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Abstract. The aim of the paper is to characterize those sets of points
at which sequence of real functions from a given class F converges as
well as sets of points of convergence to infinity of such sequences. As
F we consider quasi-continuous functions and some other subclasses of
Baire measurable functions.

The investigation of some sets determined by sequences of functions is
motivated by the well-known result due to Hahn and also Sierpiński [9]
stating that a subset A of a Polish space X is of type Fσδ iff there exists
a sequence {fn : n ∈ N} ⊂ RX of continuous functions convergent exactly
at each point of A (see also [2, Theorem 23.18, p. 185]). It may be interest-
ing to find the analogous characterization of sets of convergence points for
sequences of functions from some other classes. In [10] the sequences of func-
tions of Baire class α, derivatives and approximately continuous functions
have been examined.
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Moreover, we can consider two other sets determined by a sequence of
functions, i. e. sets of points of convergence to plus or minus infinity, inves-
tigated by Lipiński [4] for sequences of continuous functions. The problem
we deal with in this paper is to find necessary and sufficient conditions
on three pairwise disjoint sets to be the set of convergence points, the set
of points of convergence to plus infinity and the set of points of conver-
gence to minus infinity, respectively, for some sequence of functions from
a given class. We investigate quasi-continuous functions (Theorem 1) as
well as some other subclasses of Baire measurable functions, e.g. cliquish,
pointwise discontinuous and simply continuous functions (Theorem 2 and
Remark 2).

Let us establish some notations. For a subset A of a topological space X
we denote by int (A), cl (A) and fr (A) the interior, closure and boundary of
A, respectively. For a metric space X, x ∈ X and ε > 0 let B(x, ε) denote
an open ball centred at x with the radius ε. Then B(A, ε) =

⋃
x∈AB(x, ε).

Throughout this paper the following abbreviations for some classes of sub-
sets of a topological space X are used:

SO(X) — the family of all semi-open subsets of X (SO(X) consists
of sets satisfying A ⊂ cl (int A));
Baire(X) — the collection of subsets with the Baire property;
M(X) — the σ-ideal of meager (first-category) subsets of X.

For f : X → R let C(f) be the set of all continuity points of f . Then
D(f) = X \ C(f).

A function f : X → R is said to be quasi-continuous iff for every p ∈ X
and open sets U ⊂ X, W ⊂ R such that p ∈ U and f(p) ∈ W there
is a non-empty open set G ⊂ U such that f(G) ⊂ W (or, equivalently,
f−1(V ) ∈ SO(X) for any open V ⊂ R, see e.g. [7, Theorem 1.1]).

Let QC ⊂ RX be the class of all quasi-continuous functions. Denote
also by B the class of Baire measurable real functions defined on X (i.e.
f ∈ B ⊂ RX iff f−1(V ) has the Baire property for any open V ⊂ R).

For a sequence {fn : n ∈ N} ⊂ RX we consider the following sets:
(1) L({fn : n ∈ N}) = {x ∈ X : (fn(x))n converges},
(2) L+∞({fn : n ∈ N}) = {x ∈ X : limn fn(x) = +∞},
(3) L−∞({fn : n ∈ N}) = {x ∈ X : limn fn(x) = −∞}.

Remark 1. For any sequence {fn : n ∈ N} ⊂ RX
• L({fn : n ∈ N}) =

⋂
m∈N

⋃
n∈N

⋂
k∈N{x ∈ X : |fn+k(x) − fn(x)| ≤

1/m};
• L+∞({fn : n ∈ N}) =

⋂
m∈N

⋃
k∈N

⋂
n≥k{x ∈ X : fn(x) ≥ m};

• L−∞({fn : n ∈ N}) =
⋂
m∈N

⋃
k∈N

⋂
n≥k{x ∈ X : fn(x) ≤ −m}.
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By Remark 1 it is easy to see that in the case of continuous real func-
tions {fn : n ∈ N} defined on a metric space X both L+∞({fn : n ∈ N})
and L−∞({fn : n ∈ N}) are Fσδ sets in X. But then L+∞({fn : n ∈ N}) ⊂⋃
k∈N

⋂
n≥k{x ∈ X : fn(x) ≥ 1} and L−∞({fn : n ∈ N}) ⊂ ⋃k∈N

⋂
n≥k{x ∈

X : fn(x) ≤ −1}, so L+∞({fn : n ∈ N}) and L−∞({fn : n ∈ N}) are sepa-
rated by two disjoint Fσ sets in X. The theorem proved by Lipiński (see [4])
for sequences of continuous real functions defined on R states that the above
necessary condition is also sufficient, i.e.

for any Fσδ sets L1, L2 ⊂ R separated by two disjoint Fσ sets there
exists a sequence {fn : n ∈ N} ⊂ RR of continuous functions such that
L1 = L+∞({fn : n ∈ N}) and L2 = L−∞({fn : n ∈ N}).

A similar characterization of triple (1), (2) and (3) has been achieved by
Lunina (see [5]) for sequences of continuous real functions on a metric space.

First, we will show some necessary conditions on sets to be of the form
(1), (2) or (3) for a sequence of quasi-continuous functions.

Lemma 1. For any sequence {fn : n ∈ N} ⊂ RX of quasi-continuous func-
tions L+ = L+∞({fn : n ∈ N}) ∈ Baire(X). Moreover, if X is a Baire
space and
(4) L+ = (G+ \ P+) ∪Q+, where G+ is a regular open set, P+, Q+ ∈ M,

P+ ⊂ G+ and Q+ ∩G+ = ∅,
then BM = {x ∈ G+ : limnfn(x) < M} is nowhere-dense for every M > 0.

Proof. Since SO(X) ⊂ Baire(X), any quasi-continuous function has the
Baire property, so the first statement of Lemma 1 is obvious by Remark 1.
Let L+ be as in (4). Fix M > 0, an open set U ⊂ G+ and x ∈ U \P+. Then
x ∈ L+∞({fn : n ∈ N}), so there is a positive integer nx such that for every
m > nx we have fm(x) ≥M . Consequently, since X is a Baire space, there
is n ∈ N such that An = {x ∈ U : nx = n} is of second category. Hence we
can find a non-empty open set V ⊂ U such that An is dense in V . We will
show that V ∩BM = ∅. Fix x ∈ V and m > n. Then fm(x) ≥M , because
otherwise, by the quasi-continuity of fm at x, there is a non-empty open
set G ⊂ V such that fm(t) < M for any t ∈ G. Thus G ∩ An = ∅, which
is impossible because An is dense in V . Therefore limnfn(x) ≥ M for any
x ∈ V , which finishes the proof.

Similar arguments apply to the next two lemmas.

Lemma 2. For any sequence {fn : n ∈ N} ⊂ RX of quasi-continuous func-
tions L− = L−∞({fn : n ∈ N}) ∈ Baire(X). Moreover, if X is a Baire
space and
(5) L− = (G− \ P−) ∪Q−, where G− is a regular open set, P−, Q− ∈ M,

P− ⊂ G− and Q− ∩G− = ∅,
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then DM = {x ∈ G− : limnfn(x) > M} is nowhere-dense for every M < 0.

Lemma 3. For any sequence {fn : n ∈ N} ⊂ RX of quasi-continuous func-
tions L0 = L({fn : n ∈ N}) ∈ Baire(X). Moreover, if X is a Baire space
and
(6) L0 = (G0 \ P0) ∪ Q0, where G0 is a regular open set, P0, Q0 ∈ M,

P0 ⊂ G0 and Q0 ∩G0 = ∅,
then G0 ∩ L+∞({fn : n ∈ N}) and G0 ∩ L−∞({fn : n ∈ N}) are nowhere-
dense.

Moreover, the following modification of [6, Lemma 1] will be useful.

Lemma 4. Let (X, d) be a dense in itself separable metric space. If for
fixed k ∈ N the sets F0, F1, ...Fk are nowhere dense closed subsets of cl (U),
where U is an open subset of X, with F0 ⊂ F1 ⊂ ... ⊂ Fk, then for every
ε > 0 we can choose a collection {Uk,i,j : i ≤ k, j ≤ 3} of semi-open subsets
of X such that

1. Uk,i,j ∩ Uk,l,m = ∅ for (k, i, j) 6= (k, l,m),
2. Uk,i,j ⊂ U ∩B(Fi, ε) \ Fk for every i ≤ k and j ≤ 3,
3. Fi ⊂ cl (Uk,i,j) for every i ≤ k and j ≤ 3,
4. U \

⋃
i≤k
⋃
j≤3 Uk,i,j is semi-open.

Proof. We will prove the lemma for k = 1, just for the sake of simplicity.
Denote by O = {Bn : n ∈ N} an open basis of X. For n ∈ N let Wn =
B(F1, ε/2n). Then F1 =

⋂
n∈NWn. Let {Gn : n ∈ N} = {G ∈ O : G ∩ F1 6=

∅}. For each n ∈ N we choose inductively a non-empty open set Kn with
cl (Kn) ⊂ U ∩Wn ∩Gn \ (F1 ∪

⋃
i<n cl (Ki)). We have

(i) cl (Kn) ∩ F1 = ∅ for all n ∈ N and cl (Kn) ∩ cl (Km) = ∅ for n 6= m,
(ii) for every x ∈ F1 and its open neighbourhood V there exists an n ∈ N

such that cl (Kn) ⊂ V ,
(iii) for every x 6∈ F1 there exists an open neighbourhood V of x such that

the set {n ∈ N : cl (Kn) ∩ V 6= ∅} has at most one element.
We see at once that (i) and (ii) hold, so we will verify (iii). Fix an x 6∈ F1.
Then there exist an n0 ∈ N and an open V0 with x ∈ V0 such that V0∩Wn0 =
∅. Clearly, cl (Kn) ∩ V0 = ∅ for all n ≥ n0. Thus it is enough to take
V = V0 \

⋃
n<n0

cl (Kn) if x 6∈
⋃
n<n0

cl (Kn) or V = V0 \
⋃
n<n0,n 6=m cl (Kn)

if x ∈ cl (Km) for some unique m < n0.
Fix an n ∈ N and choose five non-empty open sets {Kn,j : j = 0, 1, ..., 4}

such that
(iv) cl (Kn,j) ⊂ Kn and cl (Kn,j) ∩ cl (Kn,m) = ∅ for j 6= m.

For each j ≤ 4 define the semi-open set U1,j =
⋃
n∈N cl (Kn,j). It follows

that
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1. U1,j ∩ U1,m = ∅ for j 6= m,
2. U1,j ⊂ U ∩B(F1, ε) \ F1 for every j ≤ 4,
3. F1 ⊂ cl (U1,j) for every j ≤ 4,
4. Z = U \

⋃
j≤3 U1,j is semi-open.

Of course, 1-2 hold and 3 is a consequence of (iii), so it suffices to verify 4.
Fix an x ∈ Z. We will show that x ∈ cl (int Z). First, take an x ∈ F1∩U and
an arbitrary neighbourhood V of x. By (ii) and (iv) there is an n ∈ N such
that cl (Kn,4) ⊂ V . Since cl (Kn,4) ⊂ U1,4 ⊂ Z, we have V ∩ int (Z) 6= ∅,
so x ∈ cl (int Z). By (iii) and (iv), for x ∈ Z \ F1 there exists an open
neighbourhood V of x such that the set A = {(n, j) : cl (Kn,j)∩V 6= ∅} has
at most one element. If A = ∅, then x ∈ U ∩ V ⊂ Z, so x ∈ cl (int Z). If
A = {(n0, j0)}, we have two cases.
• If x ∈ cl (Kn0,j0), then of course j0 = 4 and cl (Kn0,j0) ⊂ Z. Thus
U ∩ V ⊂ Z, so x ∈ cl (int Z).
• If x 6∈ cl (Kn0,j0), then x ∈ V0 = U ∩ V \ cl (Kn0,j0). Since V0 is a

non-empty open subset of Z, we have x ∈ cl (int Z).
Now, take a semi-open set Z = U \

⋃
j≤3 U1,j . For n ∈ N let Sn =

B(F0, ε/2n) ∩ Z. Then Sn is a non-empty semi-open subset of X. Let
{On : n ∈ N} = {O ∈ O : O∩F0 6= ∅}. For each n ∈ N we choose non-empty
open subsets Ln of Z with cl (Ln) ⊂ Sn ∩On \ (F1 ∪

⋃
i<n cl (Li)), which is

possible because Sn ∩On \ (F1 ∪
⋃
i<n cl (Li)) is a non-empty semi-open set.

We have
(v) cl (Ln) ∩ F1 = ∅ for all n ∈ N and cl (Ln) ∩ cl (Lm) = ∅ for n 6= m,
(vi) for every x ∈ F0 and its open neighbourhood V there exists n ∈ N

such that cl (Ln) ⊂ V ,
(vii) for every x 6∈ F1 there exists an open neighbourhood V of x such that

the set {n ∈ N : cl (Ln) ∩ V 6= ∅} has at most one element.
Obviously, (v) and (vi) hold. The proof of (vii) is similar to that of (iii).

Fix an n ∈ N and choose five non-empty open sets {Ln,j : j = 0, 1, ..., 4}
such that
(viii) cl (Ln,j) ⊂ Ln and cl (Ln,j) ∩ cl (Ln,i) = ∅ for j 6= i.
For each j ≤ 4 define a semi-open set U0,j =

⋃
n∈N cl (Ln,j). We apply

similar arguments to those in the proof of 1-4 to obtain
5. U0,j ∩ U0,m = ∅ for j 6= m and U0,j ⊂ U \

⋃
m≤3 U1,m for every j ≤ 4,

6. U0,j ⊂ U ∩B(F0, ε) \ F1 for every j ≤ 4,
7. F0 ⊂ cl (U0,j) for every j ≤ 4,
8. Z0 = U \

⋃
i≤1
⋃
j≤3 Ui,j is semi-open.

Putting U1,i,j = Ui,j for i = 0, 1 and j = 0, 1, 2, 3 we get a required collection
of semi-open sets.
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Theorem 1. Let (X, d) be a dense in itself separable metric space. Denote
by X1 the union of all first category open subsets of X. Let X2 = X\cl (X1).
For every pairwise disjoint sets L0, L+, L− ⊂ X the following conditions are
equivalent:

(i) L+, L−, L0 ∈ Baire(X) and for any s ∈ {0,+,−} we have Ls ∩X2 =
(Gs \ Ps) ∪Qs, where Gs, Ps, Qs ⊂ X2 and
(1) Gs is a regular open set;
(2) Ps, Qs ∈M(X);
(3) Ps ⊂ Gs and Qs ∩Gs = ∅;
(4) P+ ∩Q−, P− ∩Q+, P0 ∩Q−, P0 ∩Q+ are nowhere-dense;

(ii) there exists a sequence {fn : n ∈ N} ⊂ RX of quasi-continuous func-
tions such that L+ = L+∞({fn : n ∈ N}), L− = L−∞({fn : n ∈ N})
and L0 = L({fn : n ∈ N}).

Proof. The implication (ii)⇒(i) is a consequence of Lemmas 1–3, be-
cause for any sequence {fn : n ∈ N} ⊂ RX of quasi-continuous functions
all functions fn|X2 are quasi-continuous, the sets Ls ∩ X2 ∈ Baire(X2)
for s ∈ {0,+,−} and, in consequence (see e.g. [8]), can be represented
in the form Ls ∩ X2 = (Gs \ Ps) ∪ Qs with Gs, Ps, Qs satisfying (1)–(3).
Since X2 is a Baire space, Gs are pairwise disjoint sets and P+ ∩ Q− =
G+ ∩ L−∞({fn|X2 : n ∈ N}), P− ∩ Q+ = G− ∩ L+∞({fn|X2 : n ∈ N}),
P0∩Q− = G0∩L−∞({fn|X2 : n ∈ N}), P0∩Q+ = G0∩L+∞({fn|X2 : n ∈ N})
are nowhere-dense, by Lemmas 1–3.

The proof of (i)⇒(ii) consists in the construction of the required sequence.
First suppose that X is a Baire space and L+, L−, L0 ∈ Baire(X) are as in
(i) for X2 = X. Let L1 = X \(L0∪L+∪L−). Then L1 ∈ Baire(X), so there
are sets G1, P1, Q1 such that L1 = (G1 \ P1) ∪Q1 and G1 is a regular open
set, P1, Q1 ∈ M, P1 ⊂ G1 and Q1 ∩ G1 = ∅. Let S = {1, 0,+,−}. Since
X is a Baire space, X =

⋃
s∈S cl (Gs) and Gs are pairwise disjoint sets. Fix

an s ∈ S. Then Ps ∪ fr (Gs) ∈ M, so Ps ∪ fr (Gs) ⊂
⋃
i∈N F si , where F si

are closed and nowhere-dense subsets of cl (Gs). Moreover, we can assume
that F s0 ⊂ F s1 ⊂ ... ⊂ F si ⊂ F si+1 ⊂ ..., P+ ∩ Q− ⊂ F+

0 , P− ∩ Q+ ⊂ F−0 ,
(P0 ∩Q−) ∪ (P0 ∩Q+) ⊂ F 0

0 and also fr (Gs) ⊂ F s0 (all sets considered here
are nowhere-dense by assumption).

Fix an n ∈ N. By Lemma 4 there exists a collection {U sn,i,j : i ≤ n, j ≤ 3}
of semi-open subsets of X such that

1. U sn,i,j ∩ U sn,k,l = ∅ for (n, i, j) 6= (n, k, l),
2. U sn,i,j ⊂ (Gs ∩B(F si , 1/2

n)) \ F sn for every i ≤ n and j ≤ 3,
3. F si ⊂ cl (U sn,i,j) for every i ≤ n and j ≤ 3,
4. Gs \

⋃
i≤n
⋃
j≤3 U

s
n,i,j is semi-open.

Define {fn : n ∈ N} on each of Gs sets. First, take G+ = (G+ \P+)∪ (P+ ∩
(Q− ∪Q0 ∪Q1)). Then P+ ∪ fr (G+) ⊂

⋃
i∈N F

+
i , where F+

i are closed and
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nowhere-dense subsets of cl (G+) with F+
0 ⊂ F+

1 ⊂ ... ⊂ F+
i ⊂ F+

i+1 ⊂ ....
Moreover, P+ ∩ Q− and fr (G+) are subsets of F+

0 . Let E+
0 = F+

0 and
E+
i = F+

i \ F
+
i−1 for 0 < i ≤ n. Define fn|G+ as follows:

fn|G+(x) =



n if x ∈ G+ \
⋃
i≤n
⋃
j≤3(U+

n,i,j ∪ E
+
i ),

n if x ∈
⋃
i≤n

[
U+
n,i,0 ∪ (E+

i ∩ (G+ \ P+))
]
,

−n if x ∈ U+
n,0,1 ∪ (E+

0 ∩ P+ ∩Q−),
i if x ∈ U+

n,i,2 ∪ (E+
i ∩ P+ ∩Q0) for i ≤ n,

i if x ∈ U+
n,i,1 for 0 < i ≤ n,

i if x ∈ U+
n,i,3 ∪ (E+

i ∩ P+ ∩Q1)
for i ≤ n, and n is even,

i+ 1 if x ∈ U+
n,i,3 ∪ (E+

i ∩ P+ ∩Q1)
for i ≤ n, and n is odd.

We see at once that fn|G+ is quasi-continuous because

• it is constant on each of semi-open sets U+
n,i,j ,

• it is constant on G+ \
⋃
i≤n
⋃
j≤3(U+

n,i,j ∪ E
+
i ), where

G+ \
⋃
i≤n
⋃
j≤3 U

+
n,i,j is semi-open and

⋃
i≤nE

+
i = F+

n is nowhere-
dense,
• for every i ≤ n and x ∈ E+

i there is j ≤ 3 such that E+
i ⊂ cl (U+

n,i,j)
and fn|G+(x) = fn|G+(t) for any t ∈ U+

n,i,j .

Let us verify the convergence. Namely,

• if x ∈ P+ ∩Q− then fn(x) = −n for every n, so limn fn(x) = −∞,
• if x ∈ P+∩Q0 then x ∈ E+

i for unique i and fn(x) = i for every n ≥ i,
which means that limn fn(x) = i,
• if x ∈ P+ ∩Q1 then x ∈ E+

i for unique i and for every n ≥ i fn(x) = i
if n is even or fn(x) = i+ 1 if n is odd , so (fn(x))n diverges,
• if x ∈ (G+ \ P+) ∩

⋃
i∈NE

+
i then x ∈ E+

i for unique i and fn(x) = n
for every n ≥ i, so limn fn(x) = +∞,
• for x ∈ (G+ \ P+) \

⋃
i∈NE

+
i we have two cases.

Case 1: There is k ∈ N such that x is an element of none of U+
n,i,j sets for

n ≥ k. Then limn fn(x) = +∞ because fn(x) = n for every n ≥ k.
Case 2: Consider the sequence {U+

nk,ik,jk
: k ∈ N} of sets containing x.

Then {ik : k ∈ N} goes to infinity, because otherwise it contains a
constant subsequence, which means that x belongs to the infinitely
many sets of the form U+

nk,i0,jk
⊂ B(F+

i0
, 1/2nk). Consequently,

x ∈ F+
i0

, which is impossible. Since fn(x) is equal to one of the
numbers n, ik, ik+1 for n large enough, we have limn fn(x) = +∞.
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For G− = (G− \P−)∪ (P− ∩ (Q+ ∪Q0 ∪Q1)) the construction is similar.
Let E−0 = F−0 and E−i = F−i \ F

−
i−1 for 0 < i ≤ n. Then

fn|G−(x) =



−n if x ∈ G− \
⋃
i≤n
⋃
j≤3(U−n,i,j ∪ E

−
i ),

−n if x ∈
⋃
i≤n

[
U−n,i,1 ∪ (E−i ∩ (G− \ P−))

]
,

n if x ∈ U−n,0,0 ∪ (E−0 ∩ P− ∩Q+),
−i if x ∈ U−n,i,2 ∪ (E−i ∩ P− ∩Q0) for i ≤ n,
−i if x ∈ U−n,i,0 for 0 < i ≤ n,
−i if x ∈ U−n,i,3 ∪ (E−i ∩ P− ∩Q1) for i ≤ n if n is even,
−i− 1 if x ∈ U−n,i,3 ∪ (E−i ∩ P− ∩Q1) for i ≤ n if n is odd.

Then we have
• P− ∩Q+ = L+∞({fn|G− : n ∈ N}),
• P− ∩Q0 = L({fn|G− : n ∈ N}),
• (fn(x))n diverges at each x ∈ P− ∩Q1,
• G− \ P− = L−∞({fn|G− : n ∈ N}).
Now, take G0 = (G0 \ P0) ∪ (P0 ∩ (Q+ ∪Q− ∪Q1)). Then P0 ∪ fr (G0) ⊂⋃
i∈N F 0

i , where F 0
i are closed and nowhere-dense subsets of cl (G0) with

F 0
0 ⊂ F 0

1 ⊂ ... ⊂ F 0
i ⊂ F 0

i+1 ⊂ ... and P0 ∩ Q+, P0 ∩Q−, fr (G0) subsets of
F 0

0 . Let E0
0 = F 0

0 and E0
i = F 0

i \ F 0
i−1 for 0 < i ≤ n. Define fn|G0 by the

formula

fn|G0(x) =



0 if x ∈ G0 \
⋃
i≤n
⋃
j≤3(U0

n,i,j ∪ E0
i ),

0 if x ∈
⋃
i≤n

[
U0
n,i,2 ∪ (E0

i ∩ (G0 \ P0))
]
,

n if x ∈ U0
n,0,0 ∪ (E0

0 ∩ P0 ∩Q+),
−n if x ∈ U0

n,0,1 ∪ (E0
0 ∩ P0 ∩Q−),

1/(i+ 1) if x ∈ U0
n,i,3 for i ≤ n,

1/(i+ 1) if x ∈ U0
n,i,0 ∪ U0

n,i,1 for 0 < i ≤ n,
0 if x ∈

⋃
i≤n(E0

i ∩ P0 ∩Q1) if n is even,
1/(i+ 1) if x ∈ E0

i ∩ P0 ∩Q1 for i ≤ n if n is odd.

Then fn|G0 is quasi-continuous. In the same manner as before we can see
that
• P0 ∩Q+ = L+∞({fn|G0 : n ∈ N}),
• P0 ∩Q− = L−∞({fn|G0 : n ∈ N}),
• (fn(x))n diverges at each x ∈ P0 ∩Q1,
• G0 \ P0 = {x ∈ G0 : limn fn(x) = 0} = L({fn|G0 : n ∈ N}).
For G1 = (G1\P1)∪(P1∩(Q+∪Q−∪Q0)), where P1∪ fr (G1) ⊂

⋃
i∈N F 1

i ,
F 1
i are closed and nowhere-dense subsets of cl (G1) with F 1

0 ⊂ F 1
1 ⊂ ... ⊂

F 1
i ⊂ F 1

i+1 ⊂ ..., the construction is the following. Let E1
0 = F 1

0 and E1
i =
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F 1
i \F 1

i−1 for 0 < i ≤ n, A = G1\
⋃
i≤n
⋃
j≤3 U

1
n,i,j and B =

⋃
i≤n
⋃
j≤3 U

1
n,i,j .

Then

f2n|A(x) =



(−1)n if x ∈ G1 \
⋃
i≤n
⋃
j≤3(U1

n,i,j ∪ E1
i ),

(−1)n if x ∈
⋃
i≤n
[
E1
i ∩ (G1 \ P1)

]
,

n if x ∈
⋃
i≤n(E1

i ∩ P1 ∩Q+),
−n if x ∈

⋃
i≤n(E1

i ∩ P1 ∩Q−),
1 if x ∈

⋃
i≤n(E1

i ∩ P1 ∩Q0),

and

f2n|B(x) =


n if x ∈

⋃
i≤n U

1
n,i,0,

−n if x ∈
⋃
i≤n U

1
n,i,1,

1 if x ∈
⋃
i≤n U

1
n,i,2,

−1 if x ∈
⋃
i≤n U

1
n,i,3.

Put also
f2n+1|A = f2n|A and f2n+1|B = −f2n|B.

The quasi-continuity of function defined in such a way is clear. It is also
easy to verify that
• P1 ∩Q+ = L+∞({fn|G1 : n ∈ N}),
• P1 ∩Q− = L−∞({fn|G1 : n ∈ N}),
• P1 ∩Q0 = {x ∈ G1 : limn fn(x) = 1} = L({fn|G1 : n ∈ N}).
• (fn(x))n diverges at each x ∈ G1 \ P1.
What is left is to consider F =

⋃
s∈S fr (Gs) ⊂

⋃
s∈S F

s
0 . Since Gs are

pairwise disjoint regular open sets such that X =
⋃
s∈S cl (Gs), we have

fr (G1) ⊂ fr (G+) ∪ fr (G−) ∪ fr (G0). Then F ⊂ F+
0 ∪ F

−
0 ∪ F 0

0 ⊂
⋃
s∈S Qs.

Let

fn|F (x) =


n if x ∈ F ∩Q+,

−n if x ∈ F ∩Q−,
0 if x ∈ F ∩Q0,

n(−1)n if x ∈ F ∩Q1.

Putting fn =
⋃
s∈S fn|Gs ∪ fn|F we get a sequence of quasi-continuous func-

tions (notice that the quasi-continuity on F is ensured by sets U+
n,0,j , U

−
n,0,j ,

U0
n,0,j for j ≤ 2) satisfying all required conditions.
Now, consider an arbitrary dense in itself separable metric space X and

pairwise disjoint sets L+, L−, L0 ∈ Baire(X). Put L1 = X \(L0∪L+∪L−).
Then the sets L+∩X2, L−∩X2, L0∩X2 and L1∩X2 have the Baire property
in X2 and we can find (as before) a sequence {fn|X2 : n ∈ N} ⊂ RX2 of quasi-
continuous functions with L+ ∩ X2 = L+∞({fn|X2 : n ∈ N}), L− ∩ X2 =
L−∞({fn|X2 : n ∈ N}), L0 ∩X2 = L({fn|X2 : n ∈ N}).
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Take X1. By the Banach Category Theorem ([8, Theorem 16.1]), X1 is
an open set of first category in X, so X1 ⊂

⋃
n∈N Fn ⊂ cl (X1), where Fn

are nowhere-dense sets closed in X with Fn ⊂ Fn+1 for every n ∈ N. Fix
an n ∈ N. Let En = Fn ∪ fr (X1). Then En ⊂ cl (X1) is a nowhere-dense
closed subset of X and cl (X1) =

⋃
n∈NEn. By Lemma 4 there are pairwise

disjoint sets Sn0 , S
n
1 , S

n
2 , S

n
3 ⊂ X1 \ En such that:

(1) Sni ∈ SO(X) for any i ≤ 3;
(2) X1 \ En =

⋃
i≤3 S

n
i ;

(3) En ⊂ cl (Sni ) for any i ≤ 3.
Define fn|cl (X1) : cl (X1)→ R by

fn|cl (X1)(x) =


0 if x ∈ Sn0 ∪ (En ∩ L0),
(−1)n if x ∈ Sn1 ∪ (En ∩ L1),
n if x ∈ Sn2 ∪ (En ∩ L+),
−n if x ∈ Sn3 ∪ (En ∩ L−).

Then all functions fn|cl (X1) are quasi-continuous. Moreover, L+ ∩ cl (X1) =
L+∞({fn|cl (X1) : n ∈ N}), L− ∩ cl (X1) = L−∞({fn|cl (X1) : n ∈ N}) and
L0 ∩ cl (X1) = L({fn|cl (X1) : n ∈ N}).

Putting fn = fn|X2 ∪ fn|cl (X1) we get the sequence we claimed.

It turns out that for many well-known classes of functions containing QC
no additional assumptions are needed for three pairwise disjoint sets with
the Baire property to be of the form (1), (2) or (3). This is a consequence of
the next theorem, where the sequences of functions f : X → R with dense
open set of continuity points are considered. Denote the class of all such
functions by S. In other words,

f ∈ S ⊂ RX iff C(f) is an open dense subset of X.

Theorem 2. Let X be an arbitrary topological space. For any pairwise
disjoint sets L+, L−, L0 ⊂ X the following conditions are equivalent:

(i) L+, L−, L0 ∈ Baire(X);
(ii) there exists a sequence {fn : n ∈ N} ⊂ RX of Baire measurable func-

tions such that L+ = L+∞({fn : n ∈ N}), L− = L−∞({fn : n ∈ N})
and L0 = L({fn : n ∈ N});

(iii) there exists a sequence {fn : n ∈ N} ⊂ RX of functions with the dense
open set of continuity points such that L+ = L+∞({fn : n ∈ N}),
L− = L−∞({fn : n ∈ N}) and L0 = L({fn : n ∈ N}).

Proof. Since S ⊂ B, by Remark 1, the implications (iii)⇒(ii) and (ii)⇒(i)
are obvious. Therefore it is enough to construct a sequence satisfying (iii)
for fixed pairwise disjoint sets L+, L−, L0 ∈ Baire(X).
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First suppose that X is a Baire space. Let L1 = X \ (L0 ∪ L+ ∪ L−).
Then for every s ∈ S = {1, 0,+,−} we have Ls = (Gs \ Ps) ∪Qs, where Gs
is a regular open set, Ps, Qs ∈M(X), Ps ⊂ Gs and Qs∩Gs = ∅. Then X =⋃
s∈S cl (Gs) and Gs are pairwise disjoint sets. Moreover, Ps ⊂

⋃
n∈N F sn,

where F sn are closed, nowhere-dense subsets of cl (Gs) and F s0 ⊂ F s1 ⊂ ....
First we define {fn : n ∈ N} on each of Gs sets. Fix an n ∈ N and notice

that G+ = (G+ \ P+) ∪ (P+ ∩ (Q− ∪Q0 ∪Q1)). Define fn|G+ as follows:

fn|G+(x) =


n if x ∈ (G+ \ F+

n ) ∪ (F+
n ∩ (G+ \ P+)),

−n if x ∈ F+
n ∩ P+ ∩Q−,

0 if x ∈ F+
n ∩ P+ ∩Q0,

(−1)n if x ∈ F+
n ∩ P+ ∩Q1.

Then fn|G+ is constant on the open set G+ \F+
n and F+

n is nowhere-dense.
A trivial verification shows that
• G+ \ P+ = L+∞({fn|G+ : n ∈ N}),
• P+ ∩Q− = L−∞({fn|G+ : n ∈ N}),
• P+ ∩Q0 = L({fn|G+ : n ∈ N}),
• (fn(x))n diverges at each x ∈ P+ ∩Q1.

Similarly, we define

fn|G−(x) =


−n if x ∈ (G− \ F−n ) ∪ (F−n ∩ (G− \ P−)),
n if x ∈ F−n ∩ P− ∩Q+,

0 if x ∈ F−n ∩ P− ∩Q0,

(−1)n if x ∈ F−n ∩ P− ∩Q1,

fn|G0(x) =


0 if x ∈ (G0 \ F 0

n) ∪ (F 0
n ∩ (G0 \ P0)),

n if x ∈ F 0
n ∩ P0 ∩Q+,

−n if x ∈ F 0
n ∩ P0 ∩Q−,

(−1)n if x ∈ F 0
n ∩ P0 ∩Q1,

fn|G1(x) =


(−1)n if x ∈ (G1 \ F 1

n) ∪ (F 1
n ∩ (G1 \ P1)),

n if x ∈ F 1
n ∩ P1 ∩Q+,

−n if x ∈ F 1
n ∩ P1 ∩Q−,

0 if x ∈ F 1
n ∩ P1 ∩Q0.

Finally, let us consider a nowhere-dense set F =
⋃
s∈S fr (Gs) ⊂

⋃
s∈S Qs.

Put

fn|F (x) =


n if x ∈ F ∩Q+,

−n if x ∈ F ∩Q−,
0 if x ∈ F ∩Q0,

(−1)n if x ∈ F ∩Q1.
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Writing fn =
⋃
s∈S fn|Gs ∪ fn|F we get L+ = L+∞({fn : n ∈ N}), L− =

L−∞({fn : n ∈ N}), L0 = L({fn : n ∈ N}). Moreover, D(fn) ⊂
⋃
s∈S F

s
n ∪F

for any n ∈ N, so it is nowhere-dense. Consequently, C(f) is a dense subset
of X. Since fn has a finite range, C(f) is open.

Now, consider an arbitrary topological space X. Let X1 be the union
of all first category open subsets of X. Then X2 = X \ cl (X1) is an open
Baire subspace of X and the sets L+ ∩ X2, L− ∩ X2, L0 ∩ X2 and L1 =
X2\(L0∪L+∪L−) have the Baire property in X2, so we can find (as before)
a sequence {fn|X2 : n ∈ N} ⊂ RX2 of functions with finite ranges such that
L+ ∩ X2 = L+∞({fn|X2 : n ∈ N}), L− ∩ X2 = L−∞({fn|X2 : n ∈ N}),
L0 ∩X2 = L({fn|X2 : n ∈ N}) and D(fn|X2) is closed and nowhere-dense in
X2 for any n ∈ N.

Take X1. By the Banach Category Theorem, X1 is an open set of the
first category in X, so X1 ⊂

⋃
n∈N Fn ⊂ cl (X1), where Fn are nowhere-

dense sets closed in X with Fn ⊂ Fn+1 for every n ∈ N. Fix an n ∈ N.
Let En = Fn ∪ fr (X1). Then En is a nowhere-dense closed subset of X and
cl (X) =

⋃
n∈NEn. Define fn|cl (X1) : cl (X1)→ R by

fn|cl (X1)(x) =


n if x ∈ En ∩ L+,

−n if x ∈ En ∩ L−,
0 if x ∈ En ∩ L0,

(−1)n otherwise.

Note that fn|cl (X1) is constant on the open set X1 \ En. Moreover, L+ ∩
cl (X1) = L+∞({fn|cl (X1) : n ∈ N}), L−∩cl (X1) = L−∞({fn|cl (X1) : n ∈ N})
and L0 ∩ cl (X1) = L({fn|cl (X1) : n ∈ N}). Put fn = fn|cl (X1) ∪ fn|X2 . Then
C(fn) is open for any n ∈ N and D(fn) is a subset of D(fn|X2)∪En∪ fr (X1)
which is nowhere-dense in X. Consequently, {fn : n ∈ N} has all required
properties.

Remark 2. Theorem 2 holds for any class F ⊂ RX between S and B,
such as pointwise discontinuous functions (see [3], p. 74), simply continuous
functions (cf. [1, Lemma 1]), or cliquish functions (see [7]). Notice also
that these last two lie in-between QC and B (see [7]). As a corollary from
Theorems 1 and 2 we obtain an analogue of Hahn - Sierpiński theorem for
some subclasses of Baire measurable functions. For a family of functions
F ⊂ RX define

L(F) = {L({fn : n ∈ N}) : {fn : n ∈ N} is a sequence of functions from F} .

Then for any class F ⊂ RX such that S ⊆ F ⊆ B we have L(F) = Baire(X).
Moreover, if QC ⊂ RX , where X is a dense in itself separable metric space,
then L(QC) = Baire(X).
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Gdańsk University

Wita Stwosza 57

80-952 Gdańsk, Poland
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