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Abstract. The aim of the paper is to characterize those sets of points
at which sequence of real functions from a given class F converges as
well as sets of points of convergence to infinity of such sequences. As
F we consider quasi-continuous functions and some other subclasses of
Baire measurable functions.

The investigation of some sets determined by sequences of functions is
motivated by the well-known result due to Hahn and also Sierpiriski [9]
stating that a subset A of a Polish space X is of type F s iff there exists
a sequence {f,: n € N} € RX of continuous functions convergent exactly
at each point of A (see also [2, Theorem 23.18, p. 185]). It may be interest-
ing to find the analogous characterization of sets of convergence points for
sequences of functions from some other classes. In [10] the sequences of func-
tions of Baire class «, derivatives and approximately continuous functions
have been examined.
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Moreover, we can consider two other sets determined by a sequence of
functions, i. e. sets of points of convergence to plus or minus infinity, inves-
tigated by Lipinski [4] for sequences of continuous functions. The problem
we deal with in this paper is to find necessary and sufficient conditions
on three pairwise disjoint sets to be the set of convergence points, the set
of points of convergence to plus infinity and the set of points of conver-
gence to minus infinity, respectively, for some sequence of functions from
a given class. We investigate quasi-continuous functions (Theorem 1) as
well as some other subclasses of Baire measurable functions, e.g. cliquish,
pointwise discontinuous and simply continuous functions (Theorem 2 and
Remark 2).

Let us establish some notations. For a subset A of a topological space X
we denote by int (A), cl (4) and fr (A) the interior, closure and boundary of
A, respectively. For a metric space X, x € X and € > 0 let B(x, ) denote
an open ball centred at = with the radius e. Then B(A,¢) = J,c4 B(z,¢).

Throughout this paper the following abbreviations for some classes of sub-
sets of a topological space X are used:

SO(X) — the family of all semi-open subsets of X (SO(X) consists
of sets satisfying A C cl(int A));

Baire(X) — the collection of subsets with the Baire property:;
M(X) — the o-ideal of meager (first-category) subsets of X.

For f: X — R let C(f) be the set of all continuity points of f. Then
D(f) =X\ C(f).

A function f: X — R is said to be quasi-continuous iff for every p € X
and open sets U C X, W C R such that p € U and f(p) € W there
is a non-empty open set G C U such that f(G) C W (or, equivalently,
f~YV) € SO(X) for any open V C R, see e.g. [7, Theorem 1.1]).

Let QC C R¥ be the class of all quasi-continuous functions. Denote
also by B the class of Baire measurable real functions defined on X (i.e.
f € BcRXiff f~1(V) has the Baire property for any open V C R).

For a sequence {f,: n € N} C RX we consider the following sets:

(1) L{fa: neN}) ={z € X: (fu(z))n converges},
(2) Licw({fn:neN}) ={z € X: lim, f,(z) = +oo},
3) L_ow({fn:neN}) ={z € X: lim, fr(z) = —oo}.

Remark 1. For any sequence {f,: n € N} ¢ RX

o f/<{ff n € N}) = nmeNUneNmkeN{x € X: |fogr(z) = fulz)] <
o Lioo({fu:n €N} = Mo Upers Moo {5 € X3 fu(@) > m};
* Lo({fn:n €N}) =Nen Upen ﬂnzk{l’ € X: falz) < —m}.
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By Remark 1 it is easy to see that in the case of continuous real func-
tions {f,: n € N} defined on a metric space X both Lio({fn: n € N})
and L_oo({fn: n € N}) are Fys sets in X. But then Lyi({fn: n € N}) C
Uren Nusiiz € X fu(z) > 1} and Looo({fn: 7 € N}) C UpenMNusilz €
X: fo(z) < =1}, 80 Lyso({fn:n € N}) and L_({fn: n € N}) are sepa-
rated by two disjoint F, sets in X. The theorem proved by Lipinski (see [4])
for sequences of continuous real functions defined on R states that the above
necessary condition is also sufficient, i.e.

for any F,s sets Ly, Lo C R separated by two disjoint F, sets there
exists a sequence {f,: n € N} C R® of continuous functions such that
Li=Lic({fn:neN})and Ly = L_o({fn: n € N}).
A similar characterization of triple (1), (2) and (3) has been achieved by
Lunina (see [5]) for sequences of continuous real functions on a metric space.

First, we will show some necessary conditions on sets to be of the form
(1), (2) or (3) for a sequence of quasi-continuous functions.

Lemma 1. For any sequence {f,: n € N} C RX of quasi-continuous func-
tions Ly = Lis({fn: n € N}) € Baire(X). Moreover, if X is a Baire
space and
(4) Ly = (G4+ \ P+)UQ4, where G4 is a regular open set, P,Q+ € M,
P+CG+ andQ+ﬂG+:®,
then By = {z € G4 : lim, fr(x) < M} is nowhere-dense for every M > 0.

Proof. Since SO(X) C Baire(X), any quasi-continuous function has the
Baire property, so the first statement of Lemma 1 is obvious by Remark 1.
Let Ly be asin (4). Fix M > 0, an open set U C G4 and = € U\ Py. Then
x € Lioo({fn: n € N}), so there is a positive integer n, such that for every
m > n, we have f,,(x) > M. Consequently, since X is a Baire space, there
is n € N such that A, = {z € U: ny = n} is of second category. Hence we
can find a non-empty open set V' C U such that A,, is dense in V. We will
show that V' N By; = 0. Fix z € V and m > n. Then f,,(z) > M, because
otherwise, by the quasi-continuity of f,, at x, there is a non-empty open
set G C V such that f,,(t) < M for any ¢ € G. Thus G N A,, = (), which
is impossible because A,, is dense in V. Therefore lim, f,(z) > M for any
x € V, which finishes the proof. O

Similar arguments apply to the next two lemmas.

Lemma 2. For any sequence {f,,: n € N} C RX of quasi-continuous func-
tions L = L_so({fn: n € N}) € Baire(X). Moreover, if X is a Baire
space and
(5) L = (G- \ P-)U@Q_, where G_ is a regular open set, P_,Q_ € M,
P CcG_and Q_NG_ =10,
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then Dy = {x € G_: lim,, f,,(z) > M} is nowhere-dense for every M < 0.

Lemma 3. For any sequence {f,,: n € N} C RX of quasi-continuous func-
tions Ly = L({fn: n € N}) € Baire(X). Moreover, if X is a Baire space
and
(6) Lo = (Go \ Po) U Qo, where Gy is a regular open set, Py,Qo € M,
Py C Gy anonﬂGozm,
then Go N Liooc({fn:n € N}) and Go N L_o({fn: n € N}) are nowhere-
dense.

Moreover, the following modification of [6, Lemma 1] will be useful.

Lemma 4. Let (X,d) be a dense in itself separable metric space. If for
fized k € N the sets Fy, F1, ...Fy are nowhere dense closed subsets of cl (U),
where U is an open subset of X, with Fy C Fy C ... C Fy, then for every
e > 0 we can choose a collection {Uy; j: i < k,j < 3} of semi-open subsets
of X such that

1 Ukij NUkym = 0 for (k,i,7) # (k,l,m),

2. Ui CUNB(F;e)\ Fy, for every i <k and j < 3,

3. F; C cl(Uk,y) for everyi <k and j <3,

4. U\ U<k Uj<3 Ukyij is semi-open.

Proof. We will prove the lemma for k = 1, just for the sake of simplicity.
Denote by O = {B,,: n € N} an open basis of X. For n € N let W,, =
B(Fi,e/2"). Then Fy = (,cn Wa- Let {Gn:n e N} ={G e O: GNF #
()}. For each n € N we choose inductively a non-empty open set K, with
c(Kn) cUNW,NGR\ (FLUU,., el (K5)). We have
(i) el (Kn)NFy =0 for all n € N and ¢l (K,,) Necl (K,,) =0 for n # m,
(ii) for every = € F} and its open neighbourhood V' there exists an n € N
such that cl (K,,) C V,
(iii) for every x ¢ F} there exists an open neighbourhood V' of = such that
the set {n € N: cl(K,) NV # 0} has at most one element.

We see at once that (i) and (ii) hold, so we will verify (iii). Fix an = ¢ F7.
Then there exist an ng € N and an open Vj with = € V{ such that VonW,,, =
(). Clearly, cl(K,) N Vy = 0 for all n > ng. Thus it is enough to take
V =Vo\ Upcp L (En) if 2 & U,y L (En) or V= Vo \ U, cpng nzm €L (Kn)
if x € cl(K,,) for some unique m < ng.

Fix an n € N and choose five non-empty open sets {K,, ;: j =0,1,...,4}
such that
(iv) cl(Ky ;) C Ky and cl (K j) N el (Kp ) = 0 for j # m.
For each j < 4 define the semi-open set Uy ; = [J, eyl (Kn, ;). It follows
that
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1. Ul,j N U17m = () for J 75 m,

2. U17j cUn B(F1,€) \F1 for every j < 4,
3. F1 C cl(Uy) for every j <4,

4. Z =U\U;j<3 U1, is semi-open.

Of course, 1-2 hold and 3 is a consequence of (iii), so it suffices to verify 4.
Fix an z € Z. We will show that x € cl (int Z). First, take an x € F1NU and
an arbitrary neighbourhood V' of z. By (ii) and (iv) there is an n € N such
that cl (Kp,4) C V. Since cl(Kp4) C Urg C Z, we have V Nint (Z) # 0,
so z € cl(int Z). By (iii) and (iv), for x € Z \ F} there exists an open
neighbourhood V' of x such that the set A = {(n,j): cl (K, ;) NV # 0} has
at most one element. If A =0, then x € UNV C Z, so z € cl(int Z). If
A = {(no, jo)}, we have two cases.

o If z € cl(K,,,j,), then of course jo = 4 and cl (K,
UNV C Z,sox €cl(int Z).

o If 2 & cl(Kyyj), then z € Vo = U NV \ cl (K, ). Since Vp is a
non-empty open subset of Z, we have x € cl(int Z).

Now, take a semi-open set Z = U \ J;<3U1;. For n € N let S, =
B(Fy,e/2") N Z. Then S, is a non-empty semi-open subset of X. Let
{Op:neN}={0 € O: ONFy # 0}. For each n € N we choose non-empty
open subsets Ly, of Z with cl(Ly) C S, N Oy, \ (F1 U U, ¢l (L;)), which is
possible because S, N O, \ (F1 U, ,, cl(L;)) is a non-empty semi-open set.
We have

(v) el (L,) N Fy =0 for all n € N and ¢l (L,) Ncl (Ly,) = 0 for n # m,
(vi) for every x € Fy and its open neighbourhood V' there exists n € N
such that cl (L,) C V,
(vii) for every = ¢ F) there exists an open neighbourhood V' of x such that
the set {n € N: cl(L,) NV # ()} has at most one element.

Obviously, (v) and (vi) hold. The proof of (vii) is similar to that of (iii).
Fix an n € N and choose five non-empty open sets {L, ;: j =0,1,...,4}
such that
(viii) ¢l (Ly, ;) C Ly, and cl(Ly, ;) Nl (Ly;) = 0 for j # .
For each j < 4 define a semi-open set Up; = |J,cncl(Ln,j). We apply
similar arguments to those in the proof of 1-4 to obtain
5. U(),j N U07m = () for j # m and U()’j cU \ Um§3 Ul,m for every j < 4,
6. Up; C UNB(Fy,e)\ Fy for every j <4,
7. Fy C cl(Up) for every j <4,
8. Zo = U\ U;<1 Uj<3 Ui, is semi-open.
Putting Uy ;; = U; j fori = 0,1 and j = 0,1, 2,3 we get a required collection
of semi-open sets. O

) C Z. Thus

O7.j0
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Theorem 1. Let (X,d) be a dense in itself separable metric space. Denote
by X1 the union of all first category open subsets of X. Let Xo = X \cl (X1).
For every pairwise disjoint sets Lo, Ly, L_ C X the following conditions are
equivalent:
(i) Ly, L_, Ly € Baire(X) and for any s € {0,+,—} we have Ly N Xy =
(Gs \ Ps) UQs, where G, Ps,Qs C X2 and
(1) Gs is a regular open set;
(2) Po.Qu € M(X);
(3) Ps C Gs and Qs NG5 = 0;
(4) PrNQ-, P-NQ+, PhNQ—_, PhN Q4+ are nowhere-dense;
(ii) there exists a sequence {f,: n € N} C RX of quasi-continuous func-
tions such that Ly = Lioo({fn:n € N}), L = L_o({fn: n € N})
and Lo = L({fn: n € N}).

Proof.  The implication (ii)=(i) is a consequence of Lemmas 1-3, be-
cause for any sequence {f,: n € N} C R¥X of quasi-continuous functions
all functions f,|x, are quasi-continuous, the sets Ls N Xo € Baire(Xs)
for s € {0,+,—} and, in consequence (see e.g. [8]), can be represented
in the form Ly N X9 = (G5 \ Ps) U Qs with Gy, Ps, Qs satisfying (1)—(3).
Since X is a Baire space, G4 are pairwise disjoint sets and Py N Q_ =
G N L({fnlxy:n € N}), P-N Q4 = G- N Lysc({fnlx,: n € N},
PnQ- = GomLfoo({fn’XQ: ne N})a POmQJr = GOHL+OO({fTL|X2: ne N})
are nowhere-dense, by Lemmas 1-3.

The proof of (i)=-(ii) consists in the construction of the required sequence.
First suppose that X is a Baire space and Ly, L_, Ly € Baire(X) are as in
(i) for Xo = X. Let L1 = X \(LoUL4yUL_). Then L; € Baire(X), so there
are sets G, P1, Q1 such that Ly = (G1 \ P;) U@ and Gj is a regular open
set, P;,Q1 € M, P, C Gy and Q1 NGy = 0. Let S = {1,0,+,—}. Since
X is a Baire space, X = [J,cgcl(Gs) and G are pairwise disjoint sets. Fix
an s € S. Then P, Ufr(G,) € M, so P, Ufr(Gs) C ey Fy» where FY
are closed and nowhere-dense subsets of cl (Gs). Moreover, we can assume
that F§ C Ff C .. C Ff C Ffy C .., PyNQ_ C F, P-NQ4 C Fy,
(PoNQ-)U(PyNQ+) C FY and also fr (Gs) C F§ (all sets considered here
are nowhere-dense by assumption).

Fix an n € N. By Lemma 4 there exists a collection {U;]
of semi-open subsets of X such that

LU iNUp = 0 for (n,i,7) # (n,k,1),

R i<n,j <3}

2. Uﬁ:jj C (GsNB(F?,1/2™)) \ F;; for every i <mn and j < 3,
3. F7 Ccl(Uy,; ;) for every i <m and j < 3,

4. Gs\ U;<nUj<3 Uy, ; ; is semi-open.
Define {f,,: n € N} on each of G sets. First, take G4 = (G4 \ Py+)U(Py N
(Q-UQoUQ1)). Then Py Ufr (Gy) C U;en F™, where F;' are closed and
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nowhere-dense subsets of ¢l (G4) with Fj” C Fi" C ... C F;¥ C Fj}, C..
Moreover, P N Q_ and fr(G) are subsets of Fj + Let EJr By and
Ef = FJr \ F:T, for 0 <i < n. Define fy|c, as follows

n ifze G+\Ui§n UjSS(Urjz] UE+)
if € Uicp, {U:,z',o U (BN (G \ Py))|,
—n  ifz el U(Ef NPLNQ-),

i ifl’eU,;::i’zu(Eij+ﬂQ0) for i < mn,
folay (@) = 4 if v €U, for 0 < i <n,
i if 2 € U5 U (B NP NQy)

for i <n, and n is even,
i+1 ifzeUf;U(Ef NPLNQ)
for i <n, and n is odd.

\
We see at once that f,|q, is quasi-continuous because

e it is constant on each of semi-open sets UTJ[ i

e it is constant on G4 \ U, Ujg,)(U:[” U E+) where
G+ \ UicnUj<s U;{,m- is semi-open and J;<,, Et = FF is nowhere-
dense,

e for every i < n and = € E; there is j < 3 such that E;" C (U, .)

n,%,]
and fu|a, (%) = falg, (t) for any t € U;r”
Let us verify the convergence. Namely,

o if z € P, NQ_ then f,(x) = —n for every n, so lim,, f,(x) = —oo,
e if v € Py NQp then z € E; for unique i and f,,(z) = i for every n > i,
which means that lim,, fn( ) =1,
e if v € PLNQ; then z € E;" for unique i and for every n > i f,,(z) =i
if nis even or fu(x) =i+ 1if nis odd , so (fn(x)), diverges,
e ifx € (G4 \ Py)NUjen E; then z € EJr for unique i and f,(z) =n
for every n > i, so lim, f,(z) = +o0,
o for v € (G4 \P+) \ Ujen E;" we have two cases.
Case 1: There is k € N such that z is an element of none of U: ;; sets for
n > k. Then lim, f,(x) = +oo because fy,(z) = n for every n > k.
Case 2: Consider the sequence {UT meingn | & € N} of sets containing z.
Then {ix: k € N} goes to infinity, because otherwise it contains a
constant subsequence, which means that x belongs to the infinitely

many sets of the form U;fk ioge C B(Fz-'g,l/2"k). Consequently,
x € Fg, which is impossible. Since f,(z) is equal to one of the

numbers n, i, i+ 1 for n large enough, we have lim,, f,,(x) = 4o0.
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For G_ = (G_\ P_)U(P-N(Q+UQoUQ1)) the construction is similar.
Let E, = F, and E; = F; \ F,_, for 0 <i < n. Then

-n if € G-\ U<, Ujes(Uy; ;U ET),
-n ifr e, [U_,i,l U (B N(G-\ P—))} ;

n

n fzelU,ooU(Ey NP-NQ4),
fala_(x) = —i ifzeU,,;,U(E NP-NQo) for i <n,
—1 ifaceUn_’i’0 for 0 < i < n,
—i ifzeU,,;3U(E NP-NQE)fori <nif nis even,

(—i—1 ifer;mU(Ei_ﬂP_ﬁQl) for < n if n is odd.

Then we have

P NQs = L+oo({fn’G, ne N})7
P_NQo=L{{fnlg_:n €N}),
(fn(z))n diverges at each z € P_ N Q1,

G_\P_.=L_{folg_:neN}).

Now, take Gy = (Go \ Po) U (Po N (Q+ Uu@_uU Ql)) Then Py U fr (Go) C
Usen FY, where F? are closed and nowhere-dense subsets of cl(Go) with
Fé) cCFlc..c FZ-O C FiOH C..and PBhNQ+, PhNQ—, fr (Gp) subsets of
F{. Let E) = FY and EY = F? \ F? ;| for 0 < i < n. Define f,|g, by the
formula

(0 if € Go\ U;j<p UjSS(Ug,i,j UE),
if €U, [Ug,i,z U (E) N (Go\ Po))|,

n if 2 € UYooU(E§NPyNQY),

_ . 0 0

1/(i+1) ifzxe U27iy3 for i <mn,

1/(i+1) ifzeUd UUY. for 0 < i <mn,

0 if 2 € Ui, (B N PyN Q1) if n is even,
1/(i+1) ifzeE9NPNQ for ¢ <mn if n is odd.

Then fy|g, is quasi-continuous. In the same manner as before we can see
that

PoNQy = Lico({falge: n € N}),

PonQ- =L_({fulgy: n € N}),
(fn(x)), diverges at each z € Py N Q1,

Go \ Py = {xz € Go: lim, fp(x) =0} = L{ fnlg,: n € N}).

For G1 = (Gl \Pl) U(Pl ﬂ(Q+UQ_ UQ())), where P; Ufr (Gl) C UiEN Fl-l,
F! are closed and nowhere-dense subsets of ¢l (G;) with Ff C F} C ... C
F! c F., C ..., the construction is the following. Let E} = Fj and E} =
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FIN\FL for0<i<n, A=Gi\Ujc,Ujc3Un,jand B = U, Uj<3Un ;i ;-
Then
( ()" freGr) Uign Ung(UTlL,i,j UE}),

(=)™ ifz e U, [Bf N (G \ P1)],

n if x e Ui;n(E}ﬂP1DQ+),
-n ifre Ui;n(EilﬂPlﬂQ,),
1 if 2 € U, (B} N PL0 Qo).

fon|a(z) =

and
n ifz e Uign U71L7i70,
—n if 2 € Ui, Upjins
1 ifzx e Uz‘gn Uﬁhi?g,
-1 ifz e, Unis
Put also

font1la = fonla and  fony1|p = —fonlB-

The quasi-continuity of function defined in such a way is clear. It is also
easy to verify that

e PINQ+ = Ly({/fnlc,: n € N}),

e PNQ- = Lfoo({fn|G1: ne N})a

o PPNQo={r € G: lim, fr(x) =1} = L{ fnlg,: n € N}).

o (fn(z))n diverges at each z € G1 \ Pi.

What is left is to consider F' = (J,cqfr (Gs) C Useg Fpy- Since G are
pairwise disjoint regular open sets such that X = (J,c.qcl(Gs), we have
fr(G1) C fr (G4) Ufr (G-) Ufr (Go). Then F C Fyf UF, UFY C Uzeg @s-
Let

n ifIEFﬂQ+,
-n ifee FNQ_,
0 if z € FNQo,

n(-1)" ifze FNQ;.

Putting f,, = U,cg fnla. U fnlF We get a sequence of quasi-continuous func-
-

tions (notice that the quasi-continuity on F is ensured by sets U 1.0,

n,0,7°
U2707 jfor j < 2) satisfying all required conditions.

Now, consider an arbitrary dense in itself separable metric space X and
pairwise disjoint sets L4, L_, Lo € Baire(X). Put L1 = X\ (LoUL;UL_).
Then the sets Ly NXy, L_NXs, LoNXy and L1N X5 have the Baire property
in X5 and we can find (as before) a sequence { f,|x,: n € N} € RX2 of quasi-
continuous functions with Ly N Xo = Licc({fnlx,:n € N}), LN Xy =

Loo({fnlxy: n € N}), Lo N X2 = L({fulx,: n € N}).
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Take X;. By the Banach Category Theorem ([8, Theorem 16.1]), X is
an open set of first category in X, so X1 C U, ey Fn C cl(X1), where F,
are nowhere-dense sets closed in X with F,, C Fj,41 for every n € N. Fix
ann € N. Let E, = F, Ufr(X;). Then FE, C cl(X;) is a nowhere-dense
closed subset of X and cl (X1) = |J,,cyy En- By Lemma 4 there are pairwise
disjoint sets S, ST, 5%, 55 C X1\ Ey such that:

(1) S e SO(X) for any i < 3;

(2) Xy \ By = Uigs 5%

(3) Ey, Ccl(S]') for any i < 3.
Define fp|q(x,): cl(X1) — R by

0 if x € S§ U (E, N Ly),

(=)™ ifxeSTU(E,N L),
fn’cl(Xﬂ(x) = . 11

n if x € SPU(E,NLy),

-n ifxeSYU(E,NL-).

Then all functions f,[c(x,) are quasi-continuous. Moreover, Ly Ncl (X;) =
Licw({falay:n € N}), Lo Nel(Xh) = Looo({fnlax,): n € N}) and
Lo nel(X1) = L{ fala(x,): n € N}).

Putting fn, = fulx, U fula(x,) we get the sequence we claimed. O

It turns out that for many well-known classes of functions containing OC
no additional assumptions are needed for three pairwise disjoint sets with
the Baire property to be of the form (1), (2) or (3). This is a consequence of
the next theorem, where the sequences of functions f: X — R with dense
open set of continuity points are considered. Denote the class of all such
functions by S. In other words,

f eS8 cRYiff O(f) is an open dense subset of X.

Theorem 2. Let X be an arbitrary topological space. For any pairwise
disjoint sets Ly, L_, Lo C X the following conditions are equivalent:
(i) Ly, L_, Loy € Baire(X);
(ii) there exists a sequence {fn,: n € N} C RX of Baire measurable func-
tions such that Ly = Lio({fn:n € N}), L = L_({fn: n € N})
and Lo = L({fn: n € N});
(iil) there exists a sequence {fn: n € N} C RX of functions with the dense
open set of continuity points such that Ly = Lic({fn:n € N}),
L_=L_o({fn:neN}) and Lo = L({fn: n € N}).

Proof. Since § C B, by Remark 1, the implications (iii)=-(ii) and (ii)=(i)
are obvious. Therefore it is enough to construct a sequence satisfying (iii)
for fixed pairwise disjoint sets Ly, L_, Ly € Baire(X).
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First suppose that X is a Baire space. Let L1 = X \ (Lo U Ly UL_).
Then for every s € S ={1,0,+, —} we have L; = (G5 \ Ps) U Qs, where G
is a regular open set, Ps, Qs € M(X), P; C Gy and QsNGs = (). Then X =
Usegcl(Gs) and G are pairwise disjoint sets. Moreover, P C |,y Frrs
where F}; are closed, nowhere-dense subsets of cl (G) and Fjj C F} C ....

First we define {f,: n € N} on each of G, sets. Fix an n € N and notice
that G4 = (G4 \ P1) U (P N(Q-UQoUQ1)). Define f,|q, as follows:

no itz (G \FEHUFE NG\ Py)),
-n ifre FFNPrNQ-_,

fulg (@) = o€y
0 itz € F7 NP NQo,

(=)™ ifzeF NP.NQ.

Then f,|g, is constant on the open set G4 \ F, and F| is nowhere-dense.
A trivial verification shows that

G\ Pp = Lios({fnle,: n €N},
PLNQ-= L—OO({fn|G+: n e N})v
PN Qo= L{fnlg,:n €N},
(fn(z))n diverges at each z € Py N Q1.

Similarly, we define

—-n ifee(Go\F,)U(F, Nn(G_\ P-)),

n ifee F, NP_-NQ4,
fola_(z) = . "
0 ifxe F, NP_NQo,
(=)™ ifzxeF, NP_-NQ,
0 if 2 € (Go\ Fy) U (FY N (Go \ P)),
n ifre FONPyNQy,
fn|G0(1') = . 0 "
-n ifee F,NPhNQ_,
(=)™ ifxe FS NP NQq,
(-1 ifz € (G1\F,)U(Fyn(Gi\ 7)),
n ifze FInPNQy,
faley (%) = . 1
—n ifee FNPLNQ_,
0 ifl'EF%ﬁPlﬂQo.

Finally, let us consider a nowhere-dense set F' = | J,cgfr (Gs) C Useq @s-
Put

n ifxe FNQ4,

-n ifre FNQ_,
fulr(z) = .

0 if z € FNQo,

(-)" ifzeFNQ.
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Writing f,, = Uges‘ fale, U falp we get Ly = Lio({fn:n € N}), Lo =
L_o({fn:neN}), Lo = L({fn: n € N}). Moreover, D(f,) C Useg Fyy UF
for any n € N, so it is nowhere-dense. Consequently, C'(f) is a dense subset
of X. Since f, has a finite range, C(f) is open.

Now, consider an arbitrary topological space X. Let X; be the union
of all first category open subsets of X. Then Xy = X \ ¢l (X7) is an open
Baire subspace of X and the sets Ly N X9, L_ N X3, Lo N X2 and L; =
X2\ (LoUL4+UL_) have the Baire property in X, so we can find (as before)
a sequence {fn|x,: n € N} C R*2 of functions with finite ranges such that
LyNnXy = L+OO({fTL‘X2: n < N})v L-NXy; = L—OO({fn’X2: n < N})v
LoN Xy = L({fnlx,: n € N}) and D(f,|x,) is closed and nowhere-dense in
Xy for any n € N.

Take X;. By the Banach Category Theorem, X; is an open set of the
first category in X, so X1 C J, ey Fn C cl(X1), where [}, are nowhere-
dense sets closed in X with F,, C Fj,41 for every n € N. Fix an n € N.
Let E,, = F, Ufr (X;). Then E, is a nowhere-dense closed subset of X and
cl (X) = U,en En- Define fyla(x,): cl(X1) — R by

n if.’L'GEnmL'i"

f‘ () -n itre EB,NL_,
x p—

nlcl(X1) 0 ifx € Bp,N Ly,

(=1)™ otherwise.

Note that f,[c(x,) is constant on the open set Xi \ E,. Moreover, Ly N
l(X1) = Lyso({fnla(xy): n €N}), L_Nel (X1) = Loso({fula1(x,): m € N})
and LoNecl(X;) = L({fn|cl(X1)5 n € N}). Put f, = fn|c1(X1) U fnlx,. Then
C(fr) is open for any n € N and D(f,) is a subset of D(f,|x,)UE,Ufr (X;)
which is nowhere-dense in X. Consequently, {f,: n € N} has all required
properties. O

Remark 2. Theorem 2 holds for any class F C RX between S and B,
such as pointwise discontinuous functions (see [3], p. 74), simply continuous
functions (cf. [1, Lemma 1}), or cliquish functions (see [7]). Notice also
that these last two lie in-between QC and B (see [7]). As a corollary from
Theorems 1 and 2 we obtain an analogue of Hahn - Sierpinski theorem for

some subclasses of Baire measurable functions. For a family of functions
F C RX define

L(F)={L{fn: neN}): {fn: n € N} is a sequence of functions from F}.

Then for any class F C R¥ such that S C F C B we have £L(F) = Baire(X).
Moreover, if QC € RX, where X is a dense in itself separable metric space,
then £(QC) = Baire(X).
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