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Abstract. A Plancherel formula is given for representative functions on a
connected semisimple Lie group G. Since the matrix coefficients for the irre-
ducible finite-dimensional representations are not necessarily square-integrable,
an alternative to the Schur Orthogonality Relations is given using invariant dif-
ferential operators. The corresponding operator analysis is summarized.
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1. Introduction

When G is a connected compact Lie group, understanding the square-integrable
functions on G is sufficient for completely realizing the irreducible unitary repre-
sentations of G, all of which are finite dimensional. This theory is summarized
by the Schur Orthogonality Relations [8], the Peter-Weyl Theorem [7], and the
Plancherel Formula. In particular, there exists a unitary equivalence of G x G
representations

e =PHvev:.

where (7, V') ranges over a set of inequivalent irreducible representations of G.
Each representation 7 contributes to L*(G) by passage to matrix coefficient
functions, and one may choose a Hilbert basis of L?(G) consisting of such functions.
Since

Ve V*= Home(V,V)

as representations of G x G, one may in turn express the L?-norm using the
Hilbert-Schmidt norm on each Homgc(V, V).

When G is noncompact and semisimple, one may push forward an analogue
to this analysis for R(G), the set of representative functions on G. Essentially,
a representative function on G generates a finite-dimensional span under left and
right translations by group elements. What follows parallels Chapter 14 of [2] and

ISSN 0949-5932 / $2.50 (©) Heldermann Verlag



494 DONLEY

Section 1.5 of [5]. The analogues of the Schur Orthogonality Relations (Theorems
3.1 and 7.2) first appear in [3]; see also Chapter 3 of [4] for a similar proof in the
finite case. Since the corresponding matrix coefficients are not square-integrable,
the bi-invariant Hermitian form on R(G) is defined using invariant differential
operators on (. In this work, the analysis is completed for R(G); that is, a
convolution operator is defined (Section 4), the corresponding operator analysis is
presented (Section 5), and the Plancherel Formula (Theorem 6.3) is given in this
context. The Peter-Weyl Theorem holds by definition; a representative function
is a finite sum of matrix coefficients for finite-dimensional representations.

The author thanks Leticia Barchini, Anthony Knapp, David Vogan, and
Gregg Zuckerman for helpful conversations.

2. Representative Functions R(G)

Suppose G is a real linear connected semisimple Lie group, and let K be a
maximally compact subgroup of G. The condition rank G = rank K holds
through Section 6. Section 7 addresses the general case.

We follow the convention that Lie algebras of groups are denoted by the
corresponding Fraktur letter subscripted with a ’0’; the subscript is dropped for
the complexification. Fix a Cartan subgroup 7" in K with Lie algebra ty; by the
rank condition, 7" is a Cartan subgroup on . Thus one may form the set of roots
A(g, t) and choose a positive system AT.

The finite-dimensional representations of G are fully reducible, and the
irreducible representations may be parameterized by the Theorem of the Highest
Weight. Let (m,V) correspond to the irreducible representation with highest
weight A\, and denote the dimension of V' by d) or d,, depending on whether
A is explicitly given.

With the equal rank assumption, each finite-dimensional representation of
G admits an invariant Hermitian form that is non-degenerate. In this case, the
dual representation 7* is equivalent to the complex-conjugate representation 7.
When 7 is irreducible, this form is unique up to a nonzero real scalar. For any
finite-dimensional representation 7, a choice of Hermitian form (-,-), is fixed.
When 7 is clear from context, the subscript is omitted.

Let f be a complex-valued function on G, and define left (resp. right)
translation by the element g in G on f by

[L(9)fl(z) = f(g'x)  (vesp. [R(g)f](x) = [f(zg)).

Definition 2.1.  Let (7,V) be any finite-dimensional representation of G. For
any v and v in V', the matrix coefficient function ¢, , : G — C is defined by

buw(g) = (m(g)u,v).

Definition 2.2 (cf. [1]). A function f: G — C is called representative if it lies
in the span of the matrix coefficients for a finite-dimensional representation of G.
Equivalently, f is representative if its span under all left (equiv. right) translations
by elements of G is finite dimensional. We denote the space of representative

functions on G by R(G).
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Definition 2.3. Let (7w, V) be a finite-dimensional representation of G. The
matrix coefficient map

VeV = R(G)
is defined by linearly extending the map

U® (-, 0) = G-

Considering right and left translations simultaneously, one obtains a repre-
sentation of G x G on R(G) by

[(R® L)(g1,92) fl(x) = flg5 ' zgn).

With this action, the constant functions occur in R(G) as the unique trivial
constituent for G x G. Furthermore, by full reducibility of finite-dimensional
representations of G x G, one has

R(G) =PV vy,

where 7 ranges over a set of inequivalent, irreducible, finite-dimensional represen-
tations of G. Applying matrix coefficient maps to each constituent, @, = ® 7*
and R ® L are equivalent as representations of G x G.

3. An Invariant Form on R(G)

To provide an analogue to the Plancherel Formula when rank G = rank K, an
alternative to the traditional Schur Orthogonality Relations is recalled from [3].
Since matrix coefficient are defined using invariant forms, a non-degenerate bi-
invariant Hermitian form may be defined naturally on R(G) as a substitute for
invariant integration.

The main component in the definition of this form is the Casimir element
Q for g; for instance, see [5] or [6], Ch. 5.4. This element lies in the center of
the universal enveloping algebra U(g), and it acts upon vectors for the irreducible
representation 7 with highest weight A by the real scalar

Cr =0y = [N+ — |5

where § denotes half the sum of the positive roots. This constant equals zero if
and only if A = 0; in this case, 7 is trivial.

Further define Q
D= ] (1 —~ —),

&
0<|p|<r K

where p ranges over all possible highest weights with length in the given range.
One defines a bi-invariant Hermitian form on R(G) by

((f; 1)) == Tim R(Dn)[f (y)2(y)][y=c-

n—o0
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For a given finite-dimensional subrepresentation of R(G), there exists a positive
integer n such that R(D,) annihilates all but the trivial constituent, and, once
such an n is found, the result is unchanged for all larger n. Thus one may evaluate
the limit at any y in . Since the Casimir element is central, the differentiation

is unchanged by inversion of y and by translations on either side of y by elements
of G.

Theorem 3.1 (Schur Orthogonality Relations [3]).  Let (w, V) and (o,U) be
irreducible finite-dimensional representation of G with non-degenerate invariant
Hermitian forms. Then

1. for u,v,u',v" in V,

1
<<¢u,v7 ¢u’,v’>> = d_<u, u/> <U, UI>, and

2. if m and o are inequivalent, then ({¢1,d9)) = 0 for all matriz coefficients
o1 (resp. ¢2) associated to m (resp. o).

Proof.  Both sides of (1) express invariant sesquilinear forms for the irreducible
G X (G representation 7®7*. Applying Schur’s Lemma for G x G, these forms differ
by a scalar. To compute this scalar, let {u;} be a basis for V' with corresponding
dual basis {u;}; that is, (u;u}) = d;; for all 7 and j, where ¢ denotes the
Kronecker index. Then for fixed 1,

Z Guss (9)Du; (9) = D (m(g)us, i) (g, w(g)ur)

J

> " ({mg)us, u)ug, m(g)us)

(m(g)ws, w(g)us)
1.

For w,v,u/,v" in V', the natural invariant Hermitian form on V ® V* is given by
extending

<<u & <'7v>vul & <"UI> >>/ = <uvul><vavl>'
Thus
D i@ g wp @ (uf) ) = (s, uf)(uy, uf)

J J

= dﬂ'?

and the result follows.

For (2), no trivial subrepresentation occurs in = ® ¢*, and the vanishing
follows. [ |

It follows that

Proposition 3.2.  ((-,-)) is non-degenerate on R(G).
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Proof.  Suppose {u;} is any basis for the irreducible representation (7, V'), and
let {u;} be the corresponding dual basis for V. The Schur Orthogonality Relations
imply that

<<¢u¢,uj' ) dﬂ‘ﬁu%,uf” = 5ik5jl;

50 {Pu, . } forms a basis for the 7@7*-subrepresentation in R(G). The proposition
follows. n

4. A Convolution for R(G)

Recall that rank G = rank K. With the Schur Orthogonality Relations on
R(G), an algebra structure with involution and convolution follows immediately
in analogy with the traditional compact case.

Definition 4.1.  For any function f in R(G), define involutions
(if)(g) = flg™)

and

1 (9) = flg7") = (if)(9)-
The involution 7 intertwines R ® L with L ® R on R(G).

Proposition 4.2.  For all f and h in R(G),
1. ((if,ih)) = ({f, h)), and
2. ((f*,h7)) = (b, £))-

Proof. Since i(fh) = (if)(ik) and (fh)* = f*h*, it is enough to consider
the coefficient of the trivial constituent in each product. The proposition follows
immediately.

Alternatively, we can compute on matrix coefficients for the irreducible
representation (m, V). If u,v,w,z are in V,

{(iPu, 10wa)) = ({(Pou Paw)) by invariance of (-, -)
= d. (v, z) {u, w)

((Du; Pua))-

Part (2) follows immediately. [

Definition 4.3. For f and h in R(G), the convolution f * h is defined by

[ *h)(g) = lim R(D,)[f(gy™)h(w)]ly—e = (Rl D], 1)
= lim RO @)y )l = (. L)),

For fixed f and h, the limit converges for some finite n. The equality of
limits follows from invariance under inversion and translations on y in the limit.
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Proposition 4.4.  Let f,h, and k be in R(G). Then one has
1. (fxh)xk=fx(hxk),
2. (f*h)* =h*«f* and
3. ((fxh,k)) = ((f. k= h*)) = ((h, f* % k).
Proof.  To show (1), we apply inversion and translation to  :
[(f = ) % K](g) = lim R(D)[(f = h)(m)k(y ™" 9)]ly=c
=i R(Dy)[ lim R(Dyn)[f(2)h(z""y)]|:=ck(y ™" 9)]ly=
)

n—oo

[

1

mlgréo R(Dm)[hm R(D,)[f(2)h(y)k(y~ Z_lg)”y:%Hz:e
)

= lim R(Dy)[f(2)(h*k)(z""g)]|-=
=[x (hx k)](9)-

The arguments for (2) and (3) follow similarly.
Alternatively, let (7, V') and (o, U) be irreducible representations of G, and
suppose u,v are in V and «/,v" are in U. Then

L. ¢y = Puus
2. if m = o, then d(Pup * Qu ) = (U, V') Py o, and
3. if m and o are inequivalent, then ¢, , * ¢ v = 0.

The proposition follows by considering a matrix coefficients basis for R(G). u

5. Projection Operators

Again recall that rank G = rank K. Let (7, V) be a finite-dimensional repre-
sentation of G with non-degenerate invariant sesquilinear form (-,-). Again the
decomposition of 7 into irreducible constituents follows the traditional compact
case. Explicit projection operators are defined by applying convolution and adjoint
to irreducible characters.

Definition 5.1. For v and v in V and f in R(G), define
w(f): V-V

by L
(m(f)u, v) = ((f, u))-

The adjoint 7(f)* of m(f) is defined with respect to (-,-); that is,

(m(flu,v) = (u, 7(f)"v).

Again by purely formal arguments, we have
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Proposition 5.2.  For f and h in R(G),
1. 7w(f)y =n(f"),
2. 7(f *h) = n(f)m(h), and
3. w(f x h)* = m(h)n(f)".

Following the compact case, irreducible characters are used to construct a
complete set of orthogonal idempotents in R(G).

Definition 5.3.  Denote the character of @ by

Xx(9) = Traceln(g)].
Equivalently, let {u;} be any basis for V', and let {u;} be the corresponding dual

basis. Then
Xx(9) = > _(m(g)ui, ui);

this sum is independent of the basis {u;} chosen.

Proposition 5.4.  Fiz inequivalent irreducible representations (o,U) and (1, W)
of G. Then

1. ((Xo, Xo)) = 1,
. <<X0’7XT>> =0,

. X;:XJ:

. XO'*XTZO,

2
3
4. if w,v are in U, then dy¢yy * Xo = doXo * Pup = Puvs
5
6. dyXo * Xo = Xo, and

7

. forany f in R(G), Xo % f = f * Xo-

A projection operator onto the subrepresentation of o-types in 7 is given
by the following;:

Definition 5.5. Let o be an irreducible subrepresentation of 7. Define the
projection operator
E,: V=V

by
Ey(v) = dom(Xo)v.
Equivalently, for nontrivial o,

E,(v) = lim 7r< 2D >v.

n—00 Co — Q

For fixed v, the limit converges for some finite n.
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We verify the type property directly. Suppose W C V and (w, W) is an
irreducible subrepresentation of type o. If v,w are in W, then

(E,v,w) = (daw(ﬁ)iuﬁ
= dcr<<%: ¢v,w>>
= da<<¢v,wa XJ>> = <Ua w)'

On the other hand, if (w,w’) = 0 for all w in W, then (E,v,w’) = 0. The
property follows by non-degeneracy of (-, -).

Proposition 5.6.  Suppose o and T are inequivalent irreducible subrepresenta-
tions of (w, V). Then

1. Bf=E,,

2. E,F, = FE,,

3. E.E, = E,E, =0,

4. forallvinV,v=>_FE,v, and

5. (v,w) =Y (E,v, E,w).

Now E, projects onto the subrepresentation of all o-types in 7. In partic-
ular, the multiplicity of o in 7 equals Trace(FE,)/(dim o), and the trace of o(xz)
equals 1.

6. Plancherel Formula

The corresponding analysis for R(G) follows below with the equal rank condition.
Unraveling the various definitions yields a Plancherel Formula for R(G). Since

V@ V*= Homc(V,V),

the Schur Orthogonality Relations may be expressed in terms of the Hilbert-
Schmidt norm on Homc(V,V).

Definition 6.1.  For irreducible o, define
P, : R(G) = R(G)

by
Pa(f) :daf*XU:dJXJ*f-
Equivalently, for nontrivial o, one has

P,(f) = lim R( 2D, )f.

n—00 Co — Q

For fixed f, the limit converges for some finite n.
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Definition 6.1 follows by applying Definition 5.5 to the right action R on
R(G). The following statements provide an analogue to Proposition 5.6:

Proposition 6.2. Let 0 and 7 be inequivalent irreducible representations of

G.
1. P = P, with respect to ({-,-)),
9. PP, =P,
3. P,P.=P.P,=0, and
4. forall fin R(G), f=>_, FP(f).

Proof.  Part (1) follows from Proposition 4.4 (3) and Proposition 5.4 (3). For
part (2), let f be in R(G). Using associativity of convolution and Proposition 5.4

(6),

Pa’(Paf) - PO'(dO'XO'*f)
= d?yXU * (XU * f)
= daXa*f:Pa<f)'
Part (3) follows in a similar manner using Proposition 5.4 (5). Part (4) follows

since the irreducible characters form a complete set of orthogonal idempotents in
R(G). n

The analogue to Proposition 5.6 (5) on R(G) is

Theorem 6.3 (Plancherel Formula).  Suppose f and h are in R(G). Then

((f,h)) = dy Trace(o(f)o(h)"),

where o ranges over a set of inequivalent irreducible finite-dimensional represen-
tations of G. For fized f and h, only finitely many o are needed in the sum.

Proof. Since

o(L(g)f) =o(g)o(f) and  o(R(g)f) =o(f)o(g ),

the sum on the right-hand side is a bi-invariant sesquilinear form on R(G), and
thus both sides are equal up to a scalar on the irreducible constituents for G x G.
Setting f = h = x,, one has by Propositions 5.2 and 5.4 that

doTrace(v(X0)0(xXo)") = doTrace(d(xo * X))
= Trace(c(x,)) = 1. ]
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7. The General Rank Case

The preceding results are recast to include the case where rank G # rank K. Let
© and # be the associated Cartan involutions on G' and gy. Let T" be any Cartan
subgroup of K, and let H = Z(T). Denote the associated Cartan decompositions
by

go = € © po, and bo = to © ao.

Form the set of roots A(g, h) and choose a #-stable positive system AT. We recall

Definition 7.1. Let (m,V) be a representation of G. The complex conjugate
representation (7, V) is defined as follows: the space V equals V, but scalar
multiplication is defined by z-v =Zv for z in C and v in V. For g in G and v
in V, 7(g)v = n(g)v.

Let (m, V) be an irreducible representation of G with highest weight A. If
A vanishes on a, then there exists a non-degenerate invariant Hermitian form (-, -)
on V and the analysis in the equal rank case applies. In this case, an equivalence
between 7T and 7* may be defined by

V=V v (-, 0).

If X\ is non-vanishing on a, then no such form exists, and one may appeal to the
invariant sesquilinear pairing between V' and V*: for v in V and v in V*,

(u,v) :=v(u).

For w in V and v in V*, we define the matrix coefficient

Pun(9) = v(m(g)u).

Then ¢, corresponds to a matrix coefficient for 7*; the equivalence between 7

and 7 is implemented by sending u' in V' to evaluation at «' on V*. Hence
there exists an invariant sesquilinear pairing between the matrix coefficient spaces
for 7 and 7

{(Puw, Prr o)) = ' (w)v (W)
On the other hand, ((-,-)) may be defined on R(G) as before, and one has

Theorem 7.2 (Schur Orthogonality Relations).  Suppose (mw, V') is an irre-
ducible, finite-dimensional representation of G.

1. For u,u in 'V and v,v" in V*,

(P, Ol ) = d "0 (W) (W), and

2. let (o,U) be an irreducible representation of G such that o is inequiva-
lent to w. Then {({(¢1,¢2)) = 0 if ¢1 (resp. ¢2) is a matriz coefficient for
7 (resp. o).



DONLEY 503

Proof. First note that if V' admits a non-degenerate invariant form, then the
result follows from Theorem 3.1 and statement (1) in the proof of Proposition 4.4.
Otherwise we adapt the proof of Theorem 3.1. By Schur’s Lemma, any
invariant sesquilinear pairings between the matrix coefficent spaces for = and 7*
are equal up to a scalar. Choose a basis {u;} for V' with corresponding dual basis
{u}} for V* (which equals V* as a set of lincar functionals). Now, for fixed i,

D bua(9) Ol (9) = D i(m(g)us) wilm(g ™ uy)
— u;(Zu;(ﬁ(g)uz) W(gl)u])

= ui(u;) = 1.

The last line follows since the dual basis of {m(g~")u;} is {7*(g~")u}}.
On the other hand,

Y Ubus Goyur)) = Z%(ui) wj(u;)

J
=d,. u

An immediate consequence of Theorem 7.2 is
Proposition 7.3.  ((:,-)) is non-degenerate.

The definitions of convolution and adjoint are intrinsic to R(G), so the
changes occur in the corresponding formulas for matrix coefficients. Notably, for
inequivalent, irreducible representations (m, V') and (o,U), if u,u’ are in V' and
v,v" are in V*,

1. dp(Gup * Gu ) = V' (u)Pur », and
2. ¢1x¢o =0 if @1 (resp. ¢2) is a matrix coefficient associated to m (resp. o).

The analysis is completed by noting the following changes to Sections 5 and 6.
First we replace Proposition 5.2 (1) with

[T (N = 7 (f");

here the adjoint is defined using the invariant pairing between V and V* in
Definition 5.1. Next one has

Definition 7.4. Let (m,V) be any finite-dimensional representation of G.
Choose a basis {u;} for V with corresponding dual basis {u;} for V*. Then
the character of 7 is defined as

Xel9) = Tracel(g)] = 3 ui(n(g)u).
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The sum is independent of the basis for V' chosen.
The analogue to Proposition 5.4 is

Proposition 7.5.  Fiz irreducible representations (o,U) and (t,W) of G.
Then

1 {(Xo Xz7)) = 1,

2. ({Xo, Xr)) =0 if 7 and o* are inequivalent,

I Xo = Xow

4. if uisin U and v is in U*, then dyGum * Xo = doXo * Oup = Puvs
9. Xo *Xr =0 if 7 and o are inequivalent,

6. dyXo * Xo = Xo, and

. forany f in R(G), Xo % f = f * Xo-

N

For the remainder of the analysis, one redefines E, = d,7(Xg+) = dom(Xo+),
and, from that point forth, all definitions, propositions, and results follow with
minor changes, including the Plancherel Formula. In particular, we replace o(h)*
with [o*(h)]* = o(h*) in Theorem 6.3.
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