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Abstract. A multiobjective nonlinear programming problem is con-
sidered. Sufficiency theorems are derived for efficient and properly ef-
ficient solutions under generalized (F, ρ)-convexity assumptions. Weak,
strong and strict converse duality theorems are established for a general
Mond–Weir type dual relating properly efficient solutions of the primal
and dual problems.

1. Introduction and preliminaries

The problem to be considered here is the following multiobjective non-
linear programming problem:

(VP) Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]

subject to x ∈ X = {x ∈ S : gi(x) 5 0, i ∈M},
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where S is a non-empty open convex subset of Rn and f : S → Rk and
g : S → Rm are differentiable functions.

Mathematical programs involving several conflicting objectives have been
the subject of extensive study in the recent literature. By defining a re-
stricted form of efficiency, called proper efficiency. Geoffrion [2] estab-
lished an equivalence between a convex multiobjetive nonlinear program-
ming problem and a related parametric single objective program. Using
parametric equivalence, Weir [9] formulated Wolfe and Mond–Weir type
dual problems and established various duality results for properly efficient
solution under the convexity and generalized convexity assumptions. The
problems of [9] serve as the multiobjective version of the problems of Bector
and Klassen [1], Mahajan and Vartak [5] and Mond and Weir [6].

Hanson and Mond [4] proved the Kuhn–Tucker sufficient optimality con-
ditions and Wolfe duality theorems for a scalar nonlinear program under
generalized F -convexity. Gulati and Islam [3] derived sufficiency theorems
for efficient and properly efficient solutions of (VP) under the Hanson and
Mond [4] assumptions. Preda [7] introduced the concept of generalized
(F, ρ)-convexity, an extension of F -convexity defined by Hanson and Mond
[4] and generalized ρ-convexity defined by Vial [8], and he used the concept
to obtain duality results for efficient solutions.

In the present paper, we derive a fairly large number of sufficiency the-
orems for efficient and properly efficient solutions of (VP) under various
generalized (F, ρ)-convexity assumptions. A generalized Mond–Weir type
dual is also formulated for (VP) and duality relations are established for
properly efficient solutions of the primal and the dual problems.

Throughout this paper, we use the following notations. The index sets
K = {1, 2, . . . , k}, L = {1, 2, . . . , l} and M = {1, 2, . . . ,m}. For x̄ ∈ X, the
index sets I = {i ∈ M : gi(x̄) = 0} and J = {i ∈ M : gi(x̄) < 0} = M − I.
Let gI denotes the vector of active constraints at x̄. For r ∈ K, the set
Kr = K − {r}. Lower case letters are used to denote vectors or vector
functions. Subscripts denote components of vectors or vector functions and
superscripts indicate the specific vectors. No notational distinction is made
between row and column vectors. For a vector valued function g : Rn → Rm,
the symbol ∇g(x̄) denotes an m × n Jacobian matrix of g at x̄. If x and
y ∈ Rn, then x = y ⇔ xi = yi, i = 1, 2, . . . , n; x ≥ y ⇔ x = y and x 6= y;
x > y ⇔ xi > yi, i = 1, 2, . . . , n.

The following definitions are from Geoffrion [2]

Definition 1.1. A point x̄ ∈ X is said to be an efficient solution of (VP)
if there exists no x ∈ X such that f(x) ≤ f(x̄).

Definition 1.2. An efficient solution x̄ of (VP) is said to be properly effi-
cient if there exists a scalar M > 0 such that for each r ∈ K and x ∈ X
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satisfying fr(x) < fr(x̄), we have

fr(x̄)− fr(x) 5M [fj(x)− fj(x̄)]

for at least one j satisfying fj(x̄) < fj(x).

For readers convenience, we write the following definitions of the gener-
alized (F, ρ) convexity from [7]:

Definition 1.3. A functional F : S × S × Rn −→ R is sublinear if for any
x, x̄ ∈ S,

(i) F (x, x̄; a+ b) 5 F (x, x̄; a) + F (x, x̄; b) for any a, b ∈ Rn,
and
(ii) F (x, x̄; αa) = αF (x, x̄; a) for any α ∈ R, α ≥ 0, and a ∈ Rn.

From (ii) it follows that F (x, x̄; 0) = 0.

Let F be sublinear functional and the numerical function φ : S → R be
differentiable at x̄ ∈ X and ρ ∈ R. Let d(·, ·) : S × S −→ R.

Definition 1.4. The function φ is said to be (F, ρ)-convex at x̄ ∈ S, if for
all x ∈ S,

φ(x)− φ(x̄) = F (x, x̄;∇φ(x̄)) + ρd2(x, x̄).

Definition 1.5. The function φ is said to be strictly (F, ρ)-convex at x̄ ∈ S,
if for all x ∈ S, x 6= x̄,

φ(x)− φ(x̄) > F (x, x̄;∇φ(x̄)) + ρd2(x, x̄).

Definition 1.6. The function φ is said to be (F, ρ)-quasiconvex at x̄ ∈ S,
if for all x ∈ S,

φ(x) 5 φ(x̄)⇒ F (x, x̄;∇φ(x̄)) 5 −ρd2(x, x̄),

or equivalently,

F (x, x̄;∇φ(x̄)) > −ρd2(x, x̄)⇒ φ(x) > φ(x̄).

Definition 1.7. The function φ is said to (F, ρ)-pseudoconvex at x̄ ∈ S, if
for all x ∈ S,

F (x, x̄;∇φ(x̄)) = −ρd2(x, x̄)⇒ φ(x) = φ(x̄).
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Definition 1.8. The function φ is said to be strictly (F, ρ)-pseudoconvex
at x̄ ∈ S, if for all x ∈ S, x 6= x̄,

F (x, x̄;∇φ(x̄)) = −ρd2(x, x̄)⇒ φ(x) > φ(x̄),

or equivalently,

φ(x) 5 φ(x̄)⇒ F (x, x̄;∇φ(x̄)) < −ρd2(x, x̄).

A differentiable numerical function φ defined on a set S ⊆ Rn, is said to
be (F, ρ)-convex if φ is (F, ρ)-convex at every point of S. An m-dimensional
vector function g = (g1, g2, . . . , gm) is said to be (F, ρ)-convex if each gi,
i = 1, 2, . . . ,m is (F, ρi)-convex for the same sublinear functional F . Other
definitions follow similarly.

Note that, the above definitions are slightly different from those in [7]
since we do not assume d(·, ·) to be a pseudometric.

2. Sufficiency

Theorem 2.1. Let fj, for all j ∈ K be (F, ρj)-convex and let gI be (F, σI)-
quasiconvex at x̄ ∈ X. If there exist ū ∈ Rk and v̄ ∈ Rm satisfying

ū∇f(x̄) + v̄∇g(x̄) = 0, (2.1)

v̄g(x̄) = 0, (2.2)

ū = 0, v̄ = 0 and (ūj , v̄Q) ≥ 0, for all j ∈ K, (2.3)

where Q = {i ∈ I : gi is strictly (F, σi)-convex at x̄}, then x̄ is an efficient
solution of (VP) provided

∑
j∈K

ūjρj +
∑
i∈M

v̄iσi = 0.

Proof. Let there exist ū ∈ Rk and v̄ ∈ Rm satisfying (2.1) to (2.3). Suppose
to the contrary that x̄ is not an efficient solution of the problem (VP). Then
there exist an x0 ∈ X and r ∈ K such that

fr(x0) < fr(x̄)

and
fj(x0) 5 fj(x̄) for all j ∈ Kr.

Since for each j ∈ K, fj is (F, ρj)-convex at x̄,

F (x0, x̄;∇fr(x̄)) < −ρrd2(x0, x̄) (2.4)

and
F (x0, x̄;∇fj(x̄)) 5 −ρjd2(x0, x̄) for all j ∈ Kr. (2.5)

Let Q′ = I −Q = {i : i ∈ I, i 6∈ Q}. Since x0 ∈ X,

gQ(x0) 5 0 = gQ(x̄).
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Using strict (F, σQ)-convexity of gQ at x̄, we get

F (x0, x̄;∇gQ(x̄)) < −σQd2(x0, x̄). (2.6)

Similarly, the (F, σQ′)-quasiconvexity of gQ′ at x̄ gives

F (x0, x̄;∇gQ′(x̄)) 5 −σQ′d2(x0, x̄). (2.7)

Now relations (2.3) to (2.7) and sublinearity of F imply

F (x0, x̄; ū∇f(x̄) + v̄I∇gI(x̄)) 5F (x0, x̄; ū∇f(x̄)) + F (x0, x̄; v̄Q∇gQ(x̄))

+ F (x0, x̄; v̄Q′∇gQ′(x̄))

<− (
∑
j∈K

ūjρj + v̄QσQ + v̄Q′σQ′)d2(x0, x̄)

=− (
∑
j∈K

ūjρj +
∑
i∈I

v̄iσi)d2(x0, x̄).

Since v̄ = 0, g(x̄) 5 0 and v̄g(x̄) = 0 imply v̄J =0, we obtain

F (x0, x̄; ū∇f(x̄) + v̄∇g(x̄)) < −(
∑
j∈K

ūjρj +
∑
i∈M

v̄iσi)d2(x0, x̄) 5 0.

Therefore,
ū∇f(x̄) + v̄∇g(x̄) 6= 0,

a contradiction to (2.1). Hence x̄ is an efficient solution of (VP).

Evidently, the above theorem has a number of important special cases
which can readily be identified by the suitable algebraic properties of the
(F, ρ)-convex functions. We shall state some of these as corollaries.

Corollary 2.1. Let ūjfj, for all j ∈ K be (F, ρj)-convex and let gI be
(F, σI)-quasiconvex at x̄ ∈ X. If there exist ū ∈ Rk and v̄ ∈ Rm satisfying
(2.1) to (2.3), then x̄ is an efficient solution of (VP) provided

∑
j∈K ρj +∑

i∈M v̄iσi = 0.

Corollary 2.2. Let ūjfj, for all j ∈ K be (F, ρj)-convex and let v̄IgI be
(F, σI)-quasiconvex at x̄ ∈ X. If there exist ū ∈ Rk and v̄ ∈ Rm satisfying
(2.1) to (2.3) with

Q = {i ∈ I : v̄igi is strictly (F, σi)-convex at x̄},

then x̄ is an efficient solution of (VP) provided
∑

j∈K ρj +
∑

i∈M σi = 0.
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Theorem 2.2. Let fj, for all j ∈ K be (F, ρj)-convex and let gI be (F, σI)-
quasiconvex at x̄ ∈ X. If there exist ū ∈ Rk and v̄ ∈ Rm satisfying (2.1) to
(2.3) with

Q = {i ∈ I : gi is strictly (F, σi)-pseudoconvex at x̄},
then x̄ is an efficient solution of (VP) provided

∑
j∈K

ūjρj +
∑
i∈M

v̄iσi = 0.

Proof. Suppose to the contrary that x̄ is not an efficient solution of (VP).
Then as in the proof of Theorem 2.1,

F (x0, x̄;∇fr(x̄)) < −ρrd2(x0, x̄) (2.8)

and
F (x0, x̄;∇fj(x̄)) 5 −ρjd2(x0, x̄) for all j ∈ Kr. (2.9)

As x0 ∈ X, gQ(x0) 5 0 = gQ(x̄).
The strict (F, σQ)-pseudoconvexity of gQ at x̄ gives

F (x0, x̄;∇gQ(x̄)) < −σQd2(x0, x̄). (2.10)

Since (ūj , v̄Q) ≥ 0 for all j ∈ K and F is sublinear, relations (2.8) to (2.10)
imply that

F (x0, x̄; ū∇f(x̄)) + F (x0, x̄; v̄Q∇gQ(x̄))

< −(
∑
j∈K

ujρj + v̄QσQ)d2(x0, x̄). (2.11)

Now the (F, σQ′)-quasiconvexity of gQ′ at x̄ and sublinearity of F , we get

F (x0, x̄; v̄Q′∇gQ′(x̄)) 5 −v̄Q′σQ′d2(x0, x̄). (2.12)

where Q′ = I −Q = {i : i ∈ I, i 6∈ Q}.
Relations (2.11) and (2.12), and sublinearity of F yield

F (x0, x̄; ū∇f(x̄) + v̄I∇gI(x̄)) < −(
∑
j∈K

ūjρj +
∑
i∈I

v̄iσi)d2(x0, x̄).

Also, v̄J = 0, where J = {i : gi(x̄) < 0}. Therefore

F (x0, x̄; ū∇f(x̄) + v̄∇g(x̄)) < −(
∑
j∈K

ūjρj +
∑
i∈M

v̄iσi)d2(x0, x̄).

Since
∑

j∈K ūjρj +
∑

i∈M v̄iσi = 0, the above inequality implies

F (x0, x̄; ū∇f(x̄) + v̄∇g(x̄)) < 0.

Therefore,
ū∇f(x̄) + v̄∇g(x̄) 6= 0,

a contradiction to (2.1). Hence x̄ is an efficient solution of (VP).
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Now we state the sufficiency theorems as corollaries without proof for
efficient solution of (VP).

Corollary 2.3. Let ūjfj, for all j ∈ K be (F, ρj)-convex and let gI be
(F, σI)-quasiconvex at x̄ ∈ X. If there exist ū ∈ Rk and v̄ ∈ Rm satisfying
(2.1) to (2.3), then x̄ is an efficient solution of (VP) provided

∑
j∈K ρj +∑

i∈M v̄iσi = 0.

Corollary 2.4. Let fj, for all j ∈ K be (F, ρj)-convex and let v̄IgI be
(F, σI)-quasiconvex at x̄ ∈ X. If there exist ū ∈ Rk and v̄ ∈ Rm satisfying
(2.1) to (2.3) with

Q = {i ∈ I : v̄igi is strictly (F, σi)-pseudoconvex at x̄},
then x̄ is an efficient solution of (VP) provided

∑
j∈K ujρj +

∑
i∈M σi = 0.

In the above theorems we established the efficiency of x̄ by exhibiting
a contradiction. If Q is empty i.e., none of the components of gI is strictly
(F, σ)-convex (or strictly (F, σ)-pseudoconvex) at x̄, then in (2.3) the vector
ū > 0. We consider this case in the next theorem, which gives a stronger
result.

Theorem 2.3. Let ūf be (F, ρ)-pseudoconvex and v̄IgI be (F, σ)-
quasiconvex at x̄ ∈ X. If there exist ū ∈ Rk and v̄ ∈ Rm satisfying

ū∇f(x̄) + v̄∇g(x̄) = 0 (2.13)

v̄g(x̄) = 0 (2.14)

ū > 0, v̄ = 0, (2.15)

then x̄ is a properly efficient solution of (VP) provided ρ+ σ = 0.

Proof. Let J = {i : gi(x̄) < 0}. Therefore I ∪ J = {1, 2 · · · ,m}.
Also v̄ = 0, g(x̄) 5 0 and v̄g(x̄) = 0⇒ v̄J = 0. Now let x ∈ X. Then

v̄IgI(x) 5 0 = v̄IgI(x̄).

The (F, σ)-quasiconvexity of vIgI at x̄ gives

F (x, x̄; v̄I∇gI(x̄)) 5 −σd2(x, x̄) for all x ∈ X,
or

F (x, x̄; v̄∇g(x̄)) 5 −σd2(x, x̄) for all x ∈ X (2.16)
By the sublinearity of F ,

F (x, x̄; ū∇f(x̄)) + F (x, x̄; v̄∇g(x̄)) = F (x, x̄; ū∇f(x̄)) + v̄∇g(x̄))

= 0 (using (2.13)).
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That is,

F (x, x̄; ū∇f(x̄)) = −F (x, x̄; v̄∇g(x̄))

= σd2(x, x̄) (using(2.16)). (2.17)

Since ρ+ σ = 0 and from (2.17), we have

F (x, x̄; ū∇f(x̄)) = −ρd2(x, x̄).

Now the (F, ρ)-pseudoconvexity of ūf at x̄ gives

ūf(x) = ūf(x̄) for all x ∈ X.
Hence by Theorem 1 in Geoffrion [2], x̄ is a properly efficient solution of
(VP).

Theorem 2.4. Let there exist x̄ ∈ X, ū ∈ Rk and v̄ ∈ Rm satisfying (2.13)
to (2.15). If

(i) ūf + v̄IgI is (F, ρ)-pseudoconvex at x̄ with ρ = 0, or
(ii) fj, for all j ∈ K is (F, ρj)-convex and gI is(F, σ)-quasiconvex at x̄

with
∑
j∈K

ūjρj + σ = 0,

then x̄ is a properly efficient solution of (VP).

Proof. Let the assumption (i) hold. Since v̄J = 0 and F is a sublinear
functional, for each x ∈ X, equation (2.13) gives

F (x, x̄; ū∇f(x̄) + v̄I∇gI(x̄)) = 0. (2.18)

Since ρ = 0, we have

F (x, x̄; ū∇f(x̄) + v̄I∇gI(x̄)) + ρd2(x, x̄) = 0.

By (F, ρ)-pseudoconvexity of ūf + v̄IgI at x̄,

ūf(x) + v̄IgI(x) = ūf(x̄) + v̄IgI(x̄)

or
ūf(x) = ūf(x̄)− v̄IgI(x).

Also x ∈ X and v̄I = 0 imply v̄IgI(x) 5 0. Therefore

ūf(x) = ūf(x̄) for all x ∈ X. (2.19)

We now prove (2.19) under the assumption (ii). For x ∈ X,

gI(x) 5 0 = gI(x̄).

The (F, σ)-quasiconvexity of gI at x̄ gives

F (x, x̄;∇gI(x̄)) 5 −σId2(x, x̄) for all x ∈ X.
Since v̄I = 0, v̄J = 0 and sublinearity of F , we get

F (x, x̄; v̄I∇gI(x̄)) 5 −σId2(x, x̄),
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or
F (x, x̄; v̄∇g(x̄)) 5 −σd2(x, x̄). (2.20)

Relations (2.13), (2.20),
∑

j∈K ujρj + σ = 0 and sublinearity of F imply

F (x, x̄; ū∇f(x̄)) = −∑
j∈K

ujρjd
2(x, x̄).

Since fj , for all j ∈ K is (F, ρj)-convex and ū > 0. Therefore

ūf(x)− ūf(x̄) = F (x, x̄; ū∇f(x̄)) +
∑
j∈K

ujρjd
2(x, x̄) = 0,

or
ūf(x) = ūf(x̄) for all x ∈ X.

Hence by Theorem 1 in Geoffrion [2], x̄ is a properly efficient solution of
(VP).

Below we state a theorem without proof which includes all possible com-
binations of f and g following Mond and Weir [6]. Let Iα ⊆ M,α =
0, 1, 2, . . . , p with Iα ∩ Iβ = φ, α 6= β and

⋃p
α=0 Iα = M .

Theorem 2.5. Let there exist x̄ ∈ X, ū ∈ Rk and v̄ ∈ Rm satisfying
(2.13) to (2.15). If ūf +

∑
i∈I0 v̄igi is (F, ρ)-pseudoconvex and

∑
i∈Iα v̄igi,

α = 1, 2, . . . , p is (F, σα)-quasiconvex with ρ +
∑

i∈Iα σα = 0, then x̄ is a
properly efficient solution of (VP).

3. Generalized Mond–Weir type duality

We shall use the following result to establish duality results for properly
efficient solution of (VP).

Theorem 3.1 ([2]). Let x̄ be a properly efficient solution of (VP) and let
g satisfies the Kuhn–Tucker constraint qualification at x̄ ∈ X. Then there
exist ū ∈ Rk and v̄ ∈ Rm such that

ū∇f(x̄) + v̄∇g(x̄) = 0,

v̄g(x̄) = 0,

ū > 0, ūe = 1, v̄ = 0,

where e is a k-tuple of 1’s.

We now prove weak, strong and converse duality theorems between the
primal problem (VP) and its following general Mond–Weir [6] type dual
problem:
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(MD) Maximize f(y) +
∑
i∈I0

vigi(y)e

subject to

u∇f(y) + v∇g(y) = 0, (3.1)∑
i∈Iα

vigi(y) = 0, α = 1, 2 · · · , p, (3.2)

u > 0, ue = 1, v = 0, y ∈ S. (3.3)

Let Z be the set of all feasible solutions of the dual problem (MD).

Theorem 3.2 (Weak Duality). Let x ∈ X and (y, u, v) ∈ Z. Let
uf +

∑
i∈I0 vigi be (F, ρ)-pseudoconvex and

∑
i∈Iα vigi, α = 1, 2, . . . , p, be

(F, σα)-quasiconvex at y over X with ρ+
∑p

α=1 σα = 0. Then

uf(x) = uf(y) +
∑
i∈I0

vigi(y),

and therefore
f(x) � f(y) +

∑
i∈I0

vigi(y)e.

Proof. Since g(x) 5 0 and v = 0,∑
i∈Iα

vigi(x) 5 0 5∑
i∈Iα

vigi(y), α = 1, 2, . . . , p.

(F, σ)-quasiconvexity of
∑
i∈Iα

vigi at y implies

F (x, y;
∑
i∈Iα

vi∇gi(y)) 5 −σαd2(x, y), α = 1, 2, . . . , p. (3.4)

By (3.1) and sublinearity of F ,

0 = F (x, y;u∇f(y) + v∇g(y))

5 F (x, y;u∇f(y) +
∑
i∈I0

vi∇gi(y)) +
p∑

α=1

F (x, y;
∑
i∈Iα

vi∇gi(y))

5 F (x, y;u∇f(y) +
∑
i∈I0

vi∇gi(y))−
p∑

α=1

σαd
2(x, y) (using (3.4)).

Since ρ+
∑p

α=1 σα = 0, we have

F (x, y;u∇f(y) +
∑
i∈I0

vi∇gi(y)) = −ρd2(x, y).
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The (F, ρ)-pseudoconvexity of uf +
∑

i∈I0 vigi at y over X, implies

uf(x) +
∑
i∈I0

vigi(x) = uf(y) +
∑
i∈I0

vigi(y).

Also x ∈ X and v = 0. The above inequality yields

uf(x) = uf(y) +
∑
i∈I0

vigi(y),

and therefore
f(x) � f(y) +

∑
i∈I0

vigi(y)e.

The assumption that
∑

i∈Iα vigi, α = 1, 2, . . . , p is (F, σα)-quasiconvex is
very important, as we see in the previous Theorem 3.2. Of course to get the
desired result without this condition, other conditions should be enforced,
which leads to the following theorem.

Theorem 3.3 (Weak Duality). Let x ∈ X and (y, u, v) ∈ Z. Let uf + vg
be (F, ρ)-pseudoconvex at y over X with ρ = 0. Then

uf(x) = uf(y) +
∑
i∈I0

vigi(y),

and therefore
f(x) � f(y) +

∑
i∈I0

vigi(y)e.

Proof. By using F (x, y; 0) = 0 in Definition 1.3 and the equality constraint
(3.1) about gradients in (MD), we get

F (x, y;u∇f(y) + v∇g(y)) = 0. (3.5)

Since ρ = 0, we have

F (x, y;u∇f(y) + v∇g(y)) = −ρd2(x, y).

By the (F, ρ)-pseudoconvexity of uf + vg at y over X,

uf(x) + vg(x) = uf(y) + vg(y).

Using equations (3.2), (3.3) and feasibility of x for (VP), we get

uf(x) = uf(y) +
∑
i∈I0

vigi(y),

and therefore
f(x) � f(y) +

∑
i∈I0

vigi(y)e.
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Theorem 3.4. Let a weak duality hold between (VP) and (MD). If x̄ ∈ X
and (ȳ, ū, v̄) ∈ Z such that

ūf(x̄) = ū[f(ȳ) +
∑
i∈I0

v̄igi(ȳ)e]. (3.6)

Then x̄ is a properly efficient solution of the problem (VP).

Proof. Let x be any feasible solution for (VP). From the weak duality
theorem and equation (3.6),

ūf(x) = ū[f(ȳ) +
∑
i∈I0

v̄igi(ȳ)e]

= ūf(x̄).

Hence by Theorem 1 in Geoffrion [2], x̄ is a properly efficient solution for
(VP).

Theorem 3.5. Let a weak duality hold between (VP) and (MD). If x̄ ∈ X
and (ȳ, ū, v̄) ∈ Z such that

f(x̄) = [f(ȳ) +
∑
i∈I0

v̄igi(ȳ)e]. (3.7)

Then x̄ and (ȳ, ū, v̄) are properly efficient solutions for problems (VP) and
(MD) respectively.

Proof. Proper efficiency of x̄ follows from Theorem 3.4. We first prove
that (ȳ, ū, v̄) is an efficient solution of (MD). Suppose to the contrary that
(ȳ, ū, v̄) is not efficient for (MD), then there exists (y∗, u∗, v∗) ∈ Z such that

f(y∗) +
∑
i∈I0

v∗i gi(y
∗)e = f(ȳ) +

∑
i∈I0

v̄igi(ȳ)e.

Using (3.7), we obtain

f(y∗) +
∑
i∈I0

v∗i gi(y
∗)e = f(x̄),

a contradiction to the weak duality theorems. Hence (ȳ, ū, v̄) is an efficient
solution of (MD). Assume now it is not a properly efficient solution of (MD).
Then there exist (y∗, u∗, v∗) and a j ∈ K such that

fj(y∗) +
∑
i∈I0

v∗i gi(y
∗) > fj(ȳ) +

∑
i∈I0

v̄igi(ȳ)
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and

fj(y∗) +
∑
i∈I0

v∗i gi(y
∗)− fj(ȳ)−

∑
i∈I0

v̄igi(ȳ)

> M

fr(ȳ) +
∑
i∈I0

v̄igi(ȳ)− fr(y∗)−
∑
i∈I0

v∗i gi(y
∗)


for all M > 0 and for all r ∈ Kj satisfying

fr(ȳ) +
∑
i∈I0

v̄igi(ȳ) > fr(y∗) +
∑
i∈I0

v∗i gi(y
∗).

This means that

λj = fj(y∗) +
∑
i∈I0

v∗i gi(y
∗)− fj(ȳ)−

∑
i∈I0

v̄igi(ȳ)

can be made arbitrary large whereas

λr = fr(ȳ) +
∑
i∈I0

v̄igi(ȳ)− fr(y∗)−
∑
i∈I0

v∗i gi(y
∗)

is finite for all r ∈ Kj . Therefore

u∗jλj >
∑
r∈Kj

u∗rλr,

or

u∗

f(y∗) +
∑
i∈I0

v∗i gi(y
∗)e

 > u∗

f(ȳ) +
∑
i∈I0

v̄igi(ȳ)e

 ,
or using (3.7)

u∗f(y∗) +
∑
i∈I0

v∗i gi(y
∗) > u∗f(x̄).

Again a contradiction to the weak duality theorems. Hence (ȳ, ū, v̄) is a
properly efficient solution of (MD).

Theorem 3.6 (Strong Duality). Let x̄ ∈ X be a properly efficient solution
of the primal problem (VP) and let g satisfy the Kuhn–Tucker constraint
qualification at x̄. For for each x ∈ X and (y, u, v) ∈ Z, let there exist
a sublinear functional F such that uf +

∑
i∈I0 vigi is (F, ρ)-pseudoconvex

and
∑

i∈Iα vigi, α = 1, 2, . . . , p is (F, σα)-quasiconvex at y over x with ρ +∑p
α=1 σα = 0. Then there exists (ū, v̄) such that (x̄, ū, v̄) is a properly

efficient solution of the dual problem (MD), and the corresponding objective
values of (VP) and (MD) are equal.
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Proof. Since x̄ is a properly efficient solution of (VP) and g satisfy the
Kuhn–Tucker constraint qualification, by Theorem 3.1, there exist ū ∈ Rk
and v̄ ∈ Rm such that

ū∇f(x̄) + v̄∇g(x̄) = 0

v̄g(x̄) = 0

ū > 0, v̄ = 0, ūe = 1.

Since v̄g(x̄) = 0, g(x̄) 5 0 and v̄ = 0, it follows that

v̄igi(x̄) = 0 for all i ∈M,

and ∑
i∈Iα

v̄igi(x̄) = 0, α = 0, 1, 2, . . . , p.

Therefore (x̄, ū, v̄) is a feasible solution of (MD) and the objective values of
(VP) and (MD) are equal. Hence by Theorem 3.5, (x̄, ū, v̄) is a properly
efficient solution of the dual problem (MD).

Theorem 3.7 (Strict Converse Duality). Let x̄ ∈ X and (ȳ, ū, v̄) ∈ Z be
properly efficient solutions for problems (VP) and (MD) respectively such
that

ūf(x̄) = ūf(ȳ) +
∑
i∈I0

v̄igi(ȳ). (3.8)

If ūf +
∑

i∈I0 v̄igi is strictly (F, ρ)-pseudoconvex and
∑

i∈Iα v̄igi, α =
1, 2, · · · , p is (F, σα)-quasiconvex at ȳ with ρ +

∑p
α=1 σα = 0, then ȳ = x̄,

that is, ȳ is a properly efficient solution for (VP).

Proof. Suppose that x̄ 6= ȳ. Since ūf +
∑

i∈I0 vigi is strictly (F, ρ)-
pseudoconvex and

∑
i∈Iα v̄igi, α = 1, 2, . . . , p is (F, σ)-quasiconvex with

ρ+
∑p

α=1 σα = 0, following the proof of Theorem 3.2, we get

ūf(x̄) > ūf(ȳ) +
∑
i∈I0

v̄igi(ȳ),

a contradiction to (3.8). Hence x̄ = ȳ.
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