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Examples of Self-Iterating Lie Algebras, 2
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Communicated by E. Zelmanov

Abstract. We study properties of self-iterating Lie algebras in positive
characteristic. Let R = K[ti|i ∈ N]/(tpi |i ∈ N) be the truncated polynomial
ring. Let ∂i = ∂

∂ti

, i ∈ N , denote the respective derivations. Consider the
operators

v1 = ∂1 + t0(∂2 + t1(∂3 + t2(∂4 + t3(∂5 + t4(∂6 + · · · )))));
v2 = ∂2 + t1(∂3 + t2(∂4 + t3(∂5 + t4(∂6 + · · · )))).

Let L = Liep(v1, v2) ⊂ DerR be the restricted Lie algebra generated by these
derivations.

We establish the following properties of this algebra in case p = 2, 3. a) L

has a polynomial growth with Gelfand-Kirillov dimension ln p/ ln((1+
√

5)/2).
b) the associative envelope A = Alg(v1, v2) of L has Gelfand-Kirillov dimension
2 ln p/ ln((1+

√
5)/2). c) L has a nil-p-mapping. d) L , A and the augmentation

ideal of the restricted enveloping algebra u = u0(L) are direct sums of two locally
nilpotent subalgebras. The question whether u is a nil-algebra remains open.
e) the restricted enveloping algebra u(L) is of intermediate growth.

These properties resemble those of Grigorchuk and Gupta-Sidki groups.
Mathematics Subject Classification 2000: 17B05, 17B50, 17B66, 16P90, 11B39.
Key Words and Phrases: Restricted Lie algebras, growth, Grigorchuk group,
Gupta-Sidki group.

1. Introduction: Fibonacci Lie algebras

In this paper we continue the study of self-iterating Lie algebras introduced by the
first author in [16], see also further developments in [21], [14]. In this section we
give main definitions.

Let K be the ground field of arbitrary characteristic. Let I = {0, 1, 2, . . .} .
Denote also N0 = {0, 1, 2, . . .} . Consider functions α : I → N0 , which values
we denote by αi , i ∈ I . Denote by NI

0 the set of functions with finitely many
nonzero values αi . Let |α| =

∑

i∈I αi for α ∈ NI
0 . Consider the polynomial ring
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R = K[TI ] = K[ti | i = 0, 1, 2, . . . ]. Let α ∈ NI
0 , then we denote tα =

∏

i∈I tαi

i .
We have the basis R = 〈tα | α ∈ NI

0〉K . Consider also the ideal of codimension
one R ⊲ R+ = 〈tα | α ∈ NI

0, |α| > 0〉K .

Denote by τ : R → R the endomorphism given by τ(ti) = ti+1 for i ∈ I .
Let ∂i = ∂

∂ti
, i ∈ I , be the partial derivatives of this ring. Denote by v(t) the

action of v ∈ Der R onto t ∈ R . We define the following two derivations of R :

v1 = ∂1 + t0(∂2 + t1(∂3 + t2(∂4 + t3(∂5 + t4(∂6 + · · · ))));
v2 = ∂2 + t1(∂3 + t2(∂4 + t3(∂5 + t4(∂6 + · · · )))).

The action on R and products of such operators are well-defined; these operators
are so called special derivations, see e.g. [19], [20]. Remark that we can write
these derivations recursively:

v1 = ∂1 + t0τ(v1);

v2 = τ(v1).

Let L = Lie(v1, v2) be the Lie subalgebra of Der R generated by v1 and v2 . We also
consider the associative algebra generated by these derivations A = Alg(v1, v2).
Similarly, define

vi = τ i−1(v1) = ∂i + ti−1(∂i+1 + ti(∂i+2 + ti+1(∂i+3 + · · · ))), i = 1, 2, . . . . (1)

We also can write
vi = ∂i + ti−1vi+1, i = 1, 2, . . . . (2)

Lemma 1.1. The following commutation relations hold in L = Lie(v1, v2)

1. [vi, vi+1] = vi+2 for i = 1, 2, . . . ;

2. [vi, vi+2] = ti−1vi+3 for i = 1, 2, . . . ;

3. in general, for all i < j we have

[vi, vj] =

(

∏

i−1≤k≤j−3

tk

)

vj+1;

4. for all n ≥ 1, j ≥ 0 we have the action

vn(tj) =











tn−1tn · · · tj−2, n < j;

1, n = j;

0, n > j.

5. for all k, n ≥ 1

[∂n, vk] =











tk−1tk · · · tn−1vn+2, k < n + 1;

vn+2, k = n + 1;

0, k > n + 1.
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Proof. We have

[v1, v2] = [∂1 + t0τ(v1), τ(v1)] = [∂1, τ(v1)] = [∂1, ∂2 + t1τ
2(v1)] = τ 2(v1) = v3.

Consider the third claim. Let i < j , then

[vi, vj] = [∂i + ti−1(∂i+1 + ti(· · ·+ tj−3(∂j−1 + tj−2vj) · · · )), vj]

= [∂i + ti−1(∂i+1 + ti(· · ·+ tj−3∂j−1) . . . ), vj ]

= [∂i + ti−1(∂i+1 + ti(· · ·+ tj−3∂j−1) . . . ), ∂j + tj−1vj+1]

= [∂i + ti−1(∂i+1 + ti(· · ·+ tj−3∂j−1) . . . ), tj−1vj+1] = ti−1ti · · · tj−3vj+1.

The second claim is a partial case of the third. We consider the first relation as a
partial case as well.

Consider the forth claim. Remark that vn(tj) is nonzero only in the case
n ≤ j and

vn(tj) = (∂n + tn−1(∂n+1 + · · ·+ tj−2(∂j + · · · ) . . . ))(tj) = tn−1tn · · · tj−2, n < j.

The last claim is proved similarly.

Let us make some comments on our derivations and possible gradations
on them. Recall that NI

0 is the set of functions α : I → N0 = {0, 1, 2, . . .} with
finitely many nonzero values αi . (we may take the set I to be arbitrary). Consider
the formal power series ring that consists of formal sums

R = K[[TI ]] =

{

∑

α∈NI
0

µαt
α

∣

∣

∣

∣

µα ∈ K

}

,

where the multiplication extends the rule tαtβ = tα+β , α, β ∈ NI
0 . Let ǫ(i) ∈ NI

0

be such that ǫ(i)j = δij , Kronecker’s delta, where i, j ∈ I . We get elements
ti = tǫ(i) ∈ R for all i ∈ I and tα =

∏

i∈I tαi

i , α ∈ NI
0 .

Consider so called Lie algebra of special derivations [19], [20], [15]. It
consists of formal sums

W(TI , K) =

{

∑

α∈NI
0

tα

m(α)
∑

j=1

λα,ij

∂

∂tij

∣

∣

∣

∣

λα,ij ∈ K, ij ∈ I

}

.

It is essential that sums are finite at each tα , α ∈ NI
0 . One checks that the Lie

bracket of such operators is well-defined and that W(TI , K) acts by derivations
on K[[TI ]]. Observe that our Fibonacci Lie algebra consists of special derivations.

Lemma 1.2. Assign arbitrary weights wt(ti) = ai ∈ C, for all i ∈ I . Then
this weight function is extended to an additive function on monomials of R and
W(TI , K).

Proof. The statement is evident for the ring R . We set wt( ∂
∂ti

) = −wt(ti) =

−ai for all i ∈ I . Consider a monomial a = tα ∂
∂tj

∈ W(TI , K), α ∈ NI
0 . Then

we set wt(a) =
∑

i∈I αiai − aj . Let also b = tβ ∂
∂tk

∈ W(TI , K). A formal check

shows that wt([a, b]) = wt(a) + wt(b).
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Let L be a Lie algebra over a field K of characteristic p > 0 and let
adx : L → L, ad x(y) = [x, y], for x, y ∈ L, be the adjoint map. Recall that L is
called a restricted Lie algebra or Lie p-algebra [10, 22], if additionally L affords a
unary operation x 7→ x[p] , x ∈ L, satisfying

i) (λx)[p] = λpx[p] , for all λ ∈ K , x ∈ L;

ii) ad(x[p]) = (ad x)p , for all x ∈ L;

iii) for all x, y ∈ L one has

(x + y)[p] = x[p] + y[p] +

p−1
∑

i=1

si(x, y), (3)

where isi(x, y) is the coefficient of Z i−1 in the following polynomial:
(ad(Zx + y))p−1(x) ∈ L[Z], where Z is an indeterminate.

Also, si(x, y) is a Lie polynomial in x, y of degrees i and p− i, respectively.

Suppose that L is a restricted Lie algebra and X ⊂ L. Then by Liep(X)
we denote the restricted subalgebra generated by X . Suppose that H ⊂ L is a Lie
subalgebra, i.e. H is a vector subspace that is closed under the Lie bracket. Then
by Hp we denote the restricted subalgebra generated by H . Let u(L) denote the
restricted enveloping algebra of L and u0(L) the augmentation ideal of u(L).

We recall the notion of growth. Let A be an associative (or Lie) algebra
generated by a finite set X . Denote by A(X,n) the subspace of A spanned by all
monomials in X of length not exceeding n. If A is a restricted Lie algebra, then
we define [13] A(X,n) = 〈 [x1, . . . , xs]

pk | xi ∈ X, spk ≤ n〉K . In either situation,
one considers the growth function defined by

γA(n) = γA(X, n) = dimK A(X,n).

The growth function clearly depends on the choice of the generating set X .
Furthermore, it is easy to see that the exponential growth is the highest possible
growth for Lie and associative algebras. The growth function γA(n) is compared
with the polynomial functions nk , k ∈ R+ by computing the upper and lower
Gelfand-Kirillov dimensions [12], namely

GKdim A = lim
n→∞

ln γA(n)

ln n
;

GKdim A = lim
n→∞

ln γA(n)

ln n
.

This setting assumes that all elements of X have the same weight equal to 1.
We shall mainly use a little bit different growth function. Namely, we consider
the weight function wt v , v ∈ A and the growth with respect to it γ̃A(r) =
dimK〈y | y ∈ A, wt y ≤ r〉 , r ∈ R, where the elements of the generating set
X = {v1, v2} have different weights. The standard arguments [12] prove that this
growth function yields the same Gelfand-Kirillov dimensions.
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2. Main results: Properties of Fibonacci Lie algebras

The goal of the paper is to study properties of Fibonacci restricted Lie algebras in
small characteristics p = 2, 3, 5.

We modify the example above for the case of positive characteristic. Sup-
pose that char K = p > 0. Denote I = {0, 1, 2, . . .} and Np = {0, 1, . . . , p − 1} .
Let NI

p = {α : I → Np} be the set of functions with finitely many nonzero values.
Now, we consider the truncated polynomial ring

R = K[ti | i = 0, 1, 2, . . . ]/(tpi | i = 0, 1, 2, . . . ).

Let α ∈ NI
p , then denote tα =

∏

i∈I tαi

i . We have the basis R = 〈tα | α ∈ NI
p〉K .

Also, consider the ideal R+ = 〈tα | α ∈ NI
p, |α| > 0〉K ⊳ R .

Let vi ∈ Der R , i = 1, 2, . . . be the derivations as above. Now, let
L = Liep(v1, v2) ⊂ DerR denote the restricted subalgebra generated by v1, v2 ,
it will also be referred to as the Fibonacci restricted Lie algebra.

Our goal is to study the restricted Lie algebra L = Liep(v1, v2). We are
also interested in properties of the associative envelope A = Alg(v1, v2) of the
operators v1, v2 . We study this Lie algebra for small characteristics. The main
results of the paper are as follows.

Theorem 2.1. Let char K = p ∈ {2, 3}. Consider the Fibonacci restricted Lie
algebra L = Liep(v1, v2) and its associative envelope A = Alg(v1, v2). Denote

λ = 1+
√

5
2

. Then

1. GKdimL = GKdimL = ln p/ lnλ;

2. GKdimA = GKdimA = 2 ln p/ lnλ;

3. L has a nil-p-mapping.

4. L, A, and the augmentation ideal of the restricted enveloping algebra u =
u0(L) are direct sums of two locally nilpotent subalgebras

L = L+ ⊕ L−, A = A+ ⊕A−, u = u+ ⊕ u−.

These results will be proved in Sections 4, 5, 6, and 7. In Section 8 we
establish also the first claim for p = 5. It seems that it is a rather technical
problem to prove claims 2,3 for p = 5. We start our arguments by introduction of
a Z ⊕ Z-gradation by weights on our algebras in Section 3.

The first construction of examples of non-nil rings which are the sum of two
locally nilpotent subrings has been carried out by Kelarev [11], thus answering the
question of Kegel. Nowadays, there are several other families of such rings. But to
the authors knowledge, all previous examples use contracted semigroup algebras
or words technique, see [4] and references in it. In our case, A is of polynomial
growth whereas u is of subexponential growth (see below). The question whether
u is a nil-algebra remains open.

There are analogies between groups and Lie algebras, but these analogies
are mainly between properties of the respective Hopf algebras, i.e. (modular) group
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rings and (restricted) enveloping algebras. Recall that the Grigorchuk group (and
its group ring!) has an intermediate growth, more precisely, its growth function
can be put between two functions exp(nα) and exp(nβ), where 1/2 < α < β < 1.
We show that u(L) has a similar growth function.

To specify the subexponential growth of u(L) let us give some more defini-
tions. Consider two series of functions Φq

α(n), q = 2, 3 of natural argument with
the parameter α ∈ R

+ :

Φ2
α(n) = nα,

Φ3
α(n) = exp(nα/(α+1)).

We compare functions f : N → R+ by means of the partial order: f(n)
a
≤ g(n) iff

there exists N > 0, such that f(n) ≤ g(n), n ≥ N . Suppose that A is a finitely
generated algebra and γA(n) is its growth function. We define the dimension of
level q , q ∈ {2, 3} , and the lower dimension of level q by

Dimq A = inf{α ∈ R
+ | γA(n)

a
≤ Φq

α(n)},

Dimq A = sup{α ∈ R
+ | γA(n)

a

≥ Φq
α(n)}.

The q -dimensions for arbitrary level q ∈ N were introduced by the first
author in order to specify the subexponential growth of universal enveloping alge-
bras [18]. The condition Dimq A = Dimq A = α means that the growth function
γA(n) behaves like Φq

α(n). Dimensions of level 2 are exactly the upper and lower
Gelfand-Kirillov dimensions [5], [12]. Dimensions of level 3 correspond to the su-
perdimensions of [3] up to normalization (see [17]). We prefer to describe the
growth of u(L) in terms of Dim3 A.

Corollary 2.2. Let char K = p ∈ {2, 3, 5} and L = Liep(v1, v2). Denote
λ = (1 +

√
5)/2 and θ = ln p/ lnλ. Then the growth of the restricted enveloping

algebra u(L) is intermediate and

θ − 1 ≤ Dim3 u(L) ≤ θ.

Proof. By Theorem 2.1 (Theorem 8.1 if p = 5), we have Dim2 L = GKdimL =
θ . The claim follows from (the proof) of Proposition 1 in [17]. That proposition
deals with the growth of the universal enveloping algebra, some minor changes are
needed to adopt the proof for the restricted enveloping algebra.

Remark 2.3. In order to get the equality Dim3 u(L) = θ it is sufficient to
have the asymptotic γL(n) − γL(n − 1) ≈ Cnθ−1 , C a constant, n → ∞ [17,
Proposition 1]; but we do not have such a statement.

We remark that L is a self-similar Lie algebra. Namely, consider subalge-
bras Li = Lie(vi, vi+1), i = 1, 2, . . . Then, we have the isomorphisms τ i−1 : L ∼= Li

for all i = 1, 2, 3, . . . . On the other hand, we have the embedding

L →֒ 〈∂1〉K ⊕ K[t0] ⊗ L2, L2
∼= L,
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where the semidirect product is defined via the action ∂1(v2) = v3 and ∂1(vj) = 0
for j ≥ 3. These properties resemble those of the Grigorchuk group, Gupta-
Sidki group, etc. [8, 7, 6, 9]. Examples of self-similar associative algebras are also
introduced in [2].

3. Gradation by weights

In this section we introduce a Z ⊕ Z-gradation by weights on our algebras. First,
suppose that K is arbitrary and we consider L = Lie(v1, v2).

Lemma 3.1. Let L = Lie(v1, v2) ⊂ DerR be a Lie subalgebra. We introduce
the weight and superweight functions

wt vn = −wt tn = λn, n = 1, 2, . . . , λ =
1 +

√
5

2
;

swt vn = − swt tn = λ̄n−2, n = 1, 2, . . . , λ̄ =
1 −

√
5

2
.

1. We have a Z⊕Z-gradation L = ⊕a,b≥0La,b , where La,b is spanned by products
with a factors v1 and b factors v2 .

2. Both functions are additive on products of homogeneous elements of L.

3. Let v ∈ La,b , where a, b ≥ 0. Then

wt v = aλ + bλ2, swt v = −aλ + b.

Proof. Let us introduce a grading on L such that vi are homogeneous. Suppose
that we have a weight function wt vi = −wt ti = ai ∈ R, where i = 1, 2 . . . (see
Lemma 1.2). Since it is natural to have homogeneous summands in (2), we assume
that

ai = wt vi = wt ∂i = wt ti−1 + wt vi+1 = −ai−1 + ai+1.

Hence, we get the Fibonacci recurrence relation ai+1 = ai + ai−1 . It is well-known
that all solutions are expressed via two functions introduced above: ai = wt vi =
λi , i ∈ N, and ai = swt vi = λ̄i−2 , i ∈ N.

Since the weights wt v1 = λ and wt v2 = λ2 are linearly independent over
Z, we conclude that L has the claimed Z ⊕ Z-gradation L = ⊕a,b≥0La,b , where
La,b is spanned by products with a factors v1 and b factors v2 .

Let v ∈ La,b , where a, b ≥ 0. We get wt v = a wt v1 + b wt v2 = aλ + bλ2

and swt v = a swt v1 + b swt v2 = aλ̄−1 + b = −aλ + b.

We introduce a new coordinate system on plane. Let A = (x, y) ∈ R2 , we
define new coordinates (ξ, η) of A that we also refer to as weight and superweight

ξ = wt(x, y) = xλ + yλ2,
η = swt(x, y) = −xλ + y;

(x, y) ∈ R
2.

Consider a homogeneous element v ∈ La,b , then we denote Wt(v) = (a, b) ∈ R2

and draw v on plane. By Lemma 3.1, the new coordinates (ξ, η) coincide with
the weight and superweight functions introduced above. Since the superweight is
an additive function, we obtain a ”triangular” decomposition as follows.
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Corollary 3.2. For L = Lie(v1, v2) and its universal enveloping algebra U =
U(L) we have decompositions into direct sums of two subalgebras as follows

L = L+ ⊕ L−, U = U+ ⊕ U−,

where L+ = 〈v ∈ L | swt v > 0〉K , L− = 〈v ∈ L | swt v < 0〉K , U+ = 〈v ∈ U |
swt v > 0〉K , U− = 〈v ∈ U | swt v < 0〉K .

Recall that λ, λ̄ are the roots of the equation x2 − x − 1 = 0. The next
relations will be used below without special mention:

λ̄ =
1 −

√
5

2
= −1

λ
= 1 − λ;

λk + λk+1 = λk+2, k ≥ 0;

1

1 − 1/λ
=

λ2

λ2 − λ
=

λ2

1
= λ2;

1

1 − 1/λ2
=

λ2

λ2 − 1
=

λ2

λ
= λ.

Let us draw vi s.

x

y

1

1

2

2

3

3

4

4

5

5

O

v1

v2 v3

v4

v5

v6

ξ =wt

y
=

λx

η =swt

y=−
x/λ

Let Fn , n ≥ 0 be the Fibonacci numbers. We have F0 = 0, F1 = 1 and
Fn+2 = Fn+1 + Fn , n ∈ Z. The following is known as Binet’s formula:

Fn =
1√
5

((

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n)

=
1√
5

(

λn − λ̄n
)

, n ∈ Z.

Lemma 3.3. Let vn ∈ L be as above. Then Wt(vn) = (Fn−2, Fn−1) for n ≥ 1.
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Proof. We have Wt(v1) = (1, 0) = (F−1, F0) and Wt(v2) = (0, 1) = (F0, F1).
The statement follows by induction, let n ≥ 0, then

Wt(vn+2) = Wt([vn, vn+1]) = Wt(vn) + Wt(vn+1)

= (Fn−2, Fn−1) + (Fn−1, Fn) = (Fn, Fn+1).

The following lemma is a version of Liouville’s theorem on approximation
of algebraic integers by rational numbers.

Lemma 3.4. For the points of lattice (a, b) ∈ Z
2 ⊂ R

2 we have the inequality

|wt(a, b) · swt(a, b)| ≥ λ2.

Proof. Since t0 = b/a is not a root of the polynomial h(t) = t2− t−1 we have
h(b/a) 6= 0. Moreover,

|h(b/a)| =

∣

∣

∣

∣

b2 − ab − a2

a2

∣

∣

∣

∣

≥ 1

a2
.

We write this inequality in other way

|h(b/a)| =

∣

∣

∣

∣

b

a
− λ

∣

∣

∣

∣

·
∣

∣

∣

∣

b

a
− λ̄

∣

∣

∣

∣

≥ 1

a2
;

|b − aλ| ·
∣

∣

∣

∣

b +
1

λ
a

∣

∣

∣

∣

≥ 1;

|b − aλ| · |bλ2 + aλ| ≥ λ2;

| swt(a, b) · wt(a, b)| ≥ λ2.

Remark 3.5. This bound is exact. Consider vectors vn . Recall that wt vn = λn

and swt = λ̄n−2 = (−1/λ)n−2 . We get wt(vn) swt(vn) = (−1)nλ2 for all n ∈ N.

It is convenient to embed L into a bigger Lie subalgebra of Der R .

Lemma 3.6. Let

H = 〈v1, v2, v3, tα0

0 tα1

1 · · · tαn−4

n−4 vn | n ≥ 4, αi ≥ 0〉K . (4)

1. H is a Lie subalgebra of Der R and L ⊂ H ;

2. denote by H̃ the span of elements (4) such that αn−4 ≤ 1 and αn−5 ≤ 2,
(which we impose provided that the respective indices are nonnegative). Then
H̃ is also a Lie subalgebra of Der R and L ⊂ H̃ .

Proof. Let us prove that H is a Lie subalgebra. We apply Lemma 1.1 to
check that the product of two monomials of type (4) is again expressed via these
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monomials. Let n < m, then

[tα0

0 · · · tαn−4

n−4 vn, tβ0

0 · · · tβm−4

m−4 vm] = tα0

0 · · · tαn−4

n−4 tβ0

0 · · · tβm−4

m−4

(

∏

n−1≤i≤m−3

ti

)

vm+1

(5)

+ tα0

0 · · · tαn−4

n−4

∑

βj 6=0

( m−4
∏

i=0,i6=j

tβi

i

)

βjt
βj−1
j vn(tj)vm,

(6)

where we used that, by claim 4 of Lemma 1.1, vm acts on all tαi

i s trivially because
m > n > n − 4 ≥ i. Also, vn(tj) is nonzero only for n ≤ j , namely

vn(tj) =

{

tn−1tn · · · tj−2, n < j;

1, n = j.

In this case, n ≤ j ≤ m − 4 and n − 1 < · · · < j − 2 ≤ m − 6. We again obtain
monomials of type (4). Hence, H ⊂ Der R is a Lie subalgebra.

Consider the second claim. We assume that the monomials satisfy the
conditions on the last two indices and check that the resulting monomials satisfy
these conditions as well. Let tγ0

0 · · · tγm−3

m−3 vm+1 be a resulting monomial of the
first type (5). Then γm−3 = 1 for n < m − 1 and γm−3 = 0 for n = m −
1. We consider the row γ as the sum of two rows (β0, . . . , βm−4, 0, . . . ) and
(α0, . . . , αn−4, 0, 0, 1, . . . , 1, 0, . . . ), where the 1’s are on places n − 1 ≤ i ≤ m − 3
and they appear in case n < m− 1. Thus, we obtain γs ≤ βs + max{αs, 1} for all
s = 0, . . . , m − 3. By inductive assumption, the last possible nonzero αi is αn−4 ,
since n < m, we have αm−4 = 0. We get γm−4 ≤ βm−4 + max{0, 1} ≤ 1 + 1 = 2.

Consider monomials of the second type (6) tγ0

0 · · · tγm−4

m−4 vm . By arguments
above, they appear only in the case that n ≤ m−4 and the derivation can increase
a power only for tk such that k ≤ m − 6. We conclude that γm−4 ≤ βm−4 ≤ 1
and γm−5 ≤ βm−5 ≤ 2.

Corollary 3.7. Let fvn , gvm be monomials (4) such that m − 3 ≤ n < m,
and f, g ∈ R. Then [fvn, gvm] = fg[vn, vm].

Proof. Indeed, by computations above, the term (6) appears only in case
n ≤ m − 4.

Now suppose that char K = p > 0. Let Lie(v1, v2) be the Lie subalgebra
generated by brackets only. In this case we introduce the subalgebra H similar to
that of Lemma 3.6 as follows

Lie(v1, v2) ⊂ H = 〈v1, v2, v3, tα0

0 tα1

1 · · · tαn−4

n−4 vn | n ≥ 4, αi ∈ {0, 1, . . . , p − 1}〉K .
(7)
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4. Fibonacci restricted Lie algebra, char K = 2

In this section we consider the case char K = 2. Let A be an associative K -
algebra, then

(a + b)2 = a2 + b2 + [a, b], a, b ∈ A. (8)

We get v2
1 = (∂1 + t0v2)

2 = t0[∂1, v2] = t0[∂1, ∂2 + t1v3] = t0v3 . We apply τ and
obtain

v2
i = ti−1vi+2, i = 1, 2, . . . . (9)

Let Hp be the restricted subalgebra generated by H . It is sufficient to add pth
powers of the basis of H [10], moreover only the powers (9) are nonzero. These
are linearly independent with (7) and we obtain

L ⊂ Hp = H ⊕ 〈tn−3vn | n = 3, 4, . . . 〉K . (10)

Theorem 4.1. Let char K = 2 and L = Liep(v1, v2), A = Alg(v1, v2). Denote

λ = 1+
√

5
2

. Then

1. GKdimL = GKdimL = ln 2/ lnλ ≈ 1.44;

2. GKdimA = GKdimA = 2 ln 2/ lnλ ≈ 2.88.

Proof. We use the embedding (10). Fix a number m. Consider a homogeneous
element g ∈ Hp of weight not exceeding m. Then it is a sum of monomials (7)
and (9), which we write in the form w = tα0

0 tα1

1 · · · tαn−3

n−3 vn , where αi ∈ {0, 1} . Let
n ≥ 4, then we have

m ≥ wt(g) = wt(w) = wt(vn) +

n−3
∑

i=0

αi wt ti = λn −
n−3
∑

i=0

αiλ
i ≥ λn −

n−3
∑

i=0

λi

> λn − λn−3

1 − 1/λ
= λn−3(λ3 − λ2) = λn−3λ = λn−2. (11)

We obtain λn−2 < m. Hence, n ≤ n0 = 2 + [ln m/ lnλ]. Remark that L has only
4 monomials with n ≤ 3, they are {v1, v2, v3, t0v3} . We consider the number of
monomials w of weight not exceeding m and obtain the bound

γ̃L(m) ≤ 4 +

n0
∑

n=4

2n−2 ≤ 4 +
2n0−2

1 − 1/2
≤ 4 + 2n0−1 ≤ 4 + 21+ln m/ ln λ

≤ 4 + 2mln 2/ ln λ ≈ C0m
ln 2/ ln λ.

This estimate yields the upper bound on the growth of L.

Let us prove the lower bound. We define sets Vn = {vn, tn−3vn} for all
n ≥ 3. From Lemma 1.1 and (9) it follows that Vn ⊂ L for all n ≥ 3. We also
consider another series of sets. Let W4 = {v4} and

Wn = {tα0

0 · · · tαn−5

n−5 vn | αi ∈ {0, 1}}, n ≥ 5. (12)

Let us prove by induction on n that Wn ⊂ L. The base of induction W4 ⊂ L

is clear. Fix n ≥ 5 and assume that Wn−1 ⊂ L. By inductive assumption,
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Wn−1 = {tα0

0 · · · tαn−6

n−6 vn−1 | αi ∈ {0, 1}} ⊂ L, also Vn−2 = {vn−2, tn−5vn−2} ⊂ L.
We observe that the pairwise products of these sets yield the whole of the set Wn ,
thus Wn ⊂ L.

Fix a number m. Consider numbers n such that 5 ≤ n ≤ n1 = [ln m/ lnλ].
Then wt(Wn) ≤ wt(vn) = λn ≤ m. We count the number of elements (12)

γ̃L(m) ≥
n1

∑

n=5

2n−4 ≥ 2n1−4 ≥ 2lnm/ lnλ−5 =
1

25
mln 2/ lnλ.

Hence, GKdimL = GKdimL = ln 2/ lnλ.

Let us evaluate the growth of A . By our arguments and PBW-theorem, A

is contained in the span of all products of the elements tα0

0 tα1

1 · · · tαn−3

n−3 vn , where
αi ∈ {0, 1} . We move all ti ’s to the left (see Claim 4 of Lemma 1.1), and reorder
vi ’s using the commutation relation and (9). We observe that the appearing
products keep the following property at each step, namely, that for each ta there
exists vb such that b ≥ a + 3. We obtain

A ⊂ 〈tα0

0 tα1

1 · · · tαn−3

n−3 vβ1

1 vβ2

2 · · · vβn

n | αi, βj ∈ {0, 1}, βn = 1, n ∈ N〉K , (13)

where n is maximal such that βn > 0. Consider such a monomial of weight not
exceeding m. Assume that n ≥ 4, then

m ≥ −
n−3
∑

i=0

αiλ
i +

n
∑

j=1

βjλ
j ≥ λn −

n−3
∑

i=0

λi ≥ λn − λn−3

(1 − 1/λ)
= λn−2,

see (11). Similarly, n ≤ n0 = 2 + [ln m/ ln λ]. Let N be the number of monomi-
als (13) with n ≤ 3. We use the following bound on the number of monomials (13)
of weight not exceeding m

γ̃A(m) ≤ N +

n0
∑

n=4

22n−3 ≤ N +
22n0−3

1 − 1/4
≤ N +

21+2 lnm/ lnλ

1 − 1/4

≤ N +
8

3
m2 ln 2/ ln λ ≈ C0m

2 ln 2/ lnλ.

This estimate yields the upper bound on the growth of A .

Since all elements (12) are contained in L, we get the monomials

A ⊃ {tα0

0 · · · tαn−5

n−5 vnv
βn−1

n−1 · · · vβ1

1 | αi, βi ∈ {0, 1}, βn = 1}, n ≥ 5. (14)

Indeed, the initial segment tα0

0 · · · tαn−5

n−5 vn belongs to L and the subsequent multi-
plication by vi s (in the reverse order!) yields an element in A . Denote the mono-
mial above by tαvβ , where α, β ∈ NI

p . Introduce the degree deg(tαvβ) = |α|−|β| ,
where |α| =

∑

i αi . Let us prove that all monomials (14) are linearly indepen-
dent. Let γ ∈ NI

p , and tγ =
∏

i∈I tγi

i ∈ R , then set deg(tγ) = |γ| . Recall that
vi = ∂i + ti−1∂i+1 + ti−1ti∂i + . . . , let us call ∂i by the leading derivation. Consider
the action (vβn

n · · · vβ1

1 )(tγ). Observe that only the leading derivations can decrease
degree of the polynomial, while the other terms yield summands of higher degree.
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As a result, we get 1) a monomial of degree |γ| − |β| (which can be zero), and 2)
polynomials of higher degree. Since we get the monomial of the lowest degree by
applying only the leading derivations, we conclude that this monomial does not
depend on the order of vi s in the action. Suppose that there exists a linear relation
of monomials (14). We write it in the form

∑

|α|−|β|>N

λα,βt
αvβ +

∑

|α|−|β|=N, |β|>b

λα,βt
αvβ +

∑

|α|−|β|=N, |β|=b

λα,βt
αvβ = 0, (15)

where λα,β ∈ K , N is the minimal degree deg(tαvβ) = |α| − |β| of all terms (N
may be negative), and b the minimal value of |β| of the terms of degree N ; let
a = N + b. We consider the action of (15) onto tγ ∈ R such that |γ| = b. The
lowest possible degree of the result is a. The first sum yields polynomials of higher
degree. The second sum cannot yield polynomials of degree a as well, because to
get such a degree we must use the leading derivations for all vi s, but the number
|β| of these derivations is bigger than b = deg tγ . Hence, the degree a can be
achieved only by using the leading derivations of the third sum. We obtain

∑

|α|=a,|β|=b

λα,β(ti1 · · · tia∂j1 · · ·∂jb
)(tk1

· · · tkb
) = 0.

Let λα0,β0 6= 0 for some α0, β0 ∈ NI
p in this sum. Then we take {k1, . . . , kb} to be

the set of nonzero indices of β0 . Then
∑

α λα,β0tα = 0, a contradiction. Hence,
monomials (14) are linearly independent.

We evaluate weight of a monomial (14) as follows

wt(tαvβ) = −
n−5
∑

i=0

αiλ
i +

n
∑

j=1

βjλ
j ≤

n
∑

j=1

λj <
λn

1 − 1/λ
= λn+2.

Fix a number m, assume that λn+2 < m; then all monomials (14) have weights
less than m. This is the case for all numbers n ≤ n2 = [ln m/ lnλ] − 2. Finally,
the number of monomials (14) yields the lower bound for the growth of A

γ̃A(m) ≥
n2
∑

n=5

22n−5 ≥ 22n2−5 ≥ 1

25
22 ln m/ ln λ−11 =

1

216
m2 ln 2/ ln λ.

Corollary 4.2. There exist positive constants C, C1, C2, m0 such that

C1m
2 ln 2/ ln λ ≤ γ̃A(m) − γ̃A(m/C) ≤ C2m

2 ln 2/ ln λ, m ≥ m0.

Proof. It remains to prove existence of the lower bound. Let n2 = [ln m/ lnλ]−
2 be as above. We evaluate weight of a monomial (14)

wt(tαvβ) ≥ λn −
n−5
∑

i=0

λi ≥ λn − λn−5

1 − 1/λ
= λn−3(λ3 − 1) ≥ λn−2.

Assume that λn−2 ≥ m/C , it is sufficient to take n ≥ n3 = 3+[ln(m/C)/ lnλ]. Let
C be sufficiently large that n3 < n2 , and consider monomials (14) for n3 ≤ n ≤ n2 .
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Such monomials have weights between m/C and m, we evaluate their number

n2
∑

n=n3

22n−5 ≥ 1

4 − 1
(22n2−3 − 22n3−5) ≥ 1

3
(22 ln m/ ln λ−11 − 22 ln(m/C)/ lnλ+1)

≥ 1

3

(

2−11m2 ln 2/ ln λ − 2

(

m

C

)2 ln 2/ ln λ)

≥ C1m
2 ln 2/ ln λ,

provided that C is sufficiently large.

Lemma 4.3. Let char K = 2 and L = Liep(v1, v2). Then L has a nil-p-
mapping.

Proof. We prove that the bigger subalgebra Hp ⊃ L has a nil-p-mapping.
Consider v ∈ Hp . Let s be the maximal number such that vs appears in the
decomposition of v . From (10) and (7) we have

v =

s−1
∑

i=1

gi(t0, . . . , ti−3)vi + h(t0, . . . , ts−3)vs, (16)

where gi = gi(t0, . . . , ti−3), i = 1, . . . , s−1, and h = h(t0, . . . , ts−3) are polynomials
from R . We assume that h ∈ R+ . (Otherwise we take the number s + 1 and
consider the decomposition v = · · · + hvs+1 , where h = 0). We apply the p-
mapping to (16) and use (8). Consider vi s with the highest value of i that might
appear. The commutators yield (similar to (5) and (6))

[givi, hvs] = hgiti−1 · · · ts−3vs+1 + gi vi(h) vs, 1 ≤ i ≤ s − 1;

[givi, gjvj] =
s

∑

k=1

fkvk, fk ∈ R, 1 ≤ i < j ≤ s − 1.

Since h ∈ R+ the term with vs+1 in the first case goes to h̃ of a presentation similar
to (16). Consider the squares. We have (hvs)

2 = h2v2
s = 0 and the squares arising

from the sum yield at most (gs−1vs−1)
2 = g2

s−1ts−2vs+1 , this term also belongs to

h̃. Thus, we obtain the same presentation as (16):

v2 =
s

∑

i=1

g̃i(t0, . . . , ti−3)vi + h̃(t0, . . . , ts−2)vs+1.

We iterate the process

v2m

=
s+m−1
∑

i=1

˜̃gi(t0, . . . , ti−3)vi + ˜̃h(t0, . . . , ts+m−3)vs+m. (17)

The weight of any homogeneous monomial of v is at least λ. Hence, weights of
monomials of v2m

are at least λ2m . Since polynomials only reduce the weight,
weights of monomials in (17) are at most wt(vs+m) = λs+m . If λ2m > λs+m ,
then v2m

= 0. Therefore, it is sufficient to take m > (s − 1) lnλ
ln(2/λ)

. (where
ln λ

ln(2/λ)
≈ 2.27.).
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Remark that the nil-index of the p-mapping is unbounded. It is sufficient
to consider the powers (v1 + v2 + · · ·+ vs)

2m

.

By virtue of Lemma 3.1, we can consider the Hilbert series in two variables

H(L, x, y) =
∑

a,b≥0

dim La,b xayb.

Lemma 4.4. Let char K = 2 and L = Liep(v1, v2). Then the Hilbert series
satisfies the functional relation

H(L, x, y) = H(L, y, xy)

(

1 +
x

y

)

− xy.

Proof. Denote hab = dim La,b for all a, b ≥ 0. Recall that L is generated by
X = {v1, v2} . Let B ⊂ L be the restricted ideal generated by v2 and v2

1 . Then
L = 〈v1〉K ⊕B and it is well-known [1] that the algebra B is generated by the set

Y = {v2, [v1, v2], v
2
1} = {v2, v3, t0v3}.

Consider homogeneous elements in Y . Remark that we can use t0v3 at most once.
We have wt(v1) = λ, wt(v2) = λ2 = 1 + λ, wt(v3) = 1 + 2λ, and wt(t0v3) = 2λ.
Fix numbers a, b ≥ 0. Let Pa,b,0 denote the space of homogeneous elements
in Y \ {t0v3} of degrees a, b with respect to v2 and v3 , respectively. Then
wt Pa,b,0 = a wt(v2) + b wt(v3) = a(1 + λ) + b(1 + 2λ) = bλ + (a + b)(1 + λ) =
b wt(v1) + (a + b) wt(v2). Hence,

Pa,b,0 ⊂ Lb,a+b. (18)

Similarly, let Pa,b,1 denote the space of homogeneous elements in Y = {v2, v3, t0v3}
of degrees a, b, and 1, respectively. We get wt Pa,b,1 = a(1+λ)+ b(1+2λ)+2λ =
(b + 2)λ + (a + b)(1 + λ) = (b + 2) wt(v1) + (a + b) wt(v2). Thus,

Pa,b,1 ⊂ Lb+2,a+b. (19)

Recall that we have the embedding τ : L →֒ L given by τ(vi) = vi+1 for i ≥ 1.
We have

Pa,b,0 = τ(La,b), Pa,b,1 = t0τ(La,b+1). (20)

Consider monomials in X that depend on v1 only, these are {v1, v
2
1} that yield

H(L, x, 0) =
∑

a≥0, b=0

ha,0x
a = x + x2 . From (18), (19), and (20) we get

H(L, x, y) = x + H(B, x, y) = x +
∑

a,b≥0

dim Pa,b,0 xbya+b +
∑

a,b≥0

dim Pa,b,1 xb+2ya+b

= x +
∑

a,b≥0

ha,b ya(xy)b +
x

y

∑

a,b≥0

ha,b+1 ya(xy)b+1

= x +
∑

a,b≥0

ha,b ya(xy)b +
x

y

∑

a≥0,b≥1

ha,b ya(xy)b

= x + H(L, y, xy) +
x

y

(

(H(L, x, y) − x − x2)
∣

∣

∣x=y,
y=xy

)

= H(L, y, xy)

(

1 +
x

y

)

− xy.
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Corollary 4.5. Set H1(x, y) = x + y and define recursively

Hi+1(x, y) = Hi(y, xy)(1 + x/y) − xy, i ≥ 2.

Then the sequence Hi(x, y), i = 1, 2, . . . converges to H(L, x, y) componentwise.

Proof. Let H(L, x, y) =
∑

a+b≥1 ha,bx
ayb and Hi(x, y) =

∑

a+b≥1 h
(i)
a,bx

ayb . Let
us prove by indiction on j = 1, 2, . . . that H(L, x, y) and H2j−1(x, y) have the

same coefficients hn,m = h
(2j−1)
n,m for n + m ≤ j . Let j = 1 then by Lemma 3.1 we

have H(L, x, y) = x + y + . . . and the base of induction is true.

Let j > 1. By Lemma and the recursive relation we have

hn,m = hm−n,n + hm−n+2,n−1 − δn,1δm,1,

h(i+1)
n,m = h

(i)
m−n,n + h

(i)
m−n+2,n−1 − δn,1δm,1, i ≥ 1,

for all n, m ≥ 0. Here ha,b , h
(i)
a,b are zero if either of indices a, b is negative. We

compare sums of indices in the relations above. We have n + m > (m − n) + n
if n > 0 and n + m > (m − n + 2) + (n − 1) if n > 1. In case n = 0 or n = 1
we apply this relations again and see that sums of indices definitely decrease. Fix
numbers n, m such that n + m ≤ j and consider coefficients hn,m and h

(2j−1)
n,m .

We apply two iterations and conclude that they are expressed in the same way via
ha,b and h

(2j−3)
a,b , respectively, the latter coincide by inductive assumption. Hence

hn,m = h
(2j−1)
n,m . The induction step is proved.

We apply the corollary and obtain dimensions of homogeneous components
of L, a more detailed explanation will be given in the next section.

x

y

1

1
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4
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1

1

1

2

1

1
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2

1

2

1

2

2

1

3

2

2
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1

2

2

1

3

2

2

3

1

3

3

2

4

2

3

3

1

3

2

2

3

1

3

3

2

4

2

3

3

ξ=wt

η =swt

y=−
x/λ

y
=

λx
+

λ
2

y
=

λx
−

λ
3
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Also, the first terms of the Hilbert series are as follows

H(L, x, y) = x + y + x2 + xy + y2 + x2y + xy2 + x3y + 2x2y2 + xy3

+ x3y2 + 2x2y3 + xy4 + 2x3y3 + 2x2y4 + x4y3 + 2x3y4 + x2y5

+ 2x4y4 + 2x3y5 + x5y4 + 3x4y5 + 2x3y6 + 2x5y5 + 3x4y6 + x3y7

+ 2x5y6 + 2x4y7 + x6y6 + 3x5y7 + 2x4y8 + 2x6y7 + 3x5y8 + x4y9

+ 3x6y8 + 3x5y9 + 2x7y8 + 4x6y9 + 2x5y10 + 3x7y9 + 3x6y10

+ x8y9 + 3x7y10 + 2x6y11 + 2x8y10 + 3x7y11 + x6y12

+ 3x8y11 + 3x7y12 + 2x9y11 + 4x8y12 + 2x7y13 + 3x9y12 + 3x8y13 + . . .

5. Weight structure in characteristic 2

The goal of this section is to show that weights of L, A and the restricted
enveloping algebra u = u0(L) are situated in specific regions on plane. This
observation implies that all these three algebras are direct sums of two locally
nilpotent subalgebras.

Theorem 5.1. Let char K = 2 and L = Liep(v1, v2), A = Alg(v1, v2), and
u = u0(L). Then we have the following regions for weights.

1. weights of L lie in the strip λx − λ3 < y < λx + λ2;

2. weights of A lie in the strip λx − λ4 < y < λx + λ3;

3. set θ = ln 2/ lnλ, κ = θ/(1 + θ) ≈ 0.59. There exists C > 0 such that
weights of u lie in the region |η| < Cξκ ;

4. weight of all three algebras satisfy |η| ≥ λ2/ξ .

Proof. Let l be the line on plane given by y = λx. Recall that we have
the linear function swt(x, y) = y − λx on vectors (x, y) ∈ R2 . Geometrically,
swt(x, y) is equal to (oriented) length of the vertical segment joining (x, y) with
l . By Lemma 3.1 we have swt(tn) = − swt(vn) = −λ̄n−2 for all n ≥ 0.

By the previous section, all elements of L are expressed via monomials of
type w = tα0

0 tα1

1 · · · tαn−3

n−3 vn , where αi ∈ {0, 1} . Then

swt(w) = swt(vn) +
n−3
∑

i=0

αi swt(ti) = λ̄n−2 −
n−3
∑

i=0

αiλ̄
i−2.

Since λ̄ < 0, we get bounds as follows

swt(w) ≤ |λ̄|n−2 +
∑

i odd
1≤i≤n−3

|λ̄|i−2 <

∞
∑

j=0

λ1−2j =
λ

1 − 1/λ2
=

λ3

λ2 − 1
= λ2;

swt(w) ≥ −|λ̄|n−2 −
∑

i even
0≤i≤n−3

|λ̄|i−2 > −
∞

∑

j=0

λ2−2j = − λ2

1 − 1/λ2
= −λ3.
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We obtain −λ3 < swt(w) < λ2 , which is equivalent to the first claim.

Recall that by proof of Theorem 4.1, A is contained in span of mono-
mials (13) of type w = tα0

0 tα1

1 · · · tαn−3

n−3 vβ1

1 vβ2

2 · · · vβn
n , where αi, βj ∈ {0, 1} , and

βn = 1. We proceed as above

swt(w) =

n
∑

j=1

βj swt(vj) +

n−3
∑

i=0

αi swt(ti) =

n
∑

j=1

βjλ̄
j−2 −

n−3
∑

i=0

αiλ̄
i−2;

swt(w) ≤
n

∑

k=1

|λ̄|k−2 <
λ

1 − 1/λ
= λ3;

swt(w) ≥ −
n

∑

k=0

|λ̄|k−2 > − λ2

1 − 1/λ
= −λ4.

We obtain that weights of A lie in the claimed strip −λ4 < swt(w) < λ3 .

Let us study weights of u = u0(L). Let L = 〈w1, w2, w3, . . . 〉K be a basis
the order of which obeys to the weight function. Consider a basis monomial
u = wi1wi2 · · ·wik ∈ u, where i1 < i2 < · · · < ik , and k is a fixed large number.
Let us find relation between new coordinates (ξ, η), where ξ = wt u , η = swt u .
From the first claim we have the estimate

|η| =

∣

∣

∣

∣

k
∑

j=1

swt wij

∣

∣

∣

∣

< kλ3. (21)

Now, let us evaluate the weight of u. Denote θ = ln 2/ lnλ. By the proof
of Theorem 4.1 we have the upper bound γ̃L(m) < C0m

θ , m ∈ N, where C0 is
some constant. Set

m = m(k) = [(k/C0)
1/θ]. (22)

By this setting, γ̃L(m) < C0m
θ < k . We observe that the total weight of k distinct

vectors wij is bigger than weight of k first vectors, which, by our construction,
contain all basis vectors of weight at most m, by proof of Theorem 4.1, the latter
contain the set Wn = {tα0

0 · · · tαn−5

n−5 vn | αi ∈ {0, 1}} (see (12)):

ξ = wt u =

k
∑

j=1

wt wij ≥
k

∑

j=1

wt wj ≥
∑

wt wj≤m

wt wj ≥
∑

w∈Wn

wt w. (23)

Recall that wt Wn ≤ λn and to get wt Wn < m we just set n = n(m) =
[ln m/ lnλ]. Let v = tα0

0 · · · tαn−5

n−5 vn ∈ Wn , then

wt v ≥ λn −
n−5
∑

i=0

λi ≥ λn − λn−5

1 − 1/λ
= λn − λn−3 > λn − λn−2 = λn−1.

We continue the estimate (23)

ξ ≥
∑

w∈Wn

wt w ≥ λn−1|Wn| = λn−12n−4 =
1

8
(2λ)n−1 ≥ 1

8
(2λ)lnm/ lnλ−2

=
1

32λ2
mln(2λ)/ ln λ =

1

32λ2
m1+θ ≥ 1

100
m1+θ. (24)
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Finally, (21), (22), and (24) yield the desired region

|η| < kλ3 ≤ C0λ
3(m + 1)θ ≤ C0λ

3
(

(100ξ)1/(1+θ) + 1
)θ ≤ Cξθ/(1+θ).

The last claim follows from Lemma 3.4.

u1

u2

uk

x

y

O

ξ

η

Corollary 5.2. Let char K = 2 and L, A, and u = u0(L) be as above. Then
these three algebras are direct sums of two locally nilpotent subalgebras

L = L+ ⊕ L−, A = A+ ⊕ A−, u = u+ ⊕ u−,

where the decomposition is given by the function of superweight.

Proof. Consider, for example u. Let u+ , u− consist of homogeneous mono-
mials with positive, respectively negative superweights, i.e. those that lie above
or below the line y = λx. Let u1, . . . , uk ∈ u− be homogeneous monomials and
A = Alg(u1, . . . , uk) be the subalgebra generated by these elements. Let N ∈ N

and consider u =
∑

j; n≥N αjuj1 · · ·ujn
, αj ∈ K . Then it is geometrically clear

that the sums of at least N respective vectors will go out of the shaded region
|η| < Cξκ provided that N is sufficiently large (see the picture above). Hence,
AN = 0.

We can give some bounds on degrees of nilpotence of subalgebras of A .

Corollary 5.3. Let char K = 2, A be as above. Consider a subalgebra A =
Alg(u1, . . . , uk) ⊂ A, where u1, . . . , uk ∈ A+ (or u1, . . . , uk ∈ A− ). Let C =
max{wt ui | 1 ≤ i ≤ k}. Then AN = 0, where N = [Cλ] + 1 (or, respectively,
N = [Cλ2] + 1).

Proof. Consider the case u1, . . . , uk ∈ A+ . We apply Lemma 3.4

| swt(ui)| ≥
λ2

wt(ui)
≥ λ2

C
, 1 ≤ i ≤ k.

Consider a homogeneous element w ∈ AN , then
swt w ≥ Nλ2/C = ([Cλ]+1)λ2/C ≥ λ3 . By the second statement of the Theorem,
0 < swt w < λ3 . Hence w = 0. We proved that AN = 0.
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6. Fibonacci restricted Lie algebra, char K = 3

In this Section, we show that the Fibonacci restricted Lie algebra has the same
properties in case char K = 3. Let A be an associative algebra over a field K
with char K = 3, then one has the identity

(a + b)3 = a3 + b3 + [a, [a, b]] + [b, [b, a]], a, b ∈ A. (25)

We get v3
1 = (∂1 + t0v2)

3 = t0[∂1, [∂1, v2]] + t20[v2, [v2, ∂1]] = t0[∂1, v3] − t20[v2, v3] =
−t20v4 . We apply τ and obtain

v3
i = −t2i−1vi+3, i = 1, 2, . . . . (26)

Let Lie(v1, v2) ⊂ Der R be the Lie subalgebra generated by v1 and v2 . By
Lemma 3.6 we get the Lie subalgebra H that contains Lie(v1, v2). Moreover,

L = Lie(v1, v2)p ⊂ H = 〈v1, v2, v3, tα0

0 tα1

1 · · · tαn−4

n−4 vn | n ≥ 4, αi ∈ {0, 1, 2}〉K.
(27)

Indeed, from (26) it follows that H ⊂ DerR is a restricted subalgebra. In notations
of Lemma 3.6, we also have the restricted subalgebra H̃p = H̃ ⊕ 〈t2i−4vi | i ≥ 4〉K ,
but we are not using it. We shall use only embedding (27).

Theorem 6.1. Let char K = 3 and L = Liep(v1, v2), A = Alg(v1, v2). Denote

λ = 1+
√

5
2

. Then

1. GKdimL = GKdimL = ln 3/ lnλ ≈ 2.28;

2. GKdimA = GKdimA = 2 ln 3/ lnλ ≈ 4.56.

Proof. Consider a monomial w = tα0

0 tα1

1 · · · tαn−4

n−4 vn ∈ H of weight not exceed-
ing m. Assume that n ≥ 4, then

m ≥ wt(w) = wt(vn) +
n−4
∑

i=0

αi wt ti = λn −
n−4
∑

i=0

αiλ
i ≥ λn − 2

n−4
∑

i=0

λi

> λn − 2λn−4

1 − 1/λ
= λn−4(λ4 − 2λ2) = λn−4((λ3 + λ2) − 2λ2) = λn−3.

We obtain λn−3 < m. Hence, n ≤ n0 = 3 + [ln m/ lnλ]. The number of such
monomials w of weight not exceeding m yields the bound

γ̃L(m) ≤ 3 +

n0
∑

n=4

3n−3 ≤ 3 +
3n0−3

1 − 1/3
≤ 3 +

3

2
3ln m/ ln λ ≤ 3 +

3

2
mln 3/ lnλ.

The upper bound on the growth of L is proved.

Let us prove the lower bound. Consider the sets Vn = {vn, tn−4vn, t2n−4vn}
for n ≥ 4. The relations v3

n−3 = −t2n−4vn and [vn−3, vn−1] = tn−4vn prove that
Vn ⊂ L for all n ≥ 4. Set also W5 = {v5} and

Wn = {tα0

0 · · · tαn−6

n−6 vn | αi ∈ {0, 1, 2}}, n ≥ 6.
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We prove by induction on n that Wn ⊂ L. The base of induction is W5 ⊂ L.
Now consider n ≥ 6. By inductive assumption, Wn−1 = {tα0

0 · · · tαn−7

n−7 vn−1 | αi ∈
{0, 1, 2}} ⊂ L. Also, Vn−2 = {vn−2, tn−6vn−2, t

2
n−6vn−2} ⊂ L. The pairwise

products yield Wn and we get Wn ⊂ L.

Fix a number m. Consider all numbers n such that 6 ≤ n ≤ n1 =
[ln m/ lnλ]. Then wt(Wn) ≤ wt(vn) = λn ≤ m. We count the number of elements
in such Wn

γ̃L(m) ≥
n1

∑

n=6

3n−5 ≥ 3n1−5 ≥ 3lnm/ lnλ−6 =
1

36
mln 3/ lnλ.

Hence, GKdimL = GKdimL = ln 3/ lnλ.

Let us evaluate the growth of A . Similar to Theorem 4.1, we rearrange
products of elements (27) and get

A ⊂ 〈tα0

0 tα1

1 · · · tαn−4

n−4 vβ1

1 · · · vβn

n | αi, bj ∈ {0, 1, 2}, βn > 0〉K . (28)

Consider such a monomial of weight not exceeding m. Assume that n ≥ 4, then

m ≥ −
n−4
∑

i=0

αiλ
i +

n
∑

j=1

βjλ
j ≥ λn −

n−4
∑

i=0

2λi > λn − 2λn−4

(1 − 1/λ)

= λn−4(λ4 − 2λ2) = λn−4((λ3 + λ2) − 2λ2) = λn−3.

We obtain λn−3 < m. Hence, n ≤ n0 = 3 + [ln m/ ln λ]. Let N be the number of
monomials (28) with n ≤ 3. We compute the number of monomials (28) of weight
not exceeding m and obtain

γ̃A(m) ≤ N +

n0
∑

n=4

32n−3 ≤ N +
32n0−3

1 − 1/9
≤ N +

35+2 lnm/ lnλ

8
≤ N +

35

8
m2 ln 3/ lnλ.

The claimed upper bound on the growth of A is proved. To get the lower bound,
we consider the analogue of the set (14)

A ⊃ {tα0

0 · · · tαn−6

n−6 vnv
βn−1

n−1 · · · vβ1

1 | αi, βi ∈ {0, 1, 2}, βn = 1}, n ≥ 6. (29)

Indeed, since Wn ⊂ L for n ≥ 6 we see that these monomials belong to A . The
proof of Theorem 4.1 shows that this set is linearly independent. Weight of a
monomial (29) is bounded from above as

−
n−6
∑

i=0

αiλ
i +

n
∑

j=1

βjλ
j ≤

n−1
∑

j=1

2λj + λn <
2λn−1

1 − 1/λ
+ λn = 2λn+1 + λn = λn+3.

Fix a number m, assume that λn+3 < m; then all monomials (29) have weights
less than m. This is the case for all numbers n ≤ n2 = [ln m/ lnλ] − 3. Finally,
the number of monomials (29) yields the lower bound on the growth of A

γ̃A(m) ≥
n2
∑

n=6

32n−6 ≥ 32n2−6 ≥ 32 ln m/ ln λ−14 =
1

314
m2 ln 3/ ln λ.

This estimate proves the upper bound on the growth of A .
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Lemma 6.2. Let char K = 3 and L = Liep(v1, v2). Then L has a nil-p-
mapping.

Proof. Consider v ∈ L. Let s be the maximal number such that vs appears
in the decomposition of v . We have

v =
s−1
∑

i=1

gi(t0, . . . , ti−4)vi + h(t0, . . . , ts−4)vs, (30)

where gi = gi(t0, . . . , ti−4) and h = h(t0, . . . , ts−4) are polynomials from R . As
above, we assume that h ∈ R+ . (Otherwise we take the number s + 1 and
consider the decomposition v = · · · + hvs+1 , where h = 0). We apply the p-
mapping to (30) and use (25) and (26). We observe vi s with the highest value of
i that might appear. We have three cases.

a) We consider the commutators [gi1vi1 , [gi2vi2 , gi3vi3 ]] without the factor
hvs . For example, the extreme case is as follows

[gs−1vs−1, [gs−2vs−2, gs−1vs−1]] = g2
s−1gs−2vs+1,

where extra summands of type fjvj , with fj ∈ R for j < s + 1 do not appear
by Corollary 3.7. In general case, let j = max{i1, i2, i3} , then j ≤ s − 1. The
multiplication rule (see Lemma 1.1) implies that we can at most twice increase j
by one and obtain vj+2 , where j + 2 ≤ s + 1. Thus, we obtain at most g̃vs+1 ,
where g̃ ∈ R .

b) Next, consider 3-fold commutators that contain hvs . We obtain for
example

[hvs, [gs−1vs−1, hvs]] = h2gs−1vs+2.

In general, we obtain at most vs+2 with the factor h ∈ R+ . Indeed, if we try
to kill h by some vj then vs remains and we obtain at most vs+1 . Thus, all the
terms with vs+2 go to h̃vs+2 , h̃ ∈ R+ , of a presentation similar to (30).

c) Consider the cubes. We have (hvs)
3 = h3v3

s = 0 and the cubes arising
from the sum (30) yield at most (gs−1vs−1)

3 = −g3
s−1t

2
s−2vs+2 , this term belongs

to h̃vs+2 .

Thus, we obtain a presentation of type (30):

v3 =

s+1
∑

i=1

g̃i(t0, . . . , ti−4)vi + h̃(t0, . . . , ts−2)vs+2.

We iterate the process

v3m

=

s+2m−1
∑

i=1

˜̃gi(t0, . . . , ti−4)vi +
˜̃
h(t0, . . . , ts+2m−4)vs+2m. (31)

The weight of any homogeneous monomial of v is at least λ. Hence, weights of
monomials of v3m

are at least λ3m . Since polynomials only reduce the weight,
weights of monomials in (31) are at most wt(vs+2m) = λs+2m . If λ3m > λs+2m ,
then v3m

= 0. Therefore, it is sufficient to take m > (s − 1) lnλ
ln(3/λ2)

, where
lnλ

ln(3/λ2)
≈ 3.53.
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7. Weight structure in characteristic 3

In this section we extend the results on weights (Theorem 5.1) to characteristic 3.

Theorem 7.1. Let char K = 3 and L = Liep(v1, v2), A = Alg(v1, v2), and
u = u0(L). Then we have the following regions for weights.

1. weights of L lie in the strip λx − 2λ3 < y < λx + 2λ2;

2. weights of A lie in the strip λx − 2λ4 < y < λx + 2λ3;

3. set θ = ln 3/ lnλ, κ = θ/(1 + θ) ≈ 0.695. There exists C > 0 such that
weights of u lie in the region |η| < Cξκ ;

4. weight of all three algebras satisfy |η| ≥ λ2/ξ .

Proof. All elements of L are expressed via monomials w = tα0

0 tα1

1 · · · tαn−3

n−3 vn ,
where αi ∈ {0, 1, 2} . We proceed as above

swt(w) = swt(vn) +
n−3
∑

i=0

αi swt(ti) = λ̄n−2 −
n−3
∑

i=0

αiλ̄
i−2,

swt(w) ≤ |λ̄|n−2 + 2
∑

i odd
1≤i≤n−3

|λ̄|i−2 < 2
∞

∑

j=0

λ1−2j =
2λ

1 − 1/λ2
=

2λ3

λ2 − 1
= 2λ2;

swt(w) ≥ −|λ̄|n−2 − 2
∑

i even
0≤i≤n−3

|λ̄|i−2 > −2
∞

∑

j=0

λ2−2j = − 2λ2

1 − 1/λ2
= −2λ3.

We obtain the strip −2λ3 < swt(w) < 2λ2 .

By proof of Theorem 6.1, A is contained in the span of monomials (13) of
type w = tα0

0 tα1

1 · · · tαn−3

n−3 vβ1

1 vβ2

2 · · · vβn
n , where αi, βj ∈ {0, 1, 2} , and βn = 1. We

proceed as above

swt(w) =

n
∑

j=1

βj swt(vj) +

n−3
∑

i=0

αi swt(ti) =

n
∑

j=1

βjλ̄
j−2 −

n−3
∑

i=0

αiλ̄
i−2;

swt(w) ≤ 2
n

∑

k=1

|λ̄|k−2 <
2λ

1 − 1/λ
= 2λ3;

swt(w) ≥ −2
n

∑

k=0

|λ̄|k−2 > − 2λ2

1 − 1/λ
= −2λ4.

Hence, the weights of A lie in the claimed strip −2λ4 < swt(w) < 2λ3 .

Let us study the weights of u = u0(L). Let L = 〈w1, w2, w3, . . . 〉K be a
basis the order of which obeys to the weight function. Consider a basis monomial
u = wγ1

i1
wγ2

i2
· · ·wγk

ik
∈ u, where i1 < i2 < · · · < ik , γi ∈ {1, 2} , and k is a
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fixed large number. Let us find a relation between new coordinates (ξ, η), where
ξ = wt u , η = swt u . From the first claim we have the estimate

|η| =

∣

∣

∣

∣

k
∑

j=1

γk swt wij

∣

∣

∣

∣

< 4kλ3. (32)

Now, let us evaluate the weight of u. Denote θ = ln 3/ lnλ. By the proof
of Theorem 6.1 we have the upper bound γ̃L(m) < C0m

θ , m ∈ N, where C0 is
some constant. Set

m = m(k) = [(k/C0)
1/θ]. (33)

By this setting, γ̃L(m) < C0m
θ < k . We observe that the total weight of k distinct

vectors wij is bigger than weight of k first vectors, which, by our construction,
contain all basis vectors of weight at most m, by proof of Theorem 6.1, the latter
contain the set Wn = {tα0

0 · · · tαn−6

n−6 vn | αi ∈ {0, 1, 2}} :

ξ = wt u =

k
∑

j=1

γj wt wij ≥
k

∑

j=1

wt wj ≥
∑

wt wj≤m

wt wj ≥
∑

w∈Wn

wt w. (34)

Recall that wt Wn ≤ λn and to get wt Wn < m we just set n = n(m) =
[ln m/ lnλ]. Let v = tα0

0 · · · tαn−6

n−6 vn ∈ Wn , then

wt v ≥ λn − 2
n−6
∑

i=0

λi ≥ λn − 2λn−6

1 − 1/λ
= λn − 2λn−4

> λn − λn−3 − λn−4 = λn − λn−2 = λn−1.

We continue the estimate (34)

ξ ≥
∑

w∈Wn

wt w ≥ λn−1|Wn| = λn−13n−5 =
1

81
(3λ)n−1 ≥ 1

81
(3λ)lnm/ ln λ−2

=
1

36λ2
mln(3λ)/ lnλ =

1

36λ2
m1+θ ≥ 1

2000
m1+θ. (35)

Finally, (32), (33), and (35) yield the desired region

|η| < 4kλ3 ≤ 4C0λ
3(m + 1)θ ≤ 4C0λ

3
(

(2000ξ)1/(1+θ) + 1
)θ ≤ Cξθ/(1+θ).

Corollary 7.2. Let char K = 3 and L, A, and u = u0(L) be as above. Then
these three algebras are direct sums of two locally nilpotent subalgebras

L = L+ ⊕ L−, A = A+ ⊕ A−, u = u+ ⊕ u−,

where the decomposition is given by the function of superweight.
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8. Fibonacci restricted Lie algebra, char K = 5

In this Section char K = 5. We compute the pth power of v1 = ∂1 + t0v2 using
the third property of the p-mapping (3). Recall that ∂1(v2) = v3 and ∂1(vi) = 0
for i > 2.

ad(Z∂1 + t0v2)
4(∂1) = − ad(Z∂1 + t0v2)

3(t0∂1(v2)) = − ad(Z∂1 + t0v2)
3(t0v3)

= −t20 ad(Z∂1 + t0v2)
2(v4) = −t30 ad(Z∂1 + t0v2)(t1v5)

= −t30(Zv5 + t0t
2
1t2v6).

We get two nonzero terms, namely s1(∂1, t0v2) and s2(∂1, t0v2). Hence,

v5
1 = (∂1 + t0v2)

5 = −t30

(

1

2
v5 + t0t

2
1t2v6

)

.

Thus, in case char K = 5 we have

v5
i = 2t3i−1 vi+4 − t4i−1t

2
i ti+1 vi+5, i = 1, 2, . . . . (36)

By Lemma 3.6 we have the Lie subalgebra H̃ ⊂ DerR as follows

H̃ = 〈v1, v2, v3, tα0

0 tα1

1 · · · tαn−4

n−4 vn | n ≥ 4, αi ∈ {0, 1, 2, 3, 4}; αn−4 ≤ 1, αn−5 ≤ 2〉K .

Also Lie(v1, v2) ⊂ H̃ . Since the first term in (36) does not satisfy the condition
αn−5 ≤ 2 we have

H̃p = H̃ ⊕ 〈v5
i | i = 0, 1, 2, . . . 〉K .

Now we use the embedding L = Liep(v1, v2) ⊂ H̃p .

Theorem 8.1. Let char K = 5 and L = Liep(v1, v2). Denote λ = 1+
√

5
2

. Then
GKdimL = GKdimL = ln 5/ lnλ ≈ 3.34.

Proof. Denote by N the number of basis monomials of H̃ such that n < 6.
Let w = tα0

0 tα1

1 · · · tαn−4

n−4 vn ∈ H̃ be a monomial of weight not exceeding m and
n ≥ 6. Then

m ≥ wt w = wt vn +
n−4
∑

i=0

αi wt ti = λn −
n−4
∑

i=0

αiλ
i ≥ λn − λn−4 − 2λn−5 − 4

n−6
∑

i=0

λi

> λn−6

(

λ6 − λ2 − 2λ − 4

1 − 1/λ

)

= λn−6(λ6 − 5λ2 − 2λ) = λn−5.

(the reader can check that the expression in brackets above is indeed equal to λ).
We obtain λn−5 < m. Hence, n ≤ n0 = 5 + [ln m/ ln λ]. Then the number of such
monomials w of weight not exceeding m is bounded by

N + 2 · 3
n0

∑

n=6

5n−5 ≤ N +
6 · 5n0−5

1 − 1/5
≤ N +

15

2
5ln m/ ln λ = N +

15

2
mln 5/ lnλ.
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Consider also elements v5
n ∈ H̃p of weight not exceeding m. We have 5 wt vn =

5λn ≤ m. The number of such elements is bounded by C1 ln m and we obtain the
claimed upper estimate on the growth of L.

Let us prove the lower bound. We have [v1, v3] = t0v4 ∈ L. We subsequently
multiply t0v4 by v3, v4, v5, . . . and conclude that {t0vn | n ≥ 4} ⊂ L. Next,
[t0v4, t0v5] = t20v6 ∈ L, we multiply the last element by v5, v6, . . . and obtain that
{t20vn | n ≥ 6} ⊂ L. Also [t0v5, t

2
0v6] = t30v7 ∈ L and [t20v6, t

2
0v7] = t40v8 ∈ L.

Similarly, we multiply by vi s and conclude that

{tα0vn | 0 ≤ α ≤ 4, n ≥ 8} ⊂ L. (37)

Consider the sets
Vn = {tαn−8vn | 0 ≤ α ≤ 4}, n ≥ 8.

We apply τ to (37) and obtain that Vn ⊂ L for all n ≥ 8. Next we set W9 = {v9}
and

Wn = {tα0

0 · · · tαn−10

n−10 vn | 0 ≤ αi ≤ 4}, n ≥ 10.

We prove by induction on n that Wn ⊂ L for all n ≥ 9. The base of induction is
W9 ⊂ L. Consider n ≥ 10. By inductive assumption, Wn−1 = {tα0

0 · · · tαn−11

n−11 vn−1 |
0 ≤ αi ≤ 4} ⊂ L. Also, Vn−2 = {tαn−10vn−2 | 0 ≤ α ≤ 4} ⊂ L. The pairwise
products yield that Wn ⊂ L.

Fix a number m. Consider all numbers n such that 9 ≤ n ≤ n1 =
[ln m/ lnλ]. Then wt(Wn) ≤ wt(vn) = λn ≤ m. We count the number of elements
in such Wn and obtain

γ̃L(m) ≥
n1
∑

n=9

5n−9 ≥ 5n1−9 ≥ 5lnm/ lnλ−10 =
1

510
mln 5/ lnλ.

Hence, GKdimL = GKdimL = ln 5/ lnλ.
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