
Journal of Applied Analysis

Vol. 7, No. 2 (2001), pp. 151–174

ASYMPTOTIC BEHAVIOR OF RELATIVELY
NONEXPANSIVE OPERATORS IN BANACH

SPACES

D. BUTNARIU, S. REICH and A. J. ZASLAVSKI

Received November 13, 2000

Abstract. Let K be a closed convex subset of a Banach space X and
let F be a nonempty closed convex subset of K. We consider complete
metric spaces of self-mappings of K which fix all the points of F and
are relatively nonexpansive with respect to a given convex function f
on X. We prove (under certain assumptions on f) that the iterates
of a generic mapping in these spaces converge strongly to a retraction
onto F .

0. Introduction

In this paper we consider the problem of whether and under what con-
ditions, relatively nonexpansive operators T defined on, and with values in,
a nonempty, closed convex subset K of a Banach space (X, || · ||) have the
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property that the sequences {T kx}∞k=1 converge strongly to fixed points of
T , whenever x ∈ K.

We say that an operator T : K → K is relatively nonexpansive with
respect to the convex function f : X → R1 ∪ {∞} if K is a subset of the
algebraic interior D0 of the domain of f ,

D := dom(f) = {x ∈ X : f(x) <∞},

the function f is lower semicontinuous on K and there exists a point z ∈ K
such that, for any x ∈ K, we have

Df (z, Tx) ≤ Df (z, x), (0.1)

where Df : X ×D0 → [0,∞) stands for the Bregman distance given by

Df (y, x) = f(y)− f(x) + f0(x, x− y), (0.2)

and f0(x, d) denotes the right-hand derivative of f at x in the direction d.
In this case, the point z is called a pole of T with respect to f .

The problem described above occurs in mathematics in various forms.
For example, if the operator T is such that, for some z ∈ K,

||z − Tx|| ≤ ||z − x||, (0.3)

for all x ∈ K, then it is relatively nonexpansive with respect to any of the
functions f(x) = ||x− z||r with r > 1. Clearly, the nonexpansive operators
on bounded closed convex subsets of uniformly convex Banach spaces fall in
this class and there is a rich literature dedicated to the possible convergence
of the sequences {T kx}∞k=1 generated by such operators (see, for instance,
[1], [15] and the references therein). In general, relatively nonexpansive
operators with respect to arbitrary convex functions f may not be quasi-
nonexpansive in the sense of (0.3). Examples of such operators can be
found in [5]. The asymptotic behavior of operators which are relatively
nonexpansive with respect to some function f without necessarily being
nonexpansive in the classical sense of the term is of special interest in the
convergence analysis of feasibility, optimization and equilibrium methods
for solving problems of image processing, rational resource allocation, and
optimal control. The most typical examples in this regard are the Bregman
projections and the Yosida type operators which are the cornerstones of the
common fixed point and optimization algorithms discussed in [5] (see also
the references therein). These operators satisfy a stronger condition than
(0.1), namely, they are strongly nonexpansive with respect to f in the sense
that, for some z ∈ K, we have

Df (z, Tx) +Df (Tx, x) ≤ Df (z, x) (0.4)

for all x ∈ K.
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The asymptotic behavior of related classes of operators was also studied
in [2, 4, 11, 17]. It is known that, in general, sequences {T kx}∞k=1 generated
by operators T which are relatively nonexpansive with respect to a convex
function f may converge weakly, but not necessarily strongly. On the other
hand, experiments with many iterative procedures based on computing se-
quences {T kx}∞k=1 generated by relatively nonexpansive operators T show
that, in practice, these procedures do seem to converge strongly. The aim of
this paper is to show that, under quite mild conditions, strong convergence
of the sequences {T kx}∞k=1 generated by relatively nonexpansive operators
is the rule and that weak, but not strong, convergence is the exception. To
this end, we consider the set M =M(f,K, F ) of all operators T : K → K
which are relatively nonexpansive with respect to the same convex func-
tion f : X → R1 ∪ {∞} and which have a nonempty closed convex set F
of common poles. We assume that the function f satisfies the following
conditions:

A(i) For any nonempty bounded set E ⊂ K and any ε > 0, there exists
δ > 0 such that

if x ∈ E, z ∈ F and Df (z, x) ≤ δ, then ||z − x|| ≤ ε. (0.5)

A(ii) There exists θ ∈ F such that the restriction to K of the function
g(·) := Df (θ, ·) has the following property: For any subset E ⊂ K, g(E) is
bounded if and only if E is bounded.

A(iii) For any z ∈ F , the function Df (z, ·) : K → R1 is convex and lower
semicontinuous.

A(iv) For any x ∈ K, there exists a vector Px ∈ F such that

Df (Px, x) ≤ Df (z, x) for all z ∈ F. (0.6)

In practical situations one also uses the following stronger version of A(i):
For any nonempty bounded set E ⊂ K, inf{νf (x, t) : x ∈ E} is positive

for all t > 0, where

νf (x, t) = inf{Df (y, x) : y ∈ X and ||y − x|| = t}.

In [5] this condition is termed sequential compatibility of the function f
with the relative topology of the set K. We will show (see Lemma 1.1
below) that sequential compatibility implies A(i). In its turn, condition
A(i) implies that all z ∈ F are common fixed points of the operators in
M. Condition A(ii) guarantees that any operator T ∈ M is bounded on
bounded subsets of K (a feature which is essential in our proofs) because,
for any bounded set E ⊂ K, we have

Df (θ, Tx) ≤ Df (θ, x),

where, according to condition A(ii), the function Df (θ, ·) is bounded on E,
and therefore so is the set {Tx : x ∈ E}. Condition A(ii), even taken
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in conjunction with A(i), is satisfied by many useful functions and, among
them, by many functions which are sequentially compatible with the relative
topology of K. In contrast, condition A(iii) is quite restrictive. However, it
does hold for many functions f which are of interest in current applications
(see the examples below). The vector Px satisfying (0.6) was termed the
Bregman projection with respect to f of x onto F in [10]. Condition A(iv) is
automatically satisfied when X is reflexive and f is totally convex on K (in
particular, when f is sequentially compatible with the relative topology of
K) as follows from [5, Proposition 2.1.5(i)]. In this case, if f is differentiable
on the algebraic interior of its domain, then, for each x ∈ K, there exists
a unique vector Px in F which satisfies (0.6) and the operator P satisfies
condition (0.4) (cf. [5, Prop. 2.1.5(ii)]). We now mention four typical
situations in which all the conditions A(i)-A(iv) are satisfied simultaneously.

(i) (cf. [5]) X is a Hilbert space, K and F are nonempty closed convex
subsets of X such that F ⊂ K and f(x) = ||x||2;

(ii) (cf. [3]) F ⊂ K ⊂ Rn++ and f is the negentropy;
(iii) (cf. [6]) X is a Lebesgue space Lp or lp, 1 < p ≤ 2, f(x) = ||x||p and

K consists of either nonnegative or nonpositive functions;
(iv) (cf. [7]) X is smooth and uniformly convex, F is a singleton {z}, and

f(x) = ||x− z||r with r > 1.
We provide the set M =M(f,K, F ) with the uniformity determined by

the following base:

E(N, ε) = {(T1, T2) ∈M×M : ||T1x− T2x|| ≤ ε

for all x ∈ K satisfying ||x|| ≤ N},

where N, ε > 0. Clearly this uniform space is metrizable and complete.
We equip the space M with the topology induced by this uniformity. Let
Mc be the set of all operators in M which are continuous on K. This
is a closed subset of M and we endow it with the relative topology. The
subset of Mc consisting of those operators which are uniformly continuous
on bounded subsets of K is denoted by Mu. Again, this set is closed in
M and we endow it with the relative topology. We show (see Theorems
2.1, 3.1 and 3.2) below that the sequence of powers of a generic mapping
T in Mu, Mc and M respectively, converges in the uniform topology to
a relatively nonexpansive operator which belongs to the same space and is
a retraction onto F . Consequently, the sequences {T kx}∞k=1 generated by
a generic mapping T are strongly convergent to points in F , i.e., to fixed
points of T . The basic mathematical tools we employ are the methods of
generic analysis which have already been proved useful in the theory of
dynamical systems ([8], [13], [14], [16] and [18]) as well as in the calculus of
variations (see [19] and [20]).
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In particular, we have shown in [8] that the iterates of a generic oper-
ator in certain other spaces of relatively nonexpansive operators converge
strongly to its unique fixed point. As we have just noted above, in the dif-
ferent situation considered here, the iterates of a generic operator converge
to a retraction onto its fixed point set F .

Our paper is organized as follows. In Section 1 we prove two preliminary
lemmas regarding the convex function f and the Bregman projection P .
In Section 2 we state our generic result (Theorem 2.1) for the space Mu.
This result is proved in Section 5. Our generic results for the spaces M
(Theorems 3.1 and 3.2) andMc (Theorems 7.1–7.3) are stated in Section 3
and 7 respectively. These results are proved in Sections 6 and 8. Section 4
is devoted to two auxiliary assertions.

We emphasize that in contrast with many individual convergence theo-
rems, all of our results hold in a general Banach space.

1. Preliminaries

This section is devoted to two lemmas. The first one shows that sequen-
tial compatibility implies condition A(i) while the second shows that the
retraction, the existence of which is stipulated in condition A(iv), belongs
to M.

Lemma 1.1. If the convex function f is sequentially compatibile with the
relative topology of K, then it satisfies condition A(i).

Proof. Let the convex function f be sequentially compatible with the rel-
ative topology of K. For any nonempty set E ⊂ K and any t ≥ 0, set

νf (E, t) = inf{Df (y, x) : x ∈ E, y ∈ X and ||y − x|| = t}.
Since f is assumed to be sequentially compatible with the relative topology
of K, νf (E, t) > 0 for any nonempty bounded set E ⊂ K and any t > 0,
and the function νf (x, ·) is strictly increasing (see [5, Proposition 1.2.2]).

Assume now that we are given a nonempty bounded subset M of K and
an ε > 0. Let δ = νf (M, ε). If x ∈M , y ∈ F and Df (y, x) ≤ δ, then

νf (x, ||y − x||) ≤ Df (y, x) ≤ δ ≤ νf (x, ε).

Since the function νf (x, ·) is strictly increasing we conclude that ||y−x|| ≤ ε.
Lemma 1.1 is proved.

Note that the functions in the examples (i)–(iv) listed in the Introduc-
tion are all sequentially compatible with the relative topology of any closed
convex subset of their respective domains.
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Lemma 1.2. Let an operator P : K → F be as guaranteed in condition
A(iv). Then for any x ∈ K and for any z ∈ F , we have

Df (z, Px) ≤ Df (z, x). (1.1)

Proof. Fix x ∈ K and z ∈ F . Denote x̂ = Px and let

u(α) = x̂+ α(z − x̂) (1.2)

for any α ∈ [0, 1]. Observe that Df (·, x) and f are convex and, therefore,
the following limits exist, and for all y ∈ K and d ∈ X,

[Df (·, x)]0(y, d) = lim
t→0+

[Df (y + td, x)−Df (y, x)]/t

= lim
t→0+

[f(y + td)− f(x) + f0(x, x− y − td)− (f(y)− f(x)

+ f0(x, x− y))]/t

= lim
t→0+

[f(y + td)− f(y)]/t+ lim
t→0+

[f0(x, x− y − td)− f0(x, x− y)]/t

= f0(y, d) + lim
t→0+

[f0(x, x− y − td)− f0(x, x− y)]/t.

The function f0(x, ·) is subadditive and positively homogeneous because
f is convex. Consequently, we have

f0(x, x− y) ≤ f0(x, x− y − td) + tf0(x, d).

Combining this inequality and the previous formula we get

[Df (·, x)]0(y, d) ≥ f0(y, d)− f0(x, d). (1.3)

Now since x̂ = Px, we have by (0.6) and (1.3) that for any α ∈ (0, 1],

0 ≥ Df (x̂, x)−Df (u(α), x) ≥ [Df (·, x)]0(u(α), x̂− u(α))

= [Df (·, x)]0(u(α),−α(z − x̂)) = α[Df (·, x)]0(u(α), x̂− z))
≥ α[f0(u(α), x̂− z)− f0(x, x̂− z)].

Hence, for any α ∈ (0, 1] we get

f0(x, x̂− z) ≥ f0(u(α), x̂− z). (1.4)

Note that by A(iii) the function φ(x) = f0(x, x−z), x ∈ K, is lower semicon-
tinuous. Hence the function φ(u(α)), α ∈ [0, 1] is also lower semicontinuous.
Since

φ(u(α)) = f0(u(α), u(α)− z) = (1− α)f0(u(α), x̂− z), α ∈ [0, 1),

the function α 7→ f0(u(α), x̂− z), α ∈ [0, 1), is lower semicontinuous too.
Taking the lim infα→0+ of both sides of the inequality (1.4), we see that

f0(x, x̂− z) ≥ f0(x̂, x̂− z).
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This, in turn, implies that

f(z)− f(x̂) + f0(x, x̂− z) ≥ Df (z, x̂).

Since f0(x, ·) is sublinear, it follows that

f(z)− f(x̂) + f0(x, x̂− x) + f0(x, x− z) ≥ Df (z, x̂).

Hence

Df (z, x) + [f(z)− f(x̂)− f(z) + f(x) + f0(x, x̂− x)] (1.5)

≥ Df (z, x̂).

Note that the quantity between square brackets is exactly

−[f(x̂)− f(x)− f0(x, x̂− x)] ≤ 0

because f is convex. This inequality and (1.5) imply (1.1). The proof of
Lemma 1.2 is complete.

In the sequel we will use the following notation.
For each x ∈ K and each nonempty G ⊂ K, set

ρf (x,G) = inf{Df (z, x) : z ∈ G}. (1.6)

2. Convergence of powers for a class of uniformly continuous
operators

In this section we assume that the operator P , the existence of which
is stipulated in condition A(iv), belongs to Mu, and that the following
condition is satisfied:

For each bounded set K0 ⊂ K and each ε > 0, there is δ > 0
(2.1)

such that if x ∈ K0, z ∈ F and ||z − x|| ≤ δ, then Df (z, x) ≤ ε.

Remark. Note that condition (2.1) holds if the function f is Lipschitzian
on each bounded subset of K.

Theorem 2.1. There exists a set F ⊂Mu which is a countable intersection
of open everywhere dense subsets of Mu such that for each B ∈ F the
following assertions hold:

(i) There exists PB ∈ Mu such that PB(K) = F and Bnx → PBx as
n→∞, uniformly on bounded subsets of K;
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(ii) For each ε > 0 and each bounded set C ⊂ K, there exist a neighbor-
hood U of B in Mu and an integer N ≥ 1 such that for each S ∈ U , each
x ∈ C and each integer n ≥ N ,

||Snx− PBx|| ≤ ε.

This theorem will be established in Section 5.

3. Convergence of powers for a class of operators with a
uniformly continuous Bregman distance

In this section we assume that the function Df (·, ·) : F × K → R1 is
uniformly continuous on bounded subsets of F ×K and state two theorems
the proofs of which will be given in Section 6.

Theorem 3.1. There exists a set F ⊂ M which is a countable intersec-
tion of open everywhere dense subsets of M such that for each B ∈ F the
following assertions hold:

1. There exists PB ∈ M such that PB(K) = F and Bnx → PBx as
n→∞, uniformly on bounded subsets of K; if B ∈Mc, then PB ∈Mc.

2. For each ε > 0 and each nonempty bounded set C ⊂ K, there exists
a neighborhood U of B in M and a natural number N such that for each
S ∈ U and each x ∈ C, there is z(S, x) ∈ F such that ||Snx− z(S, x)|| ≤ ε
for all integers n ≥ N .

Moreover, if P ∈ Mc, then there exists a set Fc ⊂ F ∩Mc which is a
countable intersection of open everywhere dense subsets of Mc.

Theorem 3.2. Let the set F ⊂ M be as guaranteed in Theorem 3.1, B ∈
F ∩Mc, PBz = limn→∞B

nz, z ∈ K, and let x ∈ K, ε > 0. Then there
exists a neighborhood U of B in M, a number δ > 0 and a natural number
N such that for each y ∈ K satisfying ||x − y|| ≤ δ, each S ∈ U and each
integer n ≥ N , ||Sny − PBx|| ≤ ε.

4. Auxiliary results

In this section we prove two lemmas which will be used in the proofs of
our theorems. We use the convention that S0x = x for each x ∈ K and
each S ∈M.

For each γ ∈ (0, 1) and each T ∈M define a mapping Tγ : K → K by

Tγx = γPx+ (1− γ)Tx, x ∈ K, (4.1)

where P is the operator the existence of which is stipulated in condition
A(iv).
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Lemma 4.1. Let T ∈ M and γ ∈ (0, 1). Then Tγ ∈ M. If T, P ∈ Mu

(respectively, T, P ∈Mc), then Tγ ∈Mu (respectively, Tγ ∈Mc).

Proof. Clearly Tγ ∈ M and Tγx = x for all x ∈ F . By (4.1), A(iii), (0.1),
A(iv) and Lemma 1.2, for each z ∈ F and each x ∈ K,

Df (z, Tγx) = Df (z, γPx+ (1− γ)Tx) ≤ γDf (z, Px)

+ (1− γ)Df (z, Tx) ≤ Df (z, x).

Thus Tγ ∈M. Clearly, Tγ ∈Mu if T, P ∈Mu and Tγ ∈Mc if T, P ∈Mc.
Lemma 4.1 is proved.

It is obvious that for each T ∈M,

Tγ → T as γ → 0+ in M. (4.2)

Lemma 4.2. Let T ∈M, γ ∈ (0, 1) and let x ∈ K. Then

ρf (Tγx, F ) ≤ (1− γ2)ρf (x, F ). (4.3)

Proof. Let ε > 0. There exists y ∈ F such that (see (1.6))

Df (y, x) ≤ ρf (x, F ) + ε. (4.4)

It follows from (4.1), A(iv), Lemma 1.2, A(iii) and (0.1) that

ρf (Tγx, F ) =ρf (γPx+ (1− γ)Tx, F ) (4.5)

≤Df (γPx+ (1− γ)y, (1− γ)Tx+ γPx)

≤γDf (Px, γPx+ (1− γ)Tx)

+ (1− γ)Df (y, γPx+ (1− γ)Tx)

≤γ2Df (Px, Px) + γ(1− γ)Df (Px, Tx)

+ (1− γ)γDf (y, Px) + (1− γ)2Df (y, Tx)

≤γ(1− γ)Df (Px, x) + (1− γ)γDf (y, Px)

+ (1− γ)2Df (y, Tx).

It follows from (4.5), A(iv), Lemma 1.2 and (4.4) that

ρf (Tγx, F ) ≤ γ(1− γ)ρf (x, F ) + (1− γ)γDf (y, x) + (1− γ)2Df (y, x)

≤ ε+ (1− γ2)ρf (x, F ).

Since ε is an arbitrary positive number we conclude that (4.3) holds. This
completes the proof of Lemma 4.2.
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5. Proof of Theorem 2.1

Before we prove Theorem 2.1 we quote [8, Proposition 5.1] and prove one
more lemma.

Proposition 5.1. Let K0 be a bounded subset of K, T ∈ Mu, ε > 0, and
let n ≥ 1 be an integer. Then there exists a neighborhood U of T in Mu

such that for each S ∈ U and each x ∈ K0, the inequality ||Tnx−Snx|| ≤ ε
holds.

Lemma 5.1. Let T ∈ Mu, γ ∈ (0, 1), ε > 0 and let K0 be a nonempty
bounded subset of K. Then there exist a neighborhood U of Tγ in Mu and
a natural number N such that for each x ∈ K0 there exists Qx ∈ F such
that for each integer n ≥ N and each S ∈ U ,

||Snx−Qx|| ≤ ε.

Proof. Set

K1 =
⋃
{Si(K0) : S ∈M, i ≥ 0}. (5.1)

Assumption A(ii) and (0.1) imply that the set K1 is bounded. Evidently,

S(K1) ⊂ K1 for all S ∈M(F ). (5.2)

By A(i) there exists ε0 ∈ (0, ε) such that

if x ∈ K1, z ∈ F and Df (z, x) ≤ ε0, then ||z − x|| ≤ 4−1ε.
(5.3)

By (2.1) there is ε1 ∈ (0, 2−1ε0) such that

if x ∈ K1, z ∈ F and ||x− z|| ≤ 2ε1, then Df (z, x) ≤ 2−1ε0.
(5.4)

By A(i) there is ε2 ∈ (0, 2−1ε1) such that

if x ∈ K1, z ∈ F and Df (z, x) ≤ 2ε2, then ||x− z|| ≤ 2−1ε1.
(5.5)

Set

c0 = sup{ρf (x, F ) : x ∈ K1}. (5.6)

By A(ii), c0 <∞. Choose a natural number N ≥ 4 such that

(1− γ2)N (c0 + 1) ≤ 2−1ε2. (5.7)

It follows from Lemma 4.2, (5.6) and (5.7) that for each x ∈ K1,

ρf (TNγ x, F ) ≤ (1− γ2)Nρf (x, F ) ≤ (1− γ2)Nc0 < 2−1ε2.
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Thus for each x ∈ K1 there is Qx ∈ F such that Df (Qx, TNγ x) ≤ 2−1ε2.
When combined with (5.2) and (5.5), the last inequality implies that

||TNγ x−Qx|| ≤ 2−1ε1 for all x ∈ K1. (5.8)

By Proposition 5.1, there exists a neighborhood U of Tγ in Mu such that
for each x ∈ K1 and each S ∈ U ,

||SNx− TNγ x|| ≤ 4−1ε1. (5.9)

Assume that x ∈ K0 and S ∈ U . Evidently, {Six}∞i=0 ⊂ K1. By (5.8) and
(5.9), ||SNx−Qx|| ≤ 3 ·4−1ε1. It follows from this inequality and (5.4) that
Df (Qx, SNx) ≤ 2−1ε0. Since S ∈ Mu, it follows from the last inequality
that Df (Qx, Snx) ≤ 2−1ε0 for all integers n ≥ N . Combined with (5.3)
this implies that ||Qx − Snx|| ≤ ε for all integers n ≥ N . Lemma 5.1 is
proved.

Proof of Theorem 2.1. By (4.2), the set {Tγ : T ∈ Mu, γ ∈ (0, 1)} is
an everywhere dense subset of Mu. For each natural number i set

Ki = {x ∈ K : ||x− θ|| ≤ i}. (5.10)

By Lemma 5.1, for each T ∈ Mu, each γ ∈ (0, 1) and each integer i ≥ 1,
there exist an open neighborhood U(T, γ, i) of Tγ in Mu and a natural
number N(T, γ, i) such that the following property holds:

P(i) For each x ∈ K2i , there is Qx ∈ F such that

||Snx−Qx|| ≤ 2−i for all integers n ≥ N(T, γ, i) and all S ∈ U(T, γ, i).

Define

F =
∞⋂
q=1

⋃
{U(T, γ, q) : T ∈Mu, γ ∈ (0, 1)}.

Clearly F is a countable intersection of open everywhere dense subsets of
Mu.

Let B ∈ F , ε > 0 and let C be a bounded subset of K. There exists an
integer q ≥ 1 such that

C ⊂ K2q and 2−q < 4−1ε. (5.11)

There also exist T ∈Mu and γ ∈ (0, 1) such that

B ∈ U(T, γ, q). (5.12)

It now follows from Property P(i), (5.11) and (5.12) that the following
property also holds:

P(ii) For each x ∈ C there is Qx ∈ F such that

||Snx−Qx|| ≤ 4−1ε

for each integer n ≥ N(T, γ, q) and each S ∈ U(T, γ, q).
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Property P(ii) and (5.12) imply that for each x ∈ C and each integer
n ≥ N(T, γ, q),

||Bnx−Qx|| ≤ 4−1ε. (5.13)

Since ε is an arbitrary positive number and C is an arbitrary bounded subset
of K, we conclude that for each x ∈ K, {Bnx}∞n=1 is a Cauchy sequence.
Therefore for each x ∈ K there exists

PBx = lim
n→∞

Bnx. (5.14)

By (5.13) and (5.14), for each x ∈ C,

||PBx−Qx|| ≤ 4−1ε. (5.15)

Once again, since ε is an arbitrary positive number and C is an arbitrary
bounded subset of K, we conclude that

PB(K) = F. (5.16)

It now follows from property P(ii) and (5.15) that for each x ∈ C, each
S ∈ U(T, γ, q) and each integer n ≥ N(T, γ, q),

||Snx− PBx|| ≤ 2−1ε.

This completes the proof of Theorem 2.1.

6. Proofs of Theorems 3.1 and 3.2

We begin with four lemmas.

Lemma 6.1. Let K0 be a nonempty bounded subset of K and β a positive
number. Then the set {(z, y) ∈ F ×K0 : Df (z, y) ≤ β} is bounded.

Proof. If this claim were not true, then there would exist a sequence
{(zi, xi)}∞i=1 ⊂ F ×K0 such that

Df (zi, xi) ≤ β, i = 1, 2, . . . , and ||zi|| → ∞ as i→∞. (6.1)

By (0.1), Df (zi, Pxi) ≤ β, i = 1, 2, . . . . Clearly, the sequence {Pxi}∞i=1 is
bounded. We may assume that ||zi − Pxi|| ≥ 16, i = 1, 2, . . . . For each
integer i ≥ 1 there exists αi > 0 such that

||[(1− αi)Pxi + αizi]− Pxi|| = 1. (6.2)

Clearly αi → 0 as i→∞. It is easy to see that for each integer i ≥ 1,

Df ((1− αi)Pxi + αizi, Pxi) ≤ αiDf (zi, Pxi) ≤ αiβ → 0 as i→∞.
Combined with A(i) this implies that ||Pxi − [(1− αi)Pxi + αizi]|| → 0 as
i→∞. Since this contradicts (6.2), Lemma 6.1 follows.
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Lemma 6.2. Let T ∈ M, γ, ε ∈ (0, 1) and let K0 be a nonempty bounded
subset of K. Then there exists a neighborhood U of Tγ in M such that
for each S ∈ U and each x ∈ K0 satisfying ρf (x, F ) > ε, the following
inequality holds:

ρf (Sx, F ) ≤ ρf (x, F )− εγ2/4. (6.3)

Proof. Set

K1 =
⋃
{Si(K0) : S ∈M, i ≥ 0}. (6.4)

Assumption A(ii) and (0.1) imply that the set K1 is bounded. Evidently,
S(K1) ⊂ K1 for all S ∈M. By A(ii) there exists c0 > 0 such that

4 + sup{Df (θ, x) : x ∈ K1} < c0. (6.5)

By Lemma 6.1 there exists a number c1 > 0 such that

if (z, x) ∈ F ×K1 and Df (z, x) ≤ c0 + 2, then ||z|| ≤ c1.
(6.6)

We may assume without loss of generality that

c1 > sup{||Px|| : x ∈ K1}. (6.7)

Since Df (·, ·) is uniformly continuous on bounded subsets of F ×K, there
exists a number δ ∈ (0, 2−1) such that for each pair of points,

(z, x1), (z, x2) ∈ {ξ ∈ F : ||ξ|| ≤ c1} ×K1

satisfying ||x1 − x2|| ≤ δ, the following inequality holds:

|Df (z, x1)−Df (z, x2)| ≤ 4−1εγ2. (6.8)

Set

U = {S ∈M : ||Sx− Tγx|| ≤ δ for all x ∈ K1}. (6.9)

Clearly U is a neighborhood of Tγ in M.
Assume that

S ∈ U, x ∈ K0 and ρf (x, F ) > ε. (6.10)

We will show that (6.3) is valid. By Lemma 4.2,

ρf (Tγx, F ) ≤ (1− γ2)ρf (x, F ). (6.11)

Let

∆ ∈ (0, 4−1γ2ε). (6.12)

There is z ∈ F such that

Df (z, Tγx) ≤ (1− γ2)ρf (x, F ) + ∆. (6.13)
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By (6.13), (6.12), (6.5) and (6.6),

Df (z, Tγx) ≤ c0 and ||z|| ≤ c1. (6.14)

By (6.9) and (6.10),

||Tγx− Sx|| ≤ δ. (6.15)

By (6.14) and (6.4),

(z, Tγx), (z, Sx) ∈ {ξ ∈ F : ||ξ|| ≤ c1} ×K1. (6.16)

By (6.16), (6.15) and the definition of δ (see (6.8)),

|Df (z, Tγx)−Df (z, Sx)| ≤ 4−1εγ2.

Combined with (6.13) and (6.12) this implies that

ρf (Sx, F ) ≤ Df (z, Sx) ≤ 4−1εγ2 +Df (z, Tγx) ≤

4−1εγ2 + (1− γ2)ρf (x, F ) + ∆

≤ (1− γ2)ρf (x, F ) + 2−1εγ2.

Thus
ρf (Sx, F ) ≤ (1− γ2)ρf (x, F ) + 2−1εγ2.

The inequality (6.3) follows from this inequality and (6.10). Lemma 6.2 is
proved.

Lemma 6.3. Let T ∈ M, γ, ε ∈ (0, 1) and let K0 be a nonempty bounded
subset of K. Then there exist a neighborhood U of Tγ in M and a natural
number N such that for each S ∈ U and each x ∈ K0,

ρf (SNx, F ) ≤ ε. (6.17)

Proof. Define the set K1 by (6.4). Assumption A(ii) and (0.1) imply that
the set K1 is bounded. Clearly S(K1) ⊂ K1 for all S ∈Mu. By A(ii) there
is a positive number c0 such that (6.5) is valid. By Lemma 6.2 there exists
a neighborhood U of Tγ in M such that for each S ∈ U and each x ∈ K1
satisfying ρf (x, F ) > ε, the following inequality holds:

ρf (Sx, F ) ≤ ρf (x, F )− εγ2/4. (6.18)

Choose a natural number N for which

8−1εγ2N > c0 + 1. (6.19)

Assume that S ∈ U and x ∈ K0. We will show that inequality (6.17) is
valid. If it were not, then we would have ρ(Six, F ) > ε for all i = 0, . . . , N .
Combined with the definition of U (see (6.18)), these inequalities imply that
for all i = 0, . . . , N − 1,

ρf (Si+1x, F ) ≤ ρf (Six, F )− εγ2/4.
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Therefore
ρf (SNx, F ) ≤ ρf (x, F )− εγ2N/4.

By this inequality, (6.5) and (6.19),

0 ≤ ρf (Snx, F ) ≤ c0 − 4−1εγ2N ≤ −1.

This contradiction proves (6.17) and Lemma 6.3 follows.

Lemma 6.4. Let T ∈ M, γ, ε ∈ (0, 1) and let K0 be a nonempty bounded
subset of K. Then there exist a neighborhood U of Tγ in M and a natural
number N such that for each S ∈ U and each x ∈ K0, there is z(S, x) ∈ F
such that

||Six− z(S, x)|| ≤ ε for all integers i ≥ N. (6.20)

Proof. Define K1 by (6.4). Assumption A(ii) and (0.1) imply that K1 is
bounded. By Assumption A(i) there exists δ ∈ (0, 1) such that

if x ∈ K1, z ∈ F and Df (z, x) ≤ δ, then ||x− z|| ≤ 2−1ε.
(6.21)

By Lemma 6.3, there exists a neighborhood U of Tγ in M and a natural
number N such that

ρf (SNx, F ) ≤ δ/2 for each S ∈ U and x ∈ K1.

This implies that for each x ∈ K0 and each S ∈ U there is z(S, x) ∈ F for
which Df (z(S, x), SNx) < δ. Combined with (6.21) this implies that for
each x ∈ K0, each S ∈ U , and each integer i ≥ N ,

Df (z(S, x), Six) < δ and ||Six− z(S, x)|| ≤ 2−1ε.

Lemma 6.4 is proved.

Proof of Theorem 3.1. By (4.2) the set {Tγ : T ∈ M, γ ∈ (0, 1)} is an
everywhere dense subset of M and if P ∈ Mc, then {Tγ : T ∈ Mc, γ ∈
(0, 1)} is an everywhere dense subset ofMc. For each natural number i set

Ki = {x ∈ K : ||x− θ|| ≤ i}. (6.22)

By Lemma 6.4, for each T ∈ M, each γ ∈ (0, 1), and each integer i ≥ 1,
there exist an open neighborhood U(T, γ, i) of Tγ inM and a natural number
N(T, γ, i) such that the following property holds:

P(iii) For each x ∈ K2i and each S ∈ U(T, γ, i), there is z(S, x) ∈ F such
that

||Snx− z(S, x)|| ≤ 2−i for all integers n ≥ N(T, γ, i).
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Define

F =
∞⋂
q=1

⋃
{U(T, γ, q) : T ∈M, γ ∈ (0, 1)}.

Clearly F is a countable intersection of open everywhere dense subsets of
M. If P ∈Mc, then we define

Fc = [
∞⋂
q=1

⋃
{U(T, γ, q) : T ∈Mc, γ ∈ (0, 1)}] ∩Mc.

In this case Fc ⊂ F and Fc is a countable intersection of open everywhere
dense subsets of Mc.

Let B ∈ F , ε > 0, and let C be a bounded subset of K. There exists an
integer q ≥ 1 such that

C ⊂ K2q and 2−q < 4−1ε. (6.23)

There also exist T ∈M and γ ∈ (0, 1) such that

B ∈ U(T, γ, q). (6.24)

Note that if P ∈Mc and B ∈ Fc, then T ∈Mc.
It follows from Property P(iii), (6.23) and (6.24) that the following prop-

erty also holds:
P(iv) For each S ∈ U(T, γ, q) and each x ∈ C, there is z(S, x) ∈ F such

that ||Snx− z(S, x)|| ≤ 4−1ε for each integer n ≥ N(T, γ, q).
The relation (6.24) and property P(iv) imply that for each x ∈ C and

each integer n ≥ N(T, γ, q),

||Bnx− z(B, x)|| ≤ 4−1ε. (6.25)

Since ε is an arbitrary positive number and C is an arbitrary bounded subset
of K, we conclude that for each x ∈ K, {Bnx}∞n=1 is a Cauchy sequence.
Therefore for each x ∈ K there exists

PBx = lim
n→∞

Bnx.

Now (6.25) implies that for each x ∈ C,

||PBx− z(B, x)|| ≤ 4−1ε. (6.26)

Once again, since ε is an arbitrary positive number and C is an arbitrary
bounded subset of K, we conclude that

PB(K) = F.

It follows from (6.25) and (6.26) that for each x ∈ C and each integer
n ≥ N(T, γ, q),

||Bnx− PBx|| ≤ 2−1ε.

This implies that PB ∈ M and if B ∈ Mc, then PB ∈ Mc. Theorem 3.1 is
established.
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We will use the next lemma in the proof of Theorem 3.2.

Lemma 6.5. Let B ∈ Mc, x ∈ K, ε ∈ (0, 1) and let N ≥ 1 be an integer.
Then there exist a neighborhood U of B in M and a number δ > 0 such
that for each S ∈ U and each y ∈ K satisfying ||y − x|| ≤ δ, the following
inequality holds:

||Sny −Bnx|| ≤ ε.

This lemma is proved by induction on n.

Proof of Theorem 3.2. By Theorem 3.1, there exist a natural number N
and a neighborhood U0 of B in M such that

||PBy −Bny|| ≤ 8−1ε for each y ∈ K satisfying ||y − x|| ≤ 1

and each n ≥ N ; (6.27)

and for each S ∈ U0 and each y ∈ K satisfying ||y − x|| ≤ 1, there is
z(S, y) ∈ F such that

||Sny − z(S, y)|| ≤ 8−1ε for all integers n ≥ N. (6.28)

By Lemma 6.5, there exist a number δ ∈ (0, 1) and a neighborhood U of B
in M such that U ⊂ U0 and

||SNy −BNx|| ≤ 8−1ε for each S ∈ U
and each y ∈ K for which ||y − x|| ≤ δ. (6.29)

Assume that

y ∈ K, ||x− y|| ≤ δ and S ∈ U. (6.30)

By (6.30), (6.29) and (6.27),

||SNy−BNx|| ≤ 8−1ε, ||SNy− z(S, y)|| ≤ 8−1ε and ||PBx−BNx|| ≤ 8−1ε.

These inequalities imply that

||z(S, y)− PBx|| ≤ 3 · 8−1ε.

Combined with (6.28) the last inequality implies that

||Sny − PBx|| ≤ 2−1ε for all integers n ≥ N.

This completes the proof of Theorem 3.2.
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7. Convergence of powers for a class of continuous operators

In this section we assume that P ∈Mc and that the function

Df (z, ·) : K → R1 is continuous for all z ∈ F. (7.1)

Theorem 7.1. Let x ∈ K. Then there exists a set F ⊂ Mc which is a
countable intersection of open everywhere dense subsets ofMc such that for
each B ∈ F the following assertions hold:

1. There exists limn→∞B
nx ∈ F .

2. For each ε > 0 there exist a neighborhood U of B in Mc, a natural
number N and a number δ > 0 such that for each S ∈ U , each y ∈ K
satisfying ||y − x|| ≤ δ and each integer n ≥ N , ||Sny − limi→∞B

ix|| ≤ ε.

We equip the space K ×Mc with the product topology.

Theorem 7.2. There exists a set F ⊂ K ×Mc which is a countable in-
tersection of open everywhere dense subsets of K ×Mc such that for each
(z,B) ∈ F the following assertions hold:

1. There exists limn→∞B
nz ∈ F .

2. For each ε > 0 there exist a neighborhood U of (z,B) in K ×Mc and
a natural number N such that for each (y, S) ∈ U and each integer n ≥ N ,

||Sny − lim
i→∞

Biz|| ≤ ε.

Theorem 7.3. Assume that the set K0 is a nonempty separable closed sub-
set of K. Then there exists a set F ⊂Mc which is a countable intersection
of open everywhere dense subsets of Mc such that for each T ∈ F there
exists a set KT ⊂ K0 which is a countable intersection of open everywhere
dense subsets of K0 with the relative topology such that the following asser-
tions hold:

1. For each x ∈ KT there exists limn→∞ T
nx ∈ F .

2. For each x ∈ KT and each ε > 0, there exist an integer N ≥ 1 and a
neighborhood U of (x, T ) in K×Mc such that for each (y, S) ∈ U and each
integer i ≥ N , ||Siy − limn→∞ T

nx|| ≤ ε .

8. Proofs of Theorems 7.1–7.3

We precede the proofs of Theorems 7.1 and 7.2 by the following lemma.
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Lemma 8.1. Let T ∈ Mc, γ, ε ∈ (0, 1) and let x ∈ K. Then there exist
a neighborhood U of Tγ in Mc, a natural number N , a point ẑ ∈ F and a
number δ > 0 such that for each S ∈ U , each y ∈ K satisfying ||y − x|| ≤ δ
and each integer n ≥ N ,

||Sny − ẑ|| ≤ ε. (8.1)

Proof. Define

K1 =
⋃
{Si({y ∈ K : ||y − x|| ≤ 1}) : S ∈M, i = 0, 1, . . . }.

(8.2)

By A(ii) and (0.1), the set K1 is bounded. By A(i) there is ε0 ∈ (0, ε/2)
such that

if z ∈ F, y ∈ K1 and Df (z, y) ≤ 2ε0, then ||z − y|| ≤ ε/2.
(8.3)

Choose a natural number N for which

(1− γ2)N (ρf (x, F ) + 1) < ε0/8. (8.4)

By Lemma 4.2 this implies that

ρf (TNγ x, F ) ≤ (1− γ2)Nρf (x, F ) < ε0/8.

Therefore there exists ẑ ∈ F for which

Df (ẑ, TNγ x) < ε0/8. (8.5)

Since the function Df (ẑ, ·) : K → R1 is continuous (see (7.1)), there exists
ε1 ∈ (0, ε0/2) such that

Df (ẑ, ξ) < ε0/8 for all ξ ∈ K satisfying ||ξ − TNγ x|| ≤ ε1.
(8.6)

It follows from the continuity of Tγ that there exist a neighborhood U of Tγ
in Mc and a number δ ∈ (0, 1) such that for each S ∈ U and each y ∈ K
satisfying ||y − x|| ≤ δ,

||SNy − TNγ x|| ≤ ε1 (8.7)

(see Lemma 6.5).
Assume that

S ∈ U, y ∈ K, and ||y − x|| ≤ δ.
By the definition of U and δ, the inequality (8.7) is valid. By (8.7) and
(8.6), Df (ẑ, SNy) < ε0/8. This implies that Df (ẑ, Sny) < ε0/8 for all
integers n ≥ N . When combined with (8.3) this implies that ||ẑ−Sny|| ≤ ε
for all integers n ≥ N . Lemma 8.1 is proved.
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Proof of Theorem 7.1. Let x ∈ K. By Lemma 8.1, for each T ∈ Mc,
each γ ∈ (0, 1) and each integer i ≥ 1, there exist an open neighborhood
U(T, γ, i) of Tγ in Mc, a natural number N(T, γ, i), a point z(T, γ, i) ∈ F
and a number δ(T, γ, i) > 0 such that the following property holds:

P(v) For each S ∈ U(T, γ, i), each y ∈ K satisfying ||x − y|| ≤ δ(T, γ, i)
and each integer n ≥ N(T, γ, i),

||Sny − z(T, γ, i)|| ≤ 2−i.

Define

F =
∞⋂
q=1

⋃
{U(T, γ, q) : T ∈Mc, γ ∈ (0, 1)}.

Clearly F is a countable intersection of open everywhere dense subsets of
Mc.

Let B ∈ F and ε > 0. There exists an integer q ≥ 1 such that

2−q < 4−1ε. (8.8)

There also exist T ∈Mc and γ ∈ (0, 1) such that

B ∈ U(T, γ, q). (8.9)

It follows from property P(v) and (8.8) that the following property also
holds:

P(vi) For each S ∈ U(T, γ, q), each y ∈ K satisfying ||y − x|| ≤ δ(T, γ, q)
and each integer n ≥ N(T, γ, q),

||Sny − z(T, γ, q)|| ≤ 4−1ε. (8.10)

Since ε is an arbitrary positive number, we conclude that {Bnx}∞n=1 is a
Cauchy sequence and there exists limn→∞B

nx. The inequality (8.10) im-
plies that

|| lim
n→∞

Bnx− z(T, γ, q)|| ≤ 4−1ε.

Since ε is an arbitrary positive number, we conclude that limn→∞B
nx be-

longs to F . It follows from this inequality and property P(vi) that for each
S ∈ U(T, γ, q), each y ∈ K satisfying ||y − x|| ≤ δ(T, γ, q), and each integer
n ≥ N(T, γ, q),

||Sny − lim
i→∞

Bix|| ≤ 2−1ε.

Theorem 7.1 is proved.

Proof of Theorem 7.2. By Lemma 8.1, for each (x, T ) ∈ K ×Mc, each
γ ∈ (0, 1), and each integer i ≥ 1, there exist an open neighborhood
U(x, T, γ, i) of (x, Tγ) in K × Mc, a natural number N(x, T, γ, i) and a
point z(x, T, γ, i) ∈ F such that the following property holds:
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P(vii) For each (y, S) ∈ U(x, T, γ, i) and each integer n ≥ N(x, T, γ, i),

||Sny − z(x, T, γ, i)|| ≤ 2−i.

Define

F =
∞⋂
q=1

⋃
{U(x, T, γ, q) : (x, T ) ∈ K ×Mc, γ ∈ (0, 1)}.

Clearly F is a countable intersection of open everywhere dense subsets of
K ×Mc.

Let (z,B) ∈ F and ε > 0. There exists an integer q ≥ 1 such that

2−q < 4−1ε. (8.11)

There exist x ∈ K, T ∈Mc, and γ ∈ (0, 1) such that

(z,B) ∈ U(x, T, γ, q). (8.12)

By (8.11) and property P(vii), the following property also holds:
P(viii) For each (y, S) ∈ U(x, T, γ, q) and each integer n ≥ N(x, T, γ, q),

||Sny − z(x, T, γ, q)|| ≤ 4−1ε. (8.13)

Since ε is an arbitrary positive number we conclude that {Bnz}∞n=1 is a
Cauchy sequence and there exists limn→∞B

nz. Property P(viii) and (8.12)
now imply that

|| lim
n→∞

Bnz − z(x, T, γ, q)|| ≤ 4−1ε. (8.14)

Since ε is an arbitrary positive number, we conclude that limn→∞B
nz ∈ F .

It follows from (8.14) and property P(viii) that for each (y, S) ∈ U(x, T, γ, q)
and each integer n ≥ N(x, T, γ, q),

||Sny − lim
i→∞

Biz|| ≤ 2−1ε.

This completes the proof of Theorem 7.2.

Proof of Theorem 7.3. Assume that K0 is a nonempty closed separable
subset of K. Let {xj}∞j=1 ⊂ K0 be a sequence such that K0 is the closure of
{xj}∞j=1. For each integer p ≥ 1, there exists by Theorem 7.1 a set Fp ⊂Mc

which is a countable intersection of open everywhere dense subsets of Mc

such that for each T ∈ Fp the following properties hold:
C(i) There exists limn→∞ T

nxp ∈ F .
C(ii) For each ε > 0, there exist a neighborhood U of T inMc, a number

δ > 0 and a natural number N such that for each S ∈ U , each y ∈ K
satisfying ||y − xp|| ≤ δ and each integer m ≥ N ,

||Smy − lim
n→∞

Tnxp|| ≤ ε.
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Set

F =
∞⋂
p=1

Fp. (8.15)

Clearly F is a countable intersection of open everywhere dense subsets of
Mc.

Assume that T ∈ F . Then for each p ≥ 1 there exists limn→∞ T
nxp ∈ F .

Now we will construct the set KT ⊂ K0. By property C(ii), for each pair
of natural numbers q, i there exist a neighborhood U(q, i) of T in Mc, a
number δ(q, i) > 0 and a natural number N(q, i) such that the following
property holds:

C(iii) For each S ∈ U(q, i), each y ∈ K satisfying ||y − xq|| ≤ δ(q, i), and
each integer m ≥ N(q, i),

||Smy − lim
n→∞

Tnxq|| ≤ 2−i.

Define

KT =
∞⋂
n=1

⋃
{{y ∈ K0 : ||y − xq|| < δ(q, i)} : q ≥ 1, i ≥ n}.

(8.16)

Clearly KT is a countable intersection of open everywhere dense subsets of
K0.

Assume that x ∈ KT and ε > 0. There exists an integer n ≥ 1 such that

2−n < 4−1ε. (8.17)

By (8.16) there exist a natural number q and an integer i ≥ n such that

||x− xq|| < δ(q, i). (8.18)

It follows from (8.17) and C(iii) that the following property also holds:
C(iv) For each S ∈ U(q, i), each y ∈ K satisfying ||y − xq|| ≤ δ(q, i), and

each integer m ≥ N(q, i),

||Smy − lim
j→∞

T jxq|| ≤ 4−1ε.

By property C(iv) and (8.18),

||Tmx− lim
j→∞

T jxq|| ≤ 4−1ε

for all integers m ≥ N(q, i). Since ε is an arbitrary positive number, we con-
clude that {Tmx}∞m=1 is a Cauchy sequence and there exists limm→∞ T

mx.
We also have

|| lim
m→∞

Tmx− lim
m→∞

Tmxq|| ≤ 4−1ε. (8.19)
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Since limm→∞ T
mxq ∈ F , we conclude that limm→∞ T

mx also belongs to
F . By (8.19) and property C(iv), for each S ∈ U(q, i), each y ∈ K satisfying
||y − x|| < δ(q, i)− ||x− xq||, and each integer m ≥ N(q, i), we have

||Smy − lim
j→∞

T jx|| ≤ 2−1ε.

Theorem 7.3 is proved.
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