y)(a) : t 7→ K
(2)
j (x, y, t)a.

As we deal with the kernel K0 , the mean value theorem and Minkowski’s inequality
yield ∥∥∥K(1)

j (x, y)−K(1)
j (x, y0)

∥∥∥ ≤ C

∫ 1

0

τxP|y−y0|(−yθ)dθ,

for ming∈G |g.x− y| > 2|y − y0| . Hence∫
ming∈G |g.x−y|>2|y−y0|

∥∥∥K(1)
j (x, y)−K(1)

j (x, y0)
∥∥∥ dµk(x) ≤ C.

To show that K(2)
j satisfies (7), we denote by

Bt(x, y, η) = t2 + A2(x,−y, η),

and

uα,λ(y) = y + λ(σα.y − y) = y − λ〈y, α〉α, α ∈ R+, λ ∈ [0, 1].
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Then by mean value theorem we can write

K
(2)
j (x, y, t)−K(2)

j (x, y0, t)

= −
∑
α∈R+

k(α)αjt

∫ 1

0

∫ 1

0

∂y−y0

( ∂αB
mk
t (x, .uα,λ(.), η)

Bmk
t (x, ., η)Bmk

t (x, σα., η)

)
(yθ)dθdλ.

It remains to estimate the integrand. Clearly, the following hold∣∣∣∣∂Bmk
t

∂yp
(x, y, η)

∣∣∣∣ ≤ C B
mk− 1

2
t (x, y, η)∣∣∣∣∂2Bmk

t

∂yp∂yq
(x, y, η)

∣∣∣∣ ≤ C Bmk−1
t (x, y, η), p, q = 1, ..., N.

Hence, we get

|∂y−y0B
mk
t (x, y, η)| ≤ C |y − y0|B

mk− 1
2

t (x, y, η),

|∂y−y0B
mk
t (x, σα.y, η)| ≤ C |y − y0|B

mk− 1
2

t (x, σα.y, η).

However, using the fact that

|uα,λ(y)− η| ≤ max(|y − η|, |σα.y − η|),

we obtain

|∂αBmk
t (x, uα,λ(y), η)| ≤ C

(
B
mk− 1

2
t (x, y, η) +B

mk− 1
2

t (x, σα.y, η)
)
,

|∂y−y0∂αB
mk
t (x, uα,λ(y), η)| ≤ C |y − y0|

(
Bmk−1
t (x, y, η) +Bmk−1

t (x, σα.y, η)
)
.

Then, a straightforward calculation leads to the following estimate∣∣∣∣∂y−y0( ∂αB
mk
t (x, .uα,λ(.), η)

Bmk
t (x, ., η)Bm

t (x, σα., η)

)
(yθ)

∣∣∣∣
≤ C |y − y0|

( 1

Bmk+1
t (x, yθ, η)

+
1

Bmk+1
t (x, σα.yθ, η)

)
.

From this it follows that∣∣∣K(2)
j (x, y, t)−K(2)

j (x, y0, t)
∣∣∣

≤ C|y−y0|
∑
α∈R+

k(α)|αj|
∫ 1

0

∫
RN

{ t

Bmk+1
t (x, yθ, η)

+
t

Bmk+1
t (x, σα.yθ, η)

}
dνx(η)dθ,

and when ming∈G |g.x− y| > 2|y − y0| , we obtain∥∥∥K(2)
j (x, y)−K(2)

j (x, y0)
∥∥∥

≤ C |y − y0|
∑
α∈R+

k(α)|αj|
∫ 1

0

∫
RN

( 1

A(x, yθ, η)2mk
+

1

A(x, σα.yθ, η)2mk

)
dνx(η).
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As
|g.x− σα.yθ| = |σαg.x− yθ| ≥ |σαg.x− y| − |y − y0| ≥ |y − y0| ,

which in view of (3) imply that,

A(x, σα.yθ, η) > |y − y0|.

Then proceeding as above we get that∫
ming∈G |g.x−y|>2|y−y0|

∥∥∥K(2)
j (x, y)−K(2)

j (x, y0)
∥∥∥ dµk(x) ≤ C.

This, completes the proof Lemma 4.4.

As a consequence of Theorem 4.2, the converse of (16) holds by duality.
The proof is very similar to the proof of the classical setting ( Theorem 1 of [15],
Chapter IV) and so is omitted.

Corollary 4.5. For each 1 < p < ∞, there exists constant C > 0 such that
for all f ∈ Lpk(RN ,B1),

C ‖f‖p,k ≤ ‖g(f)‖p,k .
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functions associated with Hermite and Laguerre operators, Potential Analysis
34 (2011), 345–369.

[4] Calderón, A. P., and A. Zygmund, On the existence of certain singular
integrals, Acta Math., 88 (1952), 85–139.

[5] Dai, F., and H. Wang, A transference theorem for the Dunkl transform and
its applications, J. of Functional Analysis 258 (2010), 4052–4074.

[6] Deleaval, L. , Fefferman-Stein inequalities for the Zd2 Dunkl maximal operator,
J. Math. Anal. Appl. 360 (2009), 711–726.

[7] De Jeu, M. F. E., The Dunkl transform, Invent. math. 113 (1993), 147–162.

[8] Diestel, J., and J. Uhl. Jr., “Vector Measures,” Mathematical Surveys 15,
Amer. Math. Soc., Providence, R. I., 1977.

[9] Dunkl, C. F., Differential-difference operators associated to reflection groups,
Trans. Amer. Math. Soc. 311 (1989), 167–183.



Amri and Sifi 739

[10] Grafakos, L., “Classical Fourier Analysis,” Springer, 2008.

[11] Grafakos L., L. Liu, and D. Yang, Vector-valued singular integrals and maxi-
mal functions on spaces of homogeneous type, Mathematica Scandinavica 104
(2009), 296–310.

[12] Muckenhoupt, B., and Richard L. Wh., Norme inequalities for the Littlewood-
Paley function g∗λ , Trans. Amer. Math. Soc, 191 (1974), 95–111.

[13] Rösler M., A positive radial product formula for the Dunkl kernel , Trans.
Amer. Math. Soc. 355 (2003), 2413–2438.

[14] —, Dunkl operators: Theory and applications, in: Orthogonal Polynomials
and Special Functions (Leuven, 2002), Springer Lecture Notes in Math. 1817
(2003), 93–136.

[15] Stein, E. M., “Singular Integrals and Differentiability Properties of Func-
tions,” Princeton University Press, 1970.

[16] —, “Topics in harmonic analysis related to the Littlewood-Paley theory,” 63,
Princeton Univ. Press, Princeton, N. J., 1970.

[17] Stempak, K., and J. L. Torrea, On g-functions for Hermite function expan-
sions, Acta Math. Hungar. 109 (2005), 99–125.

[18] Thangavelu, S. and Y. Xu, Convolution operator and maximal function for
Dunkl transform, J. Anal. Math. 97 (2005), 25–55.

[19] —, Riesz transform and Riesz potentials for Dunkl transform, J. Comp. Appl.
Math. 199 (2007), 181–195.
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