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Abstract. We examine functions of two variables whose all vertical
sections are equiderivatives. In particular we show that a bounded
function whose horizontal sections are strongly measurable and vertical
sections are equiderivatives, is strongly measurable. The theorems we
prove are generalizations of the results of Z. Grande [3].

Let R and N denote the real line and the set of positive integers, respec-
tively. Let (X,M) be a measurable space and let I ⊂M be a proper σ-ideal
of subsets of X. Assume that Z is a Banach space.

Let h : X → Z. Recall that h is measurable, if h−1(U) ∈ M for every
open set U ⊂ Z. In [2], I introduced the following two kinds of measura-
bility of a function. We say that h is nearly simple, if there exist elements
α1, α2, . . . ∈ Z and a sequence of pairwise disjoint sets A1, A2, . . . ∈M such
that h = αn on An for each n, and X =

⋃∞
n=1An. We say that h is strongly

measurable with respect to (M, I), if there exists a sequence of nearly simple
functions (hn) and a set A ∈ I such that hn → h on X \A.
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Remark 1. Clearly Bochner integrable functions are strongly measurable,
because they are pointwise limits of sequences of simple functions. Moreover
strongly measurable functions are measurable. Easy examples show that the
converse implications do not hold.

Remark 2. Usually in functional analysis (see, e.g., [6]) one considers a
different kind of strong measurability, namely one assumes that there exists
a sequence of simple functions (hn) (i.e., measurable functions with finite
range) and a set A ∈ I such that hn → h on X \A. If we can find a σ-finite
measure on (X,M), then these two notions coincide.

We will need the following property of strongly measurable functions.

Proposition 1. Let h : X → Z be strongly measurable with respect to (M, I).
Then

for each ε > 0 and each A ∈M \ I there is a set B ∈M \ I with
B ⊂ A such that oscB h < ε,(1)

where oscB h = sup
{
‖h(x)− h(y)‖ : x, y ∈ B

}
.

Proof. Let ε > 0 and A ∈ M \ I. By [2, Corollary 3], there is a set S ∈ I
such that h(X \S) is a separable subspace of Z. So, there are z1, z2, . . . ∈ Z
such that

h(X \ S) ⊂
⋃∞
n=1Kn,

where Kn =
{
z ∈ Z : ‖z − zn‖ < ε/3

}
. Thus

A = (A ∩ S) ∪
⋃∞
n=1
(
A ∩ h−1(Kn)

)
.

Since A /∈ I, there is an n ∈ N such that B = A ∩ h−1(Kn) /∈ I. Clearly
B ∈M and oscB h ≤ 2ε/3 < ε.

Remark 3. Recall that if condition (ccc) is fulfilled in (X,M, I) (i.e., if
each family of pairwise disjoint elements of M\I is at most countable), then
condition (1) implies the strong measurability of h. (See [2, Proposition 6].)

Through the article we fix a triple (X,M, I) as above and a Banach
space Z. We assume that condition (ccc) is fulfilled in (X,M, I).

Let (Y,N, ν) be a measure space. We will consider the product σ-ideal Ĩ
(the family of all subsets of the sets of the form A × Y , where A ∈ I) and
the product σ-field M⊗N (the smallest σ-field containing the σ-ideal Ĩ and
the family of all sets of the form M ×N , where M ∈M and N ∈ N).

We assume that we have a net structure J in (Y,N, ν) (see, e.g., [1]).
Recall that a net in Y is an at most countable cover of Y consisting of
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pairwise disjoint measurable sets of positive finite measure. The individual
sets in the net are called cells. The family J =

⋃∞
n=1 Jn, where each Jn is a

net, is called a net structure. Observe that for each y ∈ Y and n ∈ N, there
is a unique cell from the net Jn which contains y. We will denote this cell
by Jn(y). Several examples of net structures can be found, e.g., in [4] or [5].

A function g : Y → Z is called a derivative (with respect to the net
structure J), if g is Bochner integrable over each J ∈ J and for each y ∈ Y ,

lim
n→∞

1
ν
(
Jn(y)

) ∫
Jn(y)

g = g(y).

Let F ⊂ ZY be a family of Bochner integrable functions. We say that
the functions in F are equiderivatives at a point y ∈ Y (with respect to the
net structure J) [3], if for each ε > 0 we can find an N ∈ N such that for all
n > N and f ∈ F , ∥∥∥ 1

ν
(
Jn(y)

) ∫
Jn(y)

f − f(y)
∥∥∥ < ε.

We will say that a family A ⊂ J has property (V) in a set J , if for each
y ∈ J and each n ∈ N, there is an m > n with Jm(y) ∈ A. We define the
following property, pertaining to a net structure J:

for each J ∈ J, each family A ⊂ J which possesses property (V)
in J , and each ε > 0, we can choose pairwise disjoint sets
A1, . . . , Ak ∈ A such that ν

(
J4

⋃k
i=1Ai

)
< ε.

(2)

This property is a generalization of the Vitali property for intervals in Rm.

Example 1. Let J =
⋃
n∈N Jn, where Jn denotes the family of all intervals

of the form [ i1 − 1
2n

,
i1
2n
)
× · · · ×

[ im − 1
2n

,
im
2n
)
,

where i1, . . . , im are integers. Then J possesses property (2).

Theorem 2. Assume that J possesses property (2). Let g : X × Y → Z be
a bounded function, whose all horizontal sections gy are strongly measurable
with respect to (M, I), while all vertical sections gx are equiderivatives at
each y ∈ Y . Then g is strongly measurable with respect to

(
M⊗N, Ĩ

)
.

Proof. Let M ∈ R be such that ‖g(x, y)‖ < M for each (x, y) ∈ X × Y .
Let J ∈ J. Define a function hJ : X → Z by hJ(x) =

∫
J gx. We will use

Remark 3 to show that hJ is strongly measurable with respect to (M, I).
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Fix ε > 0 and A ∈M \ I. Since the vertical sections of g are equideriva-
tives, for each y ∈ Y there is an N(y) ∈ N such that for all n > N(y) and
x ∈ X, ∥∥∥ 1

ν
(
Jn(y)

) ∫
Jn(y)

gx − gx(y)
∥∥∥ < ε

16ν(J)
.

Clearly the family A =
{
Jn(y) : y ∈ J, n > N(y)

}
possesses the property (V)

in J . By assumption (2), we can choose y1, . . . , yk ∈ J and n1, . . . , nk ∈ N
such that the cells Jn1(y1), . . . , Jnk(yk) are pairwise disjoint, ni > N(yi) for
each i, and

ν(K ∪ L) < min
{ ε

4M
,ν(J)

}
,

where

K = J \
⋃k
i=1 Jni(yi), L =

⋃k
i=1 Jni(yi) \ J.

Recall that all sections gyi are strongly measurable. So, using k times
Proposition 1 we can find a set B ∈ M \ I with B ⊂ A such that for all
v, w ∈ B and i ∈ {1, . . . , k},

‖gyi(v)− gyi(w)‖ < ε

8ν(J)
.

Consequently, for all v, w ∈ B,

‖hJ(v)− hJ(w)‖ =
∥∥∥∫

J
gv −

∫
J
gw

∥∥∥ =
∥∥∥∫

J
(gv − gw)

∥∥∥
=
∥∥∥ k∑
i=1

∫
Jni (yi)

(gv − gw) +
∫
K

(gv − gw)−
∫
L

(gv − gw)
∥∥∥

≤
k∑
i=1

∥∥∥∫
Jni (yi)

(gv − gw)
∥∥∥+

∫
K∪L
‖gv − gw‖

≤
k∑
i=1

∥∥∥∫
Jni (yi)

(
gv − g(v, yi)

)∥∥∥+
k∑
i=1

∥∥∥∫
Jni (yi)

(
g(v, yi)− g(w, yi)

)∥∥∥
+

k∑
i=1

∥∥∥∫
Jni(yi)

(
g(w, yi)− gw

)∥∥∥+ 2M
ε

4M
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≤
k∑
i=1

ν
(
Jni(yi)

)∥∥∥ 1
ν
(
Jni(yi)

) ∫
Jni (yi)

gv − gv(yi)
∥∥∥

+
k∑
i=1

∫
Jni (yi)

∥∥g(v, yi)− g(w, yi)
∥∥

+
k∑
i=1

ν
(
Jni(yi)

)∥∥∥ 1
ν
(
Jni(yi)

) ∫
Jni (yi)

gw − gw(yi)
∥∥∥+

ε

2

≤
k∑
i=1

ν
(
Jni(yi)

)( ε

16ν(J)
+

ε

8ν(J)
+

ε

16ν(J)

)
+
ε

2

= ν
(⋃k

i=1 Jni(yi)
) ε

4ν(J)
+
ε

2

≤ ν(J ∪ L)
ε

4ν(J)
+
ε

2
≤ ε

4
+ ν(L)

ε

4ν(J)
+
ε

2
< ε.

We have proved that hJ fulfills condition (1). By Remark 3, hJ is strongly
measurable with respect to (M, I). Now repeating the last part of the proof
of [2, Theorem 7] we can show that g is strongly measurable as well.

Corollary 3. Assume that J possesses property (2). Let f : X ×Y → Z be
a bounded function, whose all horizontal sections fy are strongly measurable
with respect to (M, I). Assume moreover that there is a set S ∈ I such that
the vertical sections fx, x ∈ X \S, are equiderivatives at each y ∈ Y . Then
f is strongly measurable with respect to

(
M⊗N, Ĩ

)
.

Proof. Define

g(x, y) =

{
f(x, y) if x ∈ X \ S,
0 if x ∈ S.

One can easily see that g fulfills the assumptions of Theorem 2, so g is
strongly measurable with respect to

(
M ⊗ N, Ĩ

)
. Since the equality f = g

holds Ĩ-almost everywhere, f is strongly measurable as well.

Now assume that I =
{
A ∈ M : µ(A) = 0

}
, where µ : M → [0,∞] is a

nontrivial measure, and that K =
⋃∞
m=1Km is a net structure in X. For

each x ∈ X and m ∈ N we denote by Km(x) the unique cell from the net Km

which contains x.

Theorem 4. Assume that J possesses property (2). Let f : X × Y → Z
be a bounded function, whose all horizontal sections fy are derivatives with
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respect to K, while all vertical sections fx are equiderivatives at each y ∈ Y .
Then f is a derivative in the strong sense, i.e., for each (x, y) ∈ X × Y ,

lim
m→∞
n→∞

1
µ
(
Km(x)

)
ν
(
Jn(y)

) ∫
Km(x)×Jn(y)

f(u, v) d(µ× ν)(u, v) = f(x, y).

Proof. Fix (x, y) ∈ X × Y and ε > 0. Since all vertical sections fu are
equiderivatives at y, there is an N ∈ N such that for all n > N and u ∈ X,∥∥∥ 1

ν
(
Jn(y)

) ∫
Jn(y)

fu(v) dν(v)− fu(y)
∥∥∥ < ε

2
.

Since fy is a derivative at x, there is an M ∈ N such that for each m > M ,∥∥∥ 1
µ
(
Km(x)

) ∫
Km(x)

fy(u) dµ(u)− fy(x)
∥∥∥ < ε

2
.

By Theorem 2, function f is strongly measurable. So, it is Bochner inte-
grable on Km(x)×Jn(y). (See, e.g., [6, p. 133].) Using the Fubini Theorem,
for all n > N and m > M we obtain∥∥∥ 1

µ
(
Km(x)

)
ν
(
Jn(y)

) ∫
Km(x)×Jn(y)

f(u, v) d(µ× ν)(u, v)− f(x, y)
∥∥∥

=
∥∥∥ 1
µ
(
Km(x)

)
ν
(
Jn(y)

) ∫
Km(x)

(∫
Jn(y)

fu(v) dν(v)
)
dµ(u)− f(x, y)

∥∥∥
≤
∥∥∥ 1
µ
(
Km(x)

) ∫
Km(x)

( 1
ν
(
Jn(y)

) ∫
Jn(y)

fu(v) dν(v)− fu(y)
)
dµ(u)

∥∥∥
+
∥∥∥ 1
µ
(
Km(x)

) ∫
Km(x)

fu(y) dµ(u)− f(x, y)
∥∥∥

≤ 1
µ
(
Km(x)

) ∫
Km(x)

∥∥∥ 1
ν
(
Jn(y)

) ∫
Jn(y)

fu(v) dν(v)− fu(y)
∥∥∥ dµ(u)

+
∥∥∥ 1
µ
(
Km(x)

) ∫
Km(x)

fy(u) dµ(u)− fy(x)
∥∥∥

≤ 1
µ
(
Km(x)

) ε
2
µ
(
Km(x)

)
+
ε

2
= ε.

Remark 4. If J = K is the net structure from Example 1 (for m = 1),
M is the σ-field of Lebesgue measurable sets, I is the σ-ideal of null sets,
and µ = ν is the Lebesgue measure, then Corollary 3 and Theorem 4 are
precisely the main results of [3].



EQUIDERIVATIVES 129

References

[1] Bruckner, A. M., Differentiation of integrals, p. II, Amer. Math. Monthly 78(9) (1971).
[2] Chmielewska, K., On the strong product measurability, Real Anal. Exchange 26(1)

(2000–01), 437–443.
[3] Grande, Z., On equi-derivatives, Real Anal. Exchange 21(2) (1995–96), 637–647.
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